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We study the statistics of reflection and transmission coefficients across a one-dimensional disor-
dered electronic system in the presence of absorption. The absorption is introduced via a uniform
imaginary part in the site energies in the disordered segment. Our results for the stationary distribu-
tion of the backscattered reflection coefficient differ qualitatively from recently obtained analytical
results. We point out the source of this discrepancy by studying the phase evolution of the com-
plex reflection amplitude. The limited range of validity of earlier known analytical results in the
parameter space of the strength of disorder and absorption are also discussed.

I. INTRODUCTION

Wave propagation in a lossless random medium has
been studied for over several decades.! Some of these
studies include electron transport in the presence of ran-
dom impurity potential, light or electromagnetic wave
propagation in randomly distributed polarizable parti-
cles, acoustic (or sound) propagation in an inhomoge-
neous elastic medium, seismic or water wave propaga-
tion, etc. Results on these different types of wave prop-
agation complement each other since all these different
types of wave propagation in an appropriate limit follow
a similar mathematical equation, namely, the Helmholtz
type equation. It is the wave character giving interfer-
ence and diffraction which is the common operative fea-
ture. In the context of electron wave transport in one-
dimensional random media (in the absence of absorp-
tion), it is now well established that coherent interfer-
ence effects, due to elastic scattering by the serial static
disorder, lead to a strong localization of all eigenstates
for arbitrary weak disorder.? From the point of view of
scattering these positive-energy localized states in a dis-
ordered system play a qualitatively distinctive role. This
localized nature of eigenstates manifests as an exponen-
tial increase of ensemble averaged resistance with the
sample length. Moreover, the transmission across a sam-
ple is very sensitive to the spatial realization of impurity
configuration. In fact this leads to a non-self-averaging
behavior in the resistance (or transmission) in that the
resistance fluctuations over the ensemble of macroscop-
ically identical samples dominate the ensemble average.
The presence of inelastic scatterings (phonons) leads to
the loss of phase memory of the wave function and sup-
presses these fluctuations, and much attention has been
paid to these studies.?

As compared to the studies on wave propagation in a
static nonabsorptive medium, the problem of wave prop-
agation in an absorptive medium has received less atten-
tion. In recent years several results have been obtained
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in this field.3~® This problem is also of physical inter-
est as there are several physical situations where one en-
counters the absorption of elementary particles or exci-
tations due to impurities in a medium. One recent exam-
ple is the light (photon) propagation in a lossy dielectric
medium.b7~% The absorption corresponds to the actual
removal of particles by recombination processes (or en-
ergy in the case of electromagnetic wave propagation).
To allow the possibility of inelastic decay on otherwise co-
herent tunneling through potential barriers and to study
the crossover from coherent to sequential tunneling sev-
eral studies invoke the absorption!®!! mechanism.

In earlier studies it was widely thought that the ef-
fect of absorption on classical wave propagation is analo-
gous to that of inelastic scattering of electrons.”!® How-
ever, recent studies have indicated that absorption does
not provide a cutoff length scale (similar to an inelastic
scattering length) for the renormalization of wave prop-
agation in random media, i.e., the absorption does not
reestablish the diffusive behavior of the wave propaga-
tion by destroying the localization of eigenfunctions.3—%
The transport remains nondiffusive even in the presence
of absorption. It has been predicted that in higher di-
mensions (d = 3) a genuine mobility edge can exist in a
sufficiently strongly disordered medium even in the pres-
ence of a significant degree of absorption and several scal-
ing properties of the transmitted waves at the mobility
edge are predicted.* Absorption induced coherence has
also been discussed in a separate study.® In a related
development Rubio and Kumar!? have emphasized the
dual role played by the absorption. For double barrier
structures they have shown that the mismatch caused
by absorptive potential (or imaginary potential) leads to
a nonmonotonic dependence of the total absorption on
the strength of the potential. The absorptive potential
being imaginary causes enhanced reflection due to the
potential dispersion, and absorption without reflection is
not possible. In a Schrodinger equation to describe the
absorption one introduces imaginary potentials. In that
case the Hamiltonian becomes non-Hermitian and leads
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to the absorption of the probability current. This ap-
proach is quite well known in nuclear physics wherein
imaginary potentials are referred to as optical potentials.
For the simple case of a purely absorptive §-function po-
tential V(z) = —ind(x), the corresponding reflection r,
transmission ¢, and absorption o coefficients are given
by12
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where k is the wave vector, m the mass, and 7 the
strength of the absorptive potential. One can readily no-
tice from Eq. (1c) that o is a nonmonotonic function of 7
for fixed k or incident energy. It initially rises and then,
after exhibiting a maximum, decreases towards zero. It
should also be noted that as n — oo the reflection coeffi-
cient tends to unity (total backscattering). In the vicin-
ity of the absorber the particle experiences mismatch in
the potential, and tries to avoid this region by enhanced
back reflection. These discussions clearly indicate that
imaginary potential plays a dual role as absorber and
reflector. We would also like to emphasize here that un-
like the absorption and reflection, transmission decreases
monotonically as we increase 7.

In a recent study on localization of light in coherently
amplifying random media Pradhan and Kumar!® have
obtained an analytical expression for the stationary dis-
tribution of a coherently backscattered reflection coef-
ficient (r) in the presence of both absorption and am-
plification. Their results for the stationary probability
distribution P,(7) for r in the absorptive case is given by

| D | exp(] D |)exp (2L
: (1 —r)zp( >’ @)

P,(r) =

where D is proportional to n/d (n and d being the
strength of absorptive potential and disorder, respec-
tively). It can readily be noticed from Eq. (2) that in
the limit of n large P;(r) does not tend to a delta func-
tion distribution at 7 = 1 (or total reflection). Instead
their results indicate that the value of P,(r) at r = 0 gets
more pronounced as we increase 7. As already pointed
out in the limit of large n the absorber acts as a reflector
and hence P,(r) should tend to §(r — 1). This clearly
indicates that the distribution obtained earlier is in gen-
eral not correct. They have obtained the distribution
on the assumption of random-phase approximation. We
show explicitly below by numerical simulations that the
random-phase approximation breaks down in the limit of
large disorder and absorption coefficient. The expression
(2) is valid only in the limited parameter domain of weak
disorder and small 7.
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In our present work we have studied numerically, fol-
lowing a transfer-matrix approach, the statistics of re-
flection and transmission coefficient in one-dimensional
electronically random absorptive system. The electronic
motion is governed by a tight-binding one-band Hamil-
tonian. We show that the transmission across a random
absorptive system introduces a length scale £ in the prob-
lem which is smaller than the localization length with no
absorption (!) and the absorption length in an ordered
system (l,). We have also studied the evolution of prob-
ability distribution for transmission (t) and reflection (r)
coefficients obtained by averaging over a large number
of realizations of random potentials in each case. We
show that in the asymptotic regime (large length of dis-
ordered segment L >> £) the probability distribution of
the reflection coefficient P(r, L) tends to a stationary dis-
tribution P,(r). We have studied the properties of this
stationary distribution by varying parameters associated
with the disorder and absorption. The obtained station-
ary distribution differs qualitatively from that given by
Eq. (2) and also exhibits several different features. Fi-
nally, we have studied the stationary phase distribution
of the complex reflection coefficient and shown that it is
nonuniform. The stationary distribution of the phase is
uniform only in the limit of small disorder and weak ab-
sorption. In the next section we define our model Hamil-
tonian and numerical procedure. The sections after that
are devoted to our results and conclusions.

II. HAMILTONIAN AND NUMERICAL
PROCEDURE

We consider a tight-binding one-band Anderson model
with diagonal disorder with a nearest-neighbor transfer-
matrix element, namely

H=Y e |n)(n|+VY (In)(n+1]+|n)(n—1]),

3)
where the state | n) is an atomiclike orbital (Wannier or-
bital) with one degree of freedom per atom and the sites
n form a one-dimensional lattice with a lattice spacing
a, which we set to be unity. The site energies €, can be
written in an equivalent form of €,, — in, with real part of
site energies €,, assumed to be independent random vari-
ables distributed uniformly over a range —W/2 to +W/2
(width W) for 1 < n < N and zero otherwise, so we are
considering a disordered chain of N atoms embedded in
an infinite ordered chain. The imaginary part in the site
energy (—in) makes the Hamiltonian non-Hermitian and
consequently leads to absorption of quasiparticles. We
have taken the absorption parameter 7 to be a constant
across a disordered segment 1 < n < N and zero other-
wise. V is the nearest-neighbor hopping matrix element.
Since all the relevent energies can be scaled by V, we can
set V to unity without loss of generality.

We calculate t, 7, and o for the sample chain through a
well-known transfer-matrix formalism.' Below we briefly
describe the method. In the transfer-matrix geometry,
the sample is connected with two semi-infinite perfect
leads which are connected to two heat baths (reservoirs).
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All nonequilibrium processes and inelastic scatterings,
etc., are supposed to occur in the baths only. A plane
wave (e**™ n is the site index) sent through a perfect
lead undergoes only elastic scattering inside the sample.
The eigenvalue equation of (3) reads as

(E - 6n)cn = V(cn+1 + Cn—1)7

where F is the Fermi energy and ¢,,’s are the coefficients
of expansions of the wave functions in a basis of atomic
orbitals (| n)). Now one can easily obtain a set of these
coefficients for any length of the chain from the initial
ones through a sequential product of transfer matrices as
in the following:

N
CN C1
= T; )
(o) =17 (5)

T — ((E—ei)/V —1).

where

1 0

The solutions on the two sides of the sample are related
by a product matrix

N
M =wS ' [ T:S,
=1

where

_ etk(N+1) 0 P e—tk ik
w = 0 6—ik(N+1) ) - 1 1 .

The transmission (t) and reflection (r) coefficients are
immediately obtainable from the matrix elements as

_ 1 | My, 2
t=— p= 12
| My |2 | My, |2

Note that usually where there is no absorber in the sys-
tem, we have detM = 1 and the complex product matrix
(M) is Cayley type so that | My; |2 — | Mi2 |?= 1, which
leads to r +t = 1. Here in our problem M does not re-
main the Cayley type matrix, so we have » +¢ # 1 and
hence absorption o =1 — (r + t).

III. RESULTS AND DISCUSSIONS

All results are shown for E = 0, i.e., we choose the
Fermi energy of the incident beam to be at a midband
energy. Physics of the problem does not change if one
chooses some other energy. The figures are mostly self-
explanatory. Below in all cases we take 5000 configura-
tions to obtain an ensemble average of a quantity or its
distribution.

In Fig. 1 we have shown the behavior of ¢ for ordered
absorptive medium (W = 0,7 = 0.1), ensemble averaged
disordered nonabsorptive medium (W = 5.0, = 0), and
disordered absorptive medium (W = 5.0,n = 0.1) as a
function of length (L). In all these cases transmission
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FIG. 1. Transmission coefficient (t) against system length
(L), shown in a semilog plot to compare different length scales.
Values of W and 7 are written in the figure for all three cases.
Here | < l,, where [ is the localization length without absorb-
tion and [, is that for absorption only.

decays exponentially. Figure 1 represents a case where
Il <l,.

In Fig. 2 we have given a transmission plot for a case
where [ > l,. The parameter values are given in the fig-
ures themselves. From these two figures it is clear that
irrespective of [ > [, or Il < [,, the absorption induced
length scale € in random medium associated with the de-
cay of the transmission coefficient is always less than both
lo and l. We would like to point out that at the center of
the band (i.e., at E = 0) [ scales as 96V2/W?2'® and [,
scales as V/n. In the limit of weak disorder and absorp-
tion (W/V < 1 and n/V < 1), £ scales® as Ui, /(I + ).
All the lengths are in units of the lattice spacing. The
results obtained in Ref. 16 are based on random-phase
approximation. Our numerical results are in conformity
with earlier known analytical results!®® in the appro-

N
F T——
3 W o= 1.0
£ 7 = 0.0
o E
o L
O E
n £
(@) g
9 F
= W = 00
4 7n = 01
= 1.0
7 = 0.1
NN RN N
0

50 100 150 200

Length

FIG. 2. Transmission coefficient (¢) against system length
(L), shown in a semilog plot to compare different length scales.
Values of W and 7 are written in the figure for all three cases.
In this case | > I,.
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FIG. 3. Distribution of transmission coefficient [P(t)] for
three different lengths (L) for a fixed W and 7.

priate domain of physical parameters.

In Fig. 3 we show the distribution P(t) of transmission
() for various lengths (L) of the sample for a very small
value of n = 0.01 and a high degree of disorder W = 1.0.
For small L, due to dominance of resonance transmission,
along with small n (= 0.01), as expected we observe P(t)
to peak at a higher value of ¢. In fact P(t) = 6(t — 1) in
the limit L — 0. As we increase the length of the sample
due to the interference between the multiply scattered
electrons (which eventually leads to localization in the
large length limit) the traversal time for an electron to
diffuse across the sample increases thus increasing the
absorption. This enhancement of absorption along with
concomitent reflection due to disorder, P(t) broadens and
its magnitude at a large value of ¢ gets suppressed. Also,
as expected, for L — oo (i.e., for L > &), P(t) — &(t).

In Fig. 4 we have plotted the stationary distributions
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of Ps(r) of r for various values of . The length scale
which dominates the evolution of P(r) towards the sta-
tionary distribution is again given by £;'3 numerically
we obtain stationary distribution for L > £. In the small
parameter range of 7, i.e., for n = 0.05, we see that the
distribution has a single peak at larger value of 7 = 7.5
(note that r is bounded between 0 and 1) and 7,y shifts
to a lower side as we increase 1. These graphs agree qual-
itatively with the behavior obtained from Eq. (2). As we
increase 7 further P,(r) shows a double peak structure
for a range of values of n and with further increase in 7
the peak at a lower value of » becomes narrow and the
peak at the higher value of r disappears. The single nar-
row peak distribution now shifts to a higher value of r as
7 is increased again and finally in the limit of » — oo this
becomes a delta function §(r — 1). In the limit of large
n the absorber acts as a reflector and disorder plays a
subdominant role.

In Fig. 5 we have plotted the averaged value of absorp-
tion (o) and reflection (r) obtained from the stationary
distribution as a function of 75, for a disorder W = 5.0.
As we increase the strength of n the averaged absorption
(o) first increases and after exhibiting a maximum value
at Nmax, (o) decreases monotonically. For the value of
7 > Nmax the absorber plays a dominant role as a reflec-
tor. This is also self-evident from looking at the behavior
of (r) in Fig. 6. The dual role played by the absorber is
already mentioned in the Introduction. It is interesting
to note that the double peak structure in P,(r) appears
for values of 7 close to Nmax. For given amount of disor-
der the total absorption increases with n for 7 < 7pax.
This is because, as explained earlier in the presence of
disorder due to multiple reflections the particle spends
a large amount of time in the sample before getting re-
flected. This enhances the total absorption and the peak
of P,(r) shifts to a lower value of r. However, as we
approach Nmax (beyond which the absorber plays a dom-
inant role as a reflector), n plays a dual role of absorber
as well as reflector in the crossover regime, and an addi-
tional peak in the P,(r) arises at lower r. As we increase
n further the absorber plays a dominant role as a reflec-
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FIG. 4. Stationary distribution of reflection coefficient
[Ps(r)] for various values of absorption coefficient 7 for a fixed
value of W = 5.0. 5000 configurations were taken for each
time.
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FIG. 6. This figure shows clearly the occurrence of a double
peak in the stationary distribution of the reflection coefficient.

tor thus suppressing the peak in P,(r) associated with
disorder in conjunction with coherent absorption. The
suppression in the peak in P,(r) associated with disor-
der can also be explained by noting that as 7 increases £
decreases and average delay time in reflection decreases.
The average delay time of the reflected electron is ap-
proximately given by the time taken by the electron to
traverse (or diffuse) a distance of the order of £. Ear-
lier studies'® cannot describe our numerical observations:
the existence of a double peak structure in P,(r) around
7 & Nmax and a shift of peak in P,(r) to a large value of
r for 1 > Nmax. For example, Eq. (2) can show at most
one value of peak and for higher values of 7 it leads to
an exponential behavior with a maximum value at » = 0,
contrary to the physical expectations. Figure 6 shows a
double peak structure in P,(r) for n = 2.0 and W = 6.0.
A smooth line is drawn (a polynomial fit) as a guide to
the eye to show the occurrence of two peaks.

In Fig. 7 we have plotted the stationary distribution
of the phase P,(f) of the complex reflection amplitude
for the parameters same as in Fig. 6. In general the
phase distribution'” should be uniform over 27 for small
values of disorder (W « 1) and for E # 0 if one takes
the system size to be greater than a typical length called
the phase randomization length. But here one can read-
ily notice that the phase distribution is highly nonuni-
form from the very beginning for even small values of
n (where W = 5.0). As we increase 7 the phase distri-
bution changes to have two prominent peaks and even-
tually they get separated. Ultimately as n — oo the
phase distribution tends to §(6) and 6(6 + 27). One can
readily calculate the phase of the complex reflection am-
plitude in the Schrodinger equation by putting V = 0 for
—oo <z <0andV = —infor 0 < z < oo and verify that
the phase tends to 0 or 27 in the limit n — co. Figure 7
clearly suggests that the nonuniform phase distribution
is a generic property of random systems in the presence
of absorption. It is also well known in the earlier litera-
ture that the nonuniform phase distribution is a general
property in a random system in the high disorder limit
in the absence of absorption.!”1® This fact has played
an important role in determining scaling properties of
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FIG. 7. Stationary distribution of a phase angle for the
complex reflection coefficient for the corresponding cases for
Fig. 6. W =5.0.

resistance.!® Now, the qualitative difference between our
results and that given by (2) (results based on random-
phase approximation) can be understood in terms of the
breakdown of random-phase approximation. The results
based on random-phase approximation are valid only in
the limit W < 1 along with < 1 such that n/W < 1.

IV. CONCLUSIONS

By studying the statistics of reflection and transmis-
sion coefficient in absorptive media we have shown that
the stationary distribution for P,(r) for r differs quali-
tatively from the earlier known analytical results.!® The
source of this discrepancy is related to the random-phase
approximations made in earlier studies. By studying the
stationary distribution of the phase of the complex re-
flection coefficient we have shown that this distribution
is in general not uniform. We recover uniform phase dis-
tribution only in the limit of weak disorder W/V < 1
and 7/V < 1. In the presence of both disorder and ab-
sorption, the length £ associated with the behavior of the
average transmission coefficient is always less than [ and
la. We would also like to point out that the breakdown
of random-phase approximation is valid even for the case
of an amplifying medium which we have checked sepa-
rately. In a recent work® it has been pointed out, by
studying the higher moments of the transmission coef-
ficient (t™) (m > 1), that a scale (£,,) appears, such
that | < &, < l,. This result is interesting and at the
same time surprising. Again this study is based on the
random-phase approximation. To establish the validity
of this result more work beyond random-phase approxi-
mation has to be carried out. Work along this direction
is in progress.
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