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Lyapunov exponent and transfer-matrix spectrum of the random binary allay
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The one-dimensional Anderson model with binary distributed onsite disorder is investigated using
the transfer-matrix approach. The random matrix product is transformed into an iterated conformal
map and the convergence of the mapping is studied for various values of the concentration of onsite
impurities and the energy. For dilute impurity concentrations the convergence of the mapping is

strongly energy dependent and exhibits interesting behavior in the complex mapping plane. As the
impurity concentration increases the mapping converges to the unit circle which results from the
underlying conformal structure. Explicit expressions for the Lyapunov exponent and the eigenvalues
of the transfer matrix are obtained in terms of the conformal map. From the Lyapunov exponent,
the localization length and the integrated density of states are calculated. In the dilute limit there
exist states in which the localization length exceeds the system size. These states correspond to
extended electronic states and it is shown that the number of extended states scales with system size
as N, „t,„d,d oc N . Increasing the impurity concentration beyond a critical value destroys these
states and the localization length over the entire energy range becomes smaller than the system size.

I. INTR.GDUCTION

Products of random 2 x 2 matrices often occur in
the study of disordered one-dimensional systems. The
simplest example of a disordered one-dimensional elec-
tronic system is the random binary alloy (RBA), a one-
dimensional Anderson model with binary distributed on-
site disorder. ' Despite the apparent simplicity of the
one-dimensional Anderson model many interesting re-
sults have been obtained. It can be proved that in
one dimension, arbitrarily small amounts of disorder
lead to exponentially localized electronic states pro-
vided the distribution of disorder satisfies certain er-
godic requirements. ' ' Furthermore, it has been shown
that extended electronic states can exist if the distribu-
tion of the disorder is correlated. The existence of ex-
tended states has been observed in the random dimer
model and originates from perfect transmission through
the dimer defect for a select; set of energies. This re-
sult is consistent with the restrictions placed on the er-
godic requirements for the distribution of the disorder
and has interesting consequences with regard to trans-
port properties. Recent theoretical work has demon-
strated the existence of extended electronic states for the
Thue-Morse aperiodic lattice. This new type of corre-
lated disorder does not depend on perfect transmission
through a single dimer defect. '

A physical realization of the one-dimensional dis-
ordered electronic system is the disordered polymer
chain. Recent theoretical studies of doped polyacety-
lene have been performed for diagonal and off-diagonal
disorder within a disordered tight-binding model includ-
ing electron-phonon interactions (Su-SchrieKer-Heeger
model). ~ Furthermore, the random dimer model with
correlated disorder has also been proposed as a model
of doped polyaniline and various transport properties
have been calculated. As previously stated, this model

has extended states and has been used to explain the
insulator-metal transition observed in doped polyaniline.
The RBA can be envisioned as a model for a disordered
conjugated polymer with conformational disorder. The
conformational disorder arises due to random breaks in
conjugation, and is modeled by the onsite energy barrier
to hopping. It has also been proposed as a model for the
electronic structure of proteins.

Many theoretical techniques have been applied to the
study of one-dimensional disordered electronic systems.
Direct calculations employing Green's functions have
been widely used and have been applied to the one-
dimensional Anderson model. ' This technique gives
the localization length and density of states from the
real and imaginary parts of the averaged Green's func-
tion and can also be used to calculate transport re-
lated averages. ' Alternatively, the transfer-matrix ap-
proach allows for the calculation of the Lyapunov expo-
nent of the random matrix product. From the Lyapunov
exponent, the localization length and density of states
can be determined from the real and imaginary parts of
the Lyapunov exponent through the Thouless formula. '

The analytic calculation of the Lyapunov exponent is
quite difBcult and perturbative expansions for the Lya-
punov exponent for the one-dimensional Anderson model
have been developed. ' This type of weak disorder ex-
pansion is valid in the limit of vanishing disorder, and for
the one-dimensional Anderson model gives rise to nonan-
alytic behavior for the Lyapunov exponent near the band
edge in the weak disorder limit. Recently, a technique
based on the transformation of the random matrix prod-
uct to an iterated conformal map has been used to study
the analytic properties of the random bond Ising model
and a formal expression for the Lyapunov exponent for
the spin glass has been obtained.

In the present work, the RBA is formulated as a ran-
dom matrix product using the transfer-matrix technique.
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The 2 x 2 transfer matrices are transformed into a com-
plex matrix representation by a site-independent rota-
tion. The complex representation of the transfer ma-
trices induces a Mobius transformation on the extended
complex plane. The random 2 x 2 matrix product can
therefore be expressed as an iterated conformal mapping.
This technique allows for the underlying analytic struc-
ture of the random matrix product to appear as a natural
consequence of the conformal mapping of the extended
complex plane. The iteration of the conformal map leads
to various types of convergence properties in the complex
mapping plane as a function of the onsite impurity con-
centrations and the electronic energy. The convergence
properties of the mapping and its analytic structure are
examined.

Explicit expressions for the Lyapunov exponent and
the eigenvalues of the random matrix product are ob-
tained in terms of the conformal map. From the Lya-
punov exponent, the localization length and the inte-
grated density of states (IDOS) are calculated as a func-
tion of energy for various values of onsite impurity con-
centrations. The dilute impurity case shows extended
electronic states on a finite lattice but investigation of the
scaling behavior with system size indicates that the ex-
tended states do not survive the continuum limit. Prom
the convergence of the mapping, approximate expressions
for the Lyapunov exponent are obtained which are valid
in the continuum limit.

Qcn, —1 )
The random matrix product is obtained by iterating
Eq. (2) to give, x~+i ——T T i . . T2Tixi, where xi is
a&. initial vector of coefFicients.

It is convenient to perform a site-independent rota-
tion of the transfer matrices to obtain a complex repre-
sentation of the transfer matrices. The transformation
leaves the trace of the product and the norm of the x's
invariant. The rotated transfer matrices are of the form,

= UtT U, where U is a Hermitian matrix given by

(1 il

Explicitly, we obtain

where

2V

(E — -)
It has been demonstrated previously that complex trans-
fer matrices of the form given in Eq. (6) induce a Mobius
transformation of the extended complex plane. The con-
formal group structure enables a simple representation
for the matrix product as an iterated conformal map.

II. RANDOM BINARY ALLOY

The equation of motion for the one-dimensional An-
derson model with binary onsite disorder (RBA) is given
by

(E —e„)c„=V(c„+i + c„,),
where V ( 0 is the nearest-neighbor hopping integral,
and c is the probability amplitude on the nth site. The
random onsite energy e = (e, eb) takes two values with
probability p and 1 —p, respectively. In the absence of
disorder, the system is translationally invariant and the
energy dispersion relation is given by E = 2V cos(ka),
where a is the lattice constant. From the energy ex-
pression it is clear that at the Brillioun zone boundary,
k = +m/u, the density of states has a square root sin-
gularity at E = 2~V~. The effect of disorder is seen to
shift the density of states and to smooth the square root
singularity.

The tight-binding equation of motion for the disor-
dered chain can be readily formulated using transfer ma-
trices. The transfer matrix is de6ned by

III. LYAPUNOV EXPONENT
AND CONFORMAL MAPPING

The Lyapunov exponent gives the exponential rate of
growth of the random matrix product and is deGned as

ln(iiT„T„ i T2Tixi ii)pE =hm
n —+oo

where
~~ ~~

is the vector norm. At first sight, the I ya-
punov exponent seems to depend on the norm of the ini-
tial vector (~~xi~~), but it can be shown that for almost
any realization of the disorder, the maximal Lyapunov
exponent exists with unit probability and is given by

1
p(E) = lim —ln Tr

n~oo

Therefore, the quantity of interest is the trace of the
product of the transfer matrices. It has been previously
shown that the trace of a product of noncommuting ma-
trices of the form derived in Eq. (6) can be written as

+n+1 Tn+n )

where
Tr T„=A~~+1(E) + A~~

1 (E),
n=l

(io)

where A~ (E) are conjugate. Here A~ (E) is defined as(+) ~ (+)

1 0

which are treated as independent random matrices, and 2V )
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FIG. 1. Plots of the Im(r;) versus Re(r;)
for various energy values: (a) E = —1.0, (b)
R = 0.1, (c) E = 0.4, where N = 14000,
V = —1.0 and the impurity concentration is
p = 0.01.
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where the conformal map variable r is given by

1+z r-an+1— )r„+z„ (12)

with the initial condition rq ——0. The iterated conformal
map in Eq. (12) is of the form of a Mobius transformation
of the extended complex plane. It has the property that it
maps circles into circles in the complex plane. Moreover,
it maps the unit circle onto the unit circle and it's these
properties of the mapping that will prove very important
when the random binary alloy is examined.

The random binary alloy can now be considered and
the convergence properties of the map examined for the
specific case of onsite energies e = 0.5 and eg ——0.0
chosen with probability p and 1 —p, respectively. Here
p represents the concentration of onsite impurities. In
Fig. 1, we show the convergence in the complex map-
ping plane for various values of energy in the range
—2~V~ + e & E & 2~V) with onsite impurity concen-
tration Axed at p = 0.01. We find an interesting pat-

tern of concentric circles in the complex plane. These
concentric circles are centered on the imaginary axis at
(E —e )/4~V~ and pass through the origin, which is
due to the initial condition of the map. The radius of
the circles increase with iteration eventually intercept-
ing the unit circle where the map subsequently remains.
This results from the invariance of the unit circle under
the action of the Mobius transformation. As the impu-
rity concentration is increased, the pattern is destroyed,
as seen in Fig. 2 where p = 0.1. The map converges
rapidly to the complete unit circle for energies in the
range —2(V~ + e & E & 2~V~. Further increase of the
onsite impurity concentration gives rise to rapid conver-
gence to the unit circle and will provide the basis for an
approximation scheme for the Lyapunov exponent.

The Lyapunov exponent for the random binary alloy
on a finite lattice of N sites can be obtained from the
general definition in Eq. (9) and is given by

in[A~(+) (E)j'7N

I I
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FIG. 2. Plots of the Im(r, ) versus Re(r, )
for various energy values: (a) E = —1.5, (b)
E 1 0) where % = 14 000, V = —1.0, and
the impurity concentration is p = 0.1.
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which is a complex-valued quantity. From the Thouless
formula, the localization length (~(E) is defined by

«h (E)j=1/& (E)

and the integrated density of states (IDOS) is defined by

~~5~(&)I = f ~~(~)~~ (15)

In Fig. 3, the localization length and the IDOS are
computed for the various concentrations of onsite impu-
rities used in Figs. 1 and 2. For the dilute case p = 0.01
shown in Fig. 3(a), we find that for a discrete set of energy
values, there exist localization lengths which are greater
than the size of the system. This implies the existence of
extended states since the localization length determines
the exponential envelope of the electronic wave function.
In Fig. 3(b), we find that the extended states disappear as
the concentration of impurities is increased and the con-
vergence of the map to the unit circle is rapid. For all val-
ues of impurity concentration greater than some critical
impurity concentration p, we And that all states are ex-
ponentially localized for a Axed system size ¹ Further-

more, the extended states for the dilute case are robust
under difFering realizations of the disorder but depend
quite crucially on the number of sites. Thus, one must
investigate how the number of extended states N „t,„g,g
scales with the system size N to determine if extended
states survive the continuum limit.

In Fig. 4, the number of extended states (i.e. , states
with localization length greater than the system size) is
plotted versus the system size N on a log-log scale. The
»ne» a ~t «Nexgendeg —AN . From the scaling be-
havior it is clear that the number of extended states in
the continuum limit is zero for the random binary al-
loy. However, the existence of extended electronic states
will inHuence the transport properties of the finite chain
and may be realized in conformationally disordered con-
jugated polymers. These polymers consist of long but
finite chain backbones which have random breaks in con-
jugation. This type of disorder is intrinsic and is not
necessarily a result of the action of an external source
such as doping.

In Figs. 3(a) and 3(b), the IDOS is computed. The
IDOS rises rapidly at E = —2~V~ + e and increases
smoothly in the energy range —2~V~ + e ( E ( 2~V~.
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At the upper band edge E = 2~V~, there is a cusp in
the IDOS for the case p = 0.1 which results &om the
smoothed square root singularity in the density of states.
For the dilute case p = 0.01, the cusp in the IDOS is
not present and the IDOS appears shifted by the onsite
energy e = 0.5.

From the convergence of the map shown in Figs. 1 and

2, it should be noted that for all but the dilute case, the
mapping converges rapidly to the unit circle. The points
are dense on the unit circle as can be seen from the under-
lying Mobius transformation. It is therefore convenient
to approximate the map variable by r = e' "+' " where
0 = tan [2V/(E —e )j. Therefore, the approximate
Lyapunov exponent is given by

E —e„. fe„—El, f' 2V
p~(E) = —) 1n

" +i 7r8
)

"
~

+tan
~ ~

+1 n(e' "+ ~z ~),2V q 2V y qE —e)

where 0 is a Heaviside step function. The approximate
phase of the mapping b can be obtained (see the Ap-
pendix) and is given by h„+q ——8 —(0„+q + 0„), where
the initial phase is arbitrary since the resulting expression

is valid after the map has converged to the unit circle.
In Figs. 5(a) and 5(b), we plot the approximate expres-

sion for the localization length and IDOS. It can be seen
that the agreement for the magnitude of the localization
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length is quite good but the width in energy is much too
narrow. It is also important to note that the most ex-
tended electronic states are centered on the onsite energy
E = 0.5. We also 6nd that the approximated IDOS is a
smooth function of energy and deviates &om the exact
calculated IDOS near the band edge, E ——2[V[ + 0.5

and E —2[V[. See Figs. 3(a) and 3(b) for a compari-
son. The approximate density of states can be obtained
by differentiating the imaginary part of the approximate
Lyapunov exponent (IDOS) given in Eq. (16). The ex-
pression derived in Eq. (16) is valid in the continuum
limit since it is expected that the map converges to the
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unit circle after a finite number of iterations. From the
approximate result for the dilute case it is seen that ex-
tended states do not exist for E g e in the continuum
limit in agreement with the scaling result

Prom the calculation of the I.yapunov exponent, we
turn our attention to the eigenvalues of the transfer-
matrix product. The eigenvalues can be determined us-
ing the trace and determinant formula. In general, we de-
fine M~ = g i T . It is known that Tr(M~) = A++A
and det(M~) = A+A . It is therefore a simple matter to

solve for the eigenvalues of the transfer matrix product
using Tr(M~) and

A+ —A = g[Tr(M~))2 —4det(M~).

We therefore obtain
1

A~ = —(Tr(MN. ) 6 Q[Tr(M~)]2 —4det(M~)}. (17)
2

The two eigenvalues of the transfer-matrix product in
terms of the conformal mapping parameters are given by

A~(E) = (E —e„l
2V jn=l

N

(r-+ ~-) +
h

n=l
(r„+r„)

h

n=l
(l~-I' —1)
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Therefore, the convergence properties of the map di-
rectly determine the spectral properties of the transfer-
matrix product, and we have completely characterized
the random matrix product.
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IV. CONCLU SIGNS

%le have shown that the random binary alloy can be
expressed as a product of random matrices. The random
matrix product can be transformed to an iterated confor-
mal map and the convergence properties in the complex
mapping plane examined.

The convergence of the iterated conformal mapping
has been studied as a function of energy and disorder.
The convergence properties result from the underlying
Mobius transformation and the convergence to the unit
circle for energies in the range —2~V~ + e & E & 2~V~ has
been demonstrated for all densities of onsite impurities.
For the most dilute cases, we find interesting patterns
of concentric circles generated in the complex mapping
plane which ultimately converge to the uriit circle.

Furthermore, explicit expressions for the Lyapunov ex-
ponent and the eigenvalues of the transfer-matrix prod-
uct are obtained in terms of the conformal map from
which the localization length and the integrated density
of states are computed. It is found that for dilute con-
centrations of onsite defects on finite lattices there exist
extended electronic states for energies not equal to the
onsite energy. These states scale approximately as the
inverse square of the number of sites and thus do not
contribute in the continuum limit. These extended elec-
tronic states may exist in finite disorder lattices such as
conformationally disordered polymers and a8'ect the elec-
tronic transport properties.

From the convergence properties of the mapping, ap-
proximate expressions for the Lyapunov exponent and
the eigenvalues can be obtained. These expressions will
be approximately valid in the continuum limit. Prom
these approximate expressions we And no extended states
for the energies not equal to the onsite energy in the con-
tinuum limit in agreement with our scaling argument.

The techniques developed are general and can be ap-
plied to related systems such as the random Schrodinger
equation and disordered Kronig-Penney-type models in
which transport properties can be studied. Recently, ex-
tended states in Thue-Morse chains have been found and
has led to a new type of correlated disorder. ' The tech-
niques developed can be applied to such systems and may
provide valuable insight into the nature of this new type
of correlated disorder.

APP ENDIX: PARAMETRIZATION
OF THE CONFORMAL MAP

It is convenient to rescale the mapping by defining v
r„e ' ", where 0„=tan ~[2V/(E —e )j . The map can
be parametrized by v = cath(g ) and ~z

~

= coth(P ).
The parametrized map is given by

coth((„+g) = e ' "+ "+' coth((„+ P„),
and in terms of the parametrized map we obtain

(A1)

(+) (E — e),s f sinh((„+ P„)
2V ) (sinh((„)sinh(P ) )

(A2)

The Lyapunov exponent in terms of the parametrized
map is given by

(E —.„l
p~(E) = —) 1n

~

"
~

+i0„
2V (A3)

where

1 sinh(( + P„)
N - sinh((„) sinh(P„) ) (A4)

The Lyapunov exponent is a complex-valued quantity in
which the real part is the inverse of the localization length
and the imaginary part is the integrated density of states.

Prom the numerical results on the iterated conformal
map given in Eq. (12) we obtain the approximate conver-
gence r e' "+' ".From the approximate expression it
is possible to derive a phase map for b given by

h„+g ——b„—(g„~g + 8„)+ 2) (—)" (sin(k8 ) l

(A5)

where we have made use of 1 ( ~z ~. Neglecting the terms
of order (1/~z ~) and higher, we obtain the approximate
phase map used in Sec. IV.
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