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We have performed extensive simulations of liquid carbon at various densities, using a highly
transferable tight-binding model of carbon. In contrast to some recent theoretical suggestions, we
show that the low-density liquid is primarily twofold bonded. Such a bonding arrangement leads
to a low conductivity, compared to the primarily sp? bonded liquid that occurs at intermediate
densities. This is in qualitative agreement with experiments that show that for pressures less than
100 kbar, the conductivity of liquid carbon increases with density. At high densities, the liquid is
mainly tetrahedrally bonded, and the conductivity then decreases with increasing density.

I. INTRODUCTION

The phase diagram of carbon has been widely studied
due to its relevance to geophysics and astrophysics, as
well as diverse industrial applications.!™ Also, the vari-
ety of forms of carbon has led to wide speculations on
new structures and applications. The possibilities are
numerous, due to the fact that carbon will readily form
twofold, threefold, and fourfold covalently bonded struc-
tures. Thus, at atmospheric pressures, there are numer-
ous observed stable (or metastable) solid phases, includ-
ing diamond, graphite, and solid phases of Cg9 and Crg.
Amorphous phases with a large range of densities are
also stable at atmospheric pressure, with different bond-
ing distributions characterizing the different densities.

The strength of the covalent bonds in carbon causes
graphite and diamond to dominate the equilibrium
phase diagram over a wide range of temperatures and
pressures.' 3 Both structures are stable up to tempera-
tures above T' = 4000 K, and diamond is stable at pres-
sures exceeding 2 Mbar. Many aspects of the phase di-
agram are not well understood, outside of the regions
where graphite and diamond are the thermodynamically
stable phases, due to the extremely high temperatures or
pressures needed to form other phases.

In particular, there has been much speculation con-
cerning the liquid phases.'™® Little is known about the
phase diagram at the temperatures required to form lig-
uid carbon, especially at pressures above the graphite-
diamond-liquid triple point. The melting line of graphite
has been explored,'®!! and is interesting due to the fact
that the slope of the melting line, dP/dT, changes sign
at a pressure of about P = 50 kbar. This suggests some
change in behavior in the liquid phase, including the pos-
sibility of a structural transition between different liquid
phases.®? (Such transitions have been observed in Te,12
Bi,!3 and K.1%)

In this paper, we focus on the structure of liquid
carbon, and in particular the relationship between the
bonding and the conductivity. There have been a
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number of experiments on the conductivity of liquid
carbon,'®11:15717 hyt the values obtained are quite dis-
parate, and there is no consensus on whether or not lig-
uid carbon (at low pressure) is metallic. (We will not
review these experiments here, but refer the reader to
the review articles, Refs. 1-3, as well as the discussions
in Refs. 7, 9, and 17.) We are particularly interested in
experiments by Bundy,'® who demonstrated that at low
pressures (< 100 kbar), the conductivity of liquid carbon
increases with increasing pressure. Bundy’s qualitative
results for the pressure dependence of the conductivity
are generally accepted, and have been supported by more
recent work.”

It was initially believed that at low pressures, carbon
would form a dense, metallic liquid phase similar to that
of liquid Si.! This would account for the results above:
as the pressure increases, the coordination increases, and
the metallic conductivity rises. This would also be consis-
tent with a negative slope of the diamond melting line.
Recent work?® suggests that this is not the case, but
rather that the liquid phase is less dense than diamond,
giving the diamond melting curve a positive slope. First-
principles simulations® have indicated that tetrahedral
bonding persists at pressures as high as 0.6 Mbar, sug-
gesting that for P S 1 Mbar, the slope dP/dT is positive.

There have been various theoretical arguments relating
the structure of the liquid with the conductivity. Fer-
raz and March? speculated that Bundy’s results were
due to a pressure-induced insulator-metal transition that
occurred as the liquid transformed from an insulating
twofold-bonded liquid to a metallic threefold-bonded lig-
uid. More recently, van Thiel and Ree® also suggested
that a structural transition occurs between liquid phases,
but that the low-density, low-conductivity liquid was pri-
marily graphitic, and that the high-density, more con-
ducting liquid was tetrahedrally bonded.

These differing arguments strongly emphasize the im-
portance of determining (1) the structure of liquid carbon
as a function of pressure (or density) and (2) the rela-
tionship between the structure and the conductivity of
liquid carbon. We examine both questions in this paper,
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through tight-binding (TB) simulations that provide in-
formation about the electronic states of the liquid. This
allows us to directly examine both the structure and the
conductivity of liquid carbon, and to compare with exper-
iments on the pressure dependence of the conductivity.

First-principles simulations of liquid carbon have sug-
gested that at low densities (2 g/cm3), the atoms are
mostly three-fold coordinated,®” but with a significant
fraction (~ 30%) of twofold coordinated atoms, as well
as ~ 20% fourfold coordinated atoms. This could sup-
port the idea of a transition between a threefold and
fourfold coordinated liquid.® Tight-binding simulations,®
however, have indicated that the low-density liquid is pri-
marily twofold bonded, in accordance with the suggestion
of Ferraz and March.* However, there is a finite electron
density of states at the Fermi level, even at very low den-
sities, indicating that the liquid is not an insulator.

Our simulations show that at a density of p = 1.5
g/cm3 (about 2/3 that of graphite), the conductivity is
~ 0.002 (uQcm)~1, with ~ 55% of the atoms being
twofold coordinated, and that the conductivity increases
with increasing density, corresponding to an increase in
sp?-type bonding. Once the number of threefold bonded
atoms saturate, and the number of fourfold atoms be-
gins to become significant, the conductivity decreases
with increasing density. This occurs when the density
of the liquid is close to the zero-pressure diamond den-
sity. (At sufficiently high density, we will again expect
the conductivity to rise, as the liquid reaches a highly
coordinated metallic phase.) We observe no evidence of
a transition between liquids with different coordinations
over the range of densities that we examined, although
we cannot rule out this possibility at low densities.

II. TIGHT-BINDING MODEL
AND CALCULATION TECHNIQUES

A. Simulation techniques

Tight-binding simulations are now a well-established
technique for modeling covalently bonded materials.'®
One tight-binding model for carbon has been especially
successful,’® and has been applied to carbon fullerenes,?°
amorphous carbon,?! as well as liquid carbon.® This
model is described by the following Hamiltonian:

2
P
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In this equation, the first term is the kinetic energy, the
second term is that band-structure energy (with the fac-
tor of 2 due to the spin degeneracy), and the third term
is the repulsive ion-ion interaction. The last term is a
Hubbard-like term that helps maintain local charge neu-
trality, adding energy whenever the number of electrons
on an ion g; differs from ¢? = 4. Using this term will
improve the accuracy of the model, but requires that the
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charge distribution be determined self-consistently. For
our simulations, this requires about three times as much
computational effort. Most of the work presented in this
paper uses U = 0, so that the last term may be ignored.
However, in Sec. III, we will examine how including this
term affects our conclusions.

Note that in the band energy term, we have included
a Fermi-Dirac occupation factor, defined by

1
exp [(en — p)/kBTa) + 1’

fn= (2)
where €, is the energy of the eigenstate, T is the elec-
tronic temperature (chosen to be equal to the ionic tem-
perature), and p is the chemical potential, determined
by the requirement that the number of electrons be con-
served. Including this occupation factor is important, as
the temperature involved in our simulations (T' 2 6000
K) is not negligible compared to the Fermi temperature.
With the occupation term, the contribution to the forces
from the band structure is given by

Fyord = =23 fo(vn| VHrs|¢n)
8fn
—226"3(Tf_#)V(6"_p’)' (3)

The last term is difficult to calculate,?? so it is convenient
to introduce the Mermin free energy, given by

Q= Etotal - Telseh (4)

where the electronic entropy is given by

Sea=—2kp Y [falnfa+(1—fa)ln(1—fa)]. (5)

It has been shown both analytically?® and numerically?3
that if the last term of Eq. (3) is ignored, then the Mer-
min free energy will be conserved, and the effects of the
electronic entropy are included. Therefore, we have ig-
nored this term, and also checked that this free energy
was conserved during the simulations.

For the results shown below, we used simulations of 216
atoms. We have also performed simulations of 64 atoms,
both to test the conductivity calculations and to make
some estimate of the effect of system size. We found no
significant difference between the N = 64 simulations and
the N = 216 simulations, within the scatter of our data.
Both the structural trends and the trends in the conduc-
tivity were quantitatively similar. There was somewhat
less scatter in the results for the larger system, as ex-
pected. As the system size is increased, we believe that
there might be some small change in the quantitative re-
sults, but that this change would be difficult to detect,
given the scatter in our results, and would not affect
the qualitative behavior of the structural or electronic
properties as a function of pressure. We note that at
the highest densities, the pair-correlation function shows
structure out to distances of approximately 4 A (see Fig.
3). This indicates that the results for structural proper-
ties will be sensitive to the size of the simulation box if
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the box size is less than 8 A. For a density of 4.2 g/cm?,
the box size was 10.1 A.

If there is a transition at some pressure, a small sys-
tem size (as well as short simulation times) would tend to
cause large hysteresis loops as the pressure was changed.
To avoid this possibility, the simulations at different
densities were equilibrated independently of each other,
rather than simply increasing the density from one sim-
ulation to the next. For each density, the liquid phase
was formed by melting the liquid at 7' = 10000 K, then
cooling down to the desired temperature. The system
was allowed to equilibrate at this temperature for a min-
imum of 2000 time steps, with a time step of At = 0.353
fs. The high velocity of the atoms made this short time
step necessary, in order to accurately predict the trajec-
tory. The calculated properties were averaged over 1000
time steps, with the conductivity being calculated every
50 time steps, as described below. For each simulation,
we verified that diffusive behavior occurred, although for
the simulation times used here, we were not able to ac-
curately calculate diffusion constants.

B. Calculation of conductivity

We are very interested in calculating the trends of the
conductivity using the model discussed above. We only
expect qualitative results, given that the model was pri-
marily developed to produce accurate structural infor-
mation. The electronic structure for different structures
only qualitatively agrees with more exact calculations, es-
pecially for energies more than a few eV above the Fermi
level. We believe, however, that the results presented in
Sec. IIT have the correct qualitative behavior.

In general, the conductivity of a system may be calcu-
lated using the Kubo-Greenwood formula:

2 h2 2
0(w) = s (i — F)IMy *o(e; — & — hw), (6)

2%

where M,;; is the momentum matrix element between the
eigenstates 7 and j. The problem with this approach is
that for tight-binding models, the wave functions are not
known, and therefore the momentum matrix elements
may not be calculated directly. However, Harrison?* has
shown that the matrix element connecting the atomic
state @ on atom 7 to the atomic state 3 on atom j may
be approximated by

(iolP|iB) = T (xs — x5 B, (7)

where E;Jﬁ is the tight-binding matrix element connect-
ing the two states. This has been made more rigorous
for periodic systems by making use of a reciprocal space

approach, using the operator identity?25:26
m 0H (k)
P=% "o (8)
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Using Eq. (7), we may directly apply the Kubo-
Greenwood formula. The dc conductivity may be cal-
culated by taking the w — 0 limit of Eq. (6).

We may also estimate the dc conductivity using
the density of states at the Fermi surface from the
approximation®27

2mhe?
Odec = mz G.NZ(EF), (9)

where N(Er) is the density of states at the Fermi sur-
face, and a is a characteristic neighbor distance. This
approach may not be very accurate, as it will not have
information concerning localization or other effects from
the disordered nature of the systems we are considering.

By using two different approaches for calculating the
dc conductivity, we have a check on the different approx-
imations being made in Egs. (6) and (9). In general,
we find that the different calculations produce similar re-
sults, both qualitatively and quantitatively. This will be
discussed further in the next section.

III. SIMULATION RESULTS

A. Structure of liquid carbon

Our primary interest is in the structure of liquid carbon
at different densities. The simplest quantitative measure
of the structure of liquid carbon is the distribution of
the number of neighbors within a certain distance. We
choose this distance to be at the first minimum of the
pair-correlation function g(r) (see Fig. 3). By examining
the percentage of twofold, threefold, and fourfold bonded
atoms, averaged over all atoms and all configurations, we
obtain information concerning the types of bonding in the
liquid phase.

The coordination distribution for liquid carbon at T =~
6000 K is shown in the top part of Fig. 1, for densities
ranging from p = 1.5 g/cm® to p = 4.2 g/cm®. At the
lowest densities, the system is primarily twofold bonded,
with long chains of atoms running through the system.
The number of twofold and threefold bonded atoms be-
comes equal at a density near p &~ 2.2 g/cm3, close to the
density of graphite at atmospheric pressure (2.27 g/cm?).
The atoms remain primarily threefold coordinated until
a density of p ~ 3.6 g/cm3®, approximately the density
of diamond (3.52 g/cm3). Above this density, the atoms
are primarily tetrahedrally bonded (for the densities ex-
amined in this work).

Most of the results shown in Fig. 1 were performed
without the Hubbard term in Eq. (1). However, without
this term, there is significant charge transfer that occurs,
especially at low densities where the system is primar-
ily composed of linear chains of carbon atoms, with a
high density of dangling bonds. We expect that adding
the Hubbard term will minimize the charge transfer as-
sociated with these bonds.'® In “snapshot” pictures of
instantaneous atomic positions, it is not uncommon (at
the lowest density) to see atoms that have charge trans-
fers of +0.3 electron. At higher densities, the charge
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FIG. 1. The top part of the figure shows the percentage
of twofold, threefold, and fourfold bonded atoms as a func-
tion of density, for temperatures near 7' = 6000 K. Results
for simulations using the Hubbard term with U = 4.0 eV
are shown with open symbols. The lower part of the figure
shows the dc conductivity of liquid carbon, calculated using
the Kubo-Greenwald formula (circles) and using the approxi-
mate expression of Eq. (9) (triangles). Again, the open sym-
bols indicate results using the Hubbard term.

transfer is less, but still on the order of 0.1 electron.

To test the effect of the Hubbard term on the struc-
ture and on the conductivity, we performed simulations
under the same conditions, but with U = 4.0 eV. As
this calculation requires significantly more computer re-
sources (due to the necessity of determining the charge
distribution self-consistently), we only used three differ-
ent densities in this calculation. The associated charge
transfer was significantly decreased: only a few atoms
have charge transfers greater than +0.1 electron (again,
less at the higher densities). However, the calculations
of average coordination distribution and of the conduc-
tivity were not changed significantly. These results are
indicated by open symbols in Fig. 1. As can be seen in
the figure, these time-averaged results for both the coor-
dination distribution and the conductivity are not signif-
icantly different than those found using U = 0, even at
the lowest density where we expect this term to have the
largest effect.

The results at higher temperatures are quite similar.
The coordination distribution for T' = 7000 K, shown
in the top part of Fig. 2, is quite similar to that near
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FIG. 2. Asin Fig. 1, the top graph shows the coordination
distribution of liquid carbon near 7' = 7000 K, and the lower
part of the figure shows the dc conductivity calculated using
the Kubo-Greenwald formula (circles) and using the approx-
imate expression of Eq. (9) (triangles).

T = 6000 K. A detailed comparison shows that there
tends to be more twofold bonded atoms at higher tem-
peratures, for any given density. The number of threefold
bonded atoms is somewhat less at higher temperatures,
for p S 3.3 g/cm3®. The density where the number of
threefold coordinated atoms is at a maximum appears
to be slightly higher at 7" = 7000 K, but this is a small
effect.

In Fig. 3, we show the pair-correlation function g(r) for
a number of densities, at T' = 6000 K. We first note that
the position of the first peak r¢ is nearly independent of
density, whereas for normal fluids we would expect that
the position would decrease as the density was increased.
This anomalous behavior is due to the balance between
two competing effects. First, as in normal liquids, the
increased density corresponds to higher pressure, which
tends to force neighboring atoms closer together. How-
ever, for carbon, the preferred neighbor distance for sp
bonding is shorter than that for sp? bonding, and the
distance for sp® bonding is larger still. For the periodic
structures, these distances are!® 1.3, 1.42, and 1.55 A,
compared with a peak position of approximately ro = 1.4
A for the liquid phases. Therefore, as the number of
neighbors increases, so does the optimal near-neighbor
distance. The competition between this tendency and
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FIG. 3. The pair-correlation function g(r) for a range of
densities from 1.8 to 4.2 g/cm?®, at T = 6000 K. Note that the
position of the first peak is nearly independent of pressure,
while the second peak decreases with increasing pressure.

the increasing pressure results in a peak position that is
only weakly dependent on density.

The position of the second peak in Fig. 3 shows a much
stronger dependence on density. This can also be under-
stood in terms of the change in bonding. For the primar-
ily twofold liquid, we expect that the distance between
the first and second peak will be large, as the twofold
bonding will prefer bond angles of nearly 180°. As the
threefold bonding dominates, the second peak position
shifts toward the value of v/3 rg, which would be the po-
sition of the second nearest neighbor in graphite. Fi-
nally, at the highest densities, the second peak is close to
\/8/3rg, corresponding to the next shell of atoms in dia-
mond. The second peak is more pronounced at high den-
sities, indicating that there is a reasonably well-defined
bond angle.

Over this range of densities, the average coordination
varies smoothly from approximately 2.2 to about 3.8,
as shown in Fig. 4. The results for T = 6000 K and
T = 7000 K are very close. The coordination number
appears to vary linearly with density, with no indication
of a sudden change in coordination or any other anoma-
lies that could indicate a transition between differently
coordinated structures. For T' = 6000, there is a very
slight decrease in the slope at both high and low ends of
the density range. This could suggest the possibility of a
transition at a lower temperature, but it is not a strong
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FIG. 4. The average coordination depends linearly on the
density, for both 7' = 6000 K (solid line) and T' = 7000 K.
At a given density, the average coordination is nearly inde-
pendent of temperature. There is no indication of any sudden
changes in coordination as the density is varied.

indication.

The smooth behavior does not rule out a transition,
however. If there are two distinct phases present, then
a change of density would correspond to altering the rel-
ative amounts of each phase while keeping the pressure
fixed at the transition pressure. Therefore, if there is
a transition between two different liquids, then the den-
sity (as a function of pressure) should be discontinuous at
the transition pressure, for all temperatures less than the
critical temperature. For higher temperatures, there will
be no transition; however, near the critical temperature,
we still expect that there will be a region where the den-
sity of the liquid will change rapidly with increasing pres-
sure. This corresponds to a large compressibility, which
will diverge as the critical point is approached. This is
in complete analogy with the usual arguments for the
liquid-vapor critical point in normal materials; indeed,
we expect that it should belong to the same universality
class.

With this in mind, we have examined the pressure as
a function of density at both temperatures. Our results,
shown in Fig. 5, indicate no region where the compress-
ibility is large (indicated by a small slope), especially at
higher densities. This suggests that there is no transi-
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FIG. 5. This figure shows the average pressure, as a func-
tion of density. The slope is the inverse compressibility, and
should be small in regions where the compressibility is large.
Our results show no indication of a transition, where the pres-
sure would be nearly independent of the density.

tion between different liquids, especially between three-
fold and fourfold coordinated structures. The figure is
in particularly sharp contrast with the predictions of van
Thiel and Ree® for T = 6000 K, as the slope of our curve
continuously increases with density (see Fig. 4 of Ref. 9).
The slope of the curve is smallest at very low densities,
where the liquid is characterized by coupled linear chains
that are easily compressed.

We note that Fig. 5 should not be taken as a quan-
titative prediction of the relationship between pressure
and density in liquid carbon. At high densities, calcu-
lated pressures for this model are significantly higher
than found using more ab initio techniques.® However,
we expect that the general trends of the pressure-density
relationship should be reproduced.

B. Conductivity of liquid carbon

The calculated conductivities of liquid carbon are
shown in the bottom of Figs. 1 and 2. We first wish
to note that the calculations based upon the Kubo-
Greenwood formula, given in Eq. (6), are in good agree-
ment with those from the density of states estimate from
Eq. (9). In particular, the trend in the conductivity —
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peaking at intermediate densities — is clear from both
calculations. The differences between the calculations
are typically less than 10%. Similar agreement has been
found for first-principles calculations of the conductivity
of liquid carbon at low densities.”

We estimate the errors in the calculations of the con-
ductivity to be on the order of Ac = +0.0005 (u2cm) ™1,
based upon the scatter of the data shown and also upon
the scatter of data for the same density and temperature.
The error bars shown in Figs. 1 and 2 are larger at higher
densities. We observed that at higher densities, the prop-
erties of the liquid showed some dependence upon the
simulation history. We believe that there is some ten-
dency, at the higher densities, for long-lived fluctuations
to occur, resulting in long equilibration times, and pos-
sibly associated with glassy behavior. This is specula-
tive, however, and we need to perform longer, more care-
ful simulations to fully understand the properties at the
higher densities. The error bars shown in the figure are
wide enough to encompass all of the data points taken
from different simulations, and are therefore reasonably
conservative.

These error estimates are separate from errors that
arise from the use of our tight-binding molecular dy-
namics model, which should only produce qualitatively
correct results, due to the fact that it has been devel-
oped primarily for reproducing structural properties, not
electronic properties. In order to estimate how large
this systematic error may be, we compare with the first-
principles simulations of Galli et al.” of liquid carbon at
T = 5000K with a density of p = 2.0 g/cm®. They find
a conductivity of 0.0071 (42 cm)™?, significantly higher
than our results for the same density. However, their
bonding at that density is quite similar to the bonding
we observe at p = 2.4 g/cm3, where we calculate the con-
ductivity to be 0.0053 (u2cm)~!. While the comparison
is not very close, it is reasonable. As we wish to focus on
qualitative results, rather than quantitative predictions,
we find these calculations to be acceptable.

The most significant feature of Figs. 1 and 2 is that the
trends in the conductivity closely follow the trend for the
percentage of threefold bonded carbon. As the pressure
increases toward p =~ 3.0 g/cm?, the number of threefold
coordinated atoms and the conductivity both rise. For
higher densities, both quantities drop off rapidly. Thus,
when the system is primarily twofold bonded, the sys-
tem has a low conductivity, due to the low connectivity
of the chains. The conductivity rises as the system be-
comes more threefold coordinated, analogous to the large
in-plane conductivity in graphite. At high densities the
conductivity drops, as the bonding becomes similar to
the tetrahedral bonding in diamond.

IV. DISCUSSION

The primary purpose of this work was to examine
how the structure and conductivity of liquid carbon de-
pend upon pressure, in order to understand the experi-
ments conducted by Bundy!® and to further understand
the melting lines of graphite and diamond. Previous
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simulations® ® and the work presented here indicate that
at low densities, the liquid is primarily twofold bonded.
As the density is increased, the liquid becomes primarily
threefold bonded, and at sufficiently high densities, the
liquid is mostly tetrahedrally bonded.

The relationship between the bonding and the conduc-
tivity is shown in Figs. 1 and 2, which demonstrate that
the conductivity is highest when the number of three-
fold bonded atoms is highest. This is in agreement with
the experiments of Bundy,'® which show that the con-
ductivity increases with pressure, for pressures below the
equilibrium diamond-graphite-liquid triple point. This
relationship may be understood by considering the peri-
odic structures of carbon: the diamond form of carbon
is insulating, while graphite has a high in-plane conduc-
tivity. We expect that the primarily twofold bonded lig-
uid will have a low conductivity, as the primary contri-
bution will be along the chains, which are only weakly
connected. This is in partial agreement with Ferraz and
March, who predicted that the twofold coordinated lig-
uid will be insulating,* although we find a small but finite
density of states at the Fermi level at the lower densities.?

Our results indicate that the conductivity will be at
a maximum at some density below that of diamond.
Bundy'’s results that the conductivity rises as a function
of pressure, up to a pressure of P = 100 kbar, indicate
that at this pressure the liquid will most likely be pri-
marily threefold bonded, and will be less dense than the
corresponding diamond phase. This indicates that the
slope of the diamond melting curve should be positive,
at least at this pressure. This is in accordance with recent
descriptions of the phase diagram.?® Other experimental
work?® has suggested that above this pressure, both sp?
and sp3 bonding is present in the liquid phase, and that
the sp® bonding increases with increasing pressure, again
in qualitative agreement with our simulations.

We note that our results are in sharp contrast to the
work of van Thiel and Ree,® who attribute the increase
of conductivity with pressure to a change from threefold
bonding to a higher coordinated structure. They sug-
gest that these are distinct liquid phases, separated by a
coexistence line that is terminated by a critical point at
T. = 5520 K, P, = 70.5 kbar, with a critical density of
p = 2.34 g/cm®. This density is approximately where we
observe a crossover from twofold to threefold bonding.

The idea that there is a transition between two liquid
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phases is appealing, in part due to the fact that the slope
of the melting line of graphite changes sign at P ~ 50
kbar. This indicates that at above this pressure, the lig-
uid phase is more dense than graphite. Furthermore, the
fact that carbon can form sp, sp?, and sp® bonds suggests
that there could be distinct phases. Our results for the
pressure versus density, shown in Fig. 5, indicate that the
behavior of the liquid is continuous, with no evidence for
a phase transition. This could be due to the fact that our
simulations were carried out at temperatures significantly
higher than the melting point of graphite; however, we
would expect to see some indication of a large compress-
ibility even above the critical temperature. Thus, while
we cannot rule out the possibility of a transition, we see
no evidence in our simulations that would support this
idea within this range of densities. If the change in slope
is due to a structural change, we believe that it would be
related to a transition between twofold and threefold co-
ordinated structures, similar to that predicted by Ferraz
and March.*

In summary, we have shown that the conductivity of
the liquid phase is closely correlated with the presence of
sp? bonding in the liquid. The low-density liquid, being
characterized by the formation of connected linear chains,
has a low conductivity. We believe that the experimen-
tally observed rise of conductivity with pressure is due
to the increased number of sp? bonded atoms. At suffi-
ciently high densities, the conductivity should decrease,
as the sp® bonding begins to dominate. We observe no
evidence of a structural transition between different lig-
uid phases.
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