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Interface growth in a two-spin facilitated kinetic Ising model
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The kinetic growth of an interface in a two-spin facilitated Ising model is analyzed by numerical
simulations. In contrast to the usual Eden model, a new nonuniversal short-time behavior is detected.
For larger times a crossover to the universality of the Eden model takes place. It is shown that
the bulk density and the evolution of the roughness of the interface are mainly determined by a
characteristic length (i,;„,which is closely connected to the correlation length g of the glass phase.
The velocity of the interface can be described by a Williams-Landel-Ferry-like behavior.

I. INTRODUCTION

s, = —1ands~ =0 8'= —1 ands~ = —1,

which describes the kinetic process on the lattice.
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Theoretical models for irreversible growth such as the
Eden model have been of increasing importance in re-
cent years. Natural realizations of such irreversible ki-
netic growth processes arise in difFerent areas (biologi-
cal pattern formation, epidemic processes, evolution of
tumors ).

A typical irreversible growth can be observed in solids
in which both crystalline and amorphous phases ex-
ist. While the crystalline phase derives from the liquid
through a first-order phase transition, in the liquid to a
glass (or amorphous phase) transition one observes with
decreasing temperature a characteristic large and contin-
uous slow down of the dynamics without any clear iden-
tification of a phase transition (glass transition). Such a
dynamic glass transition is characterized by a high coop-
erativity of the underlying elementary processes.

Of important interest is the behavior upon an inter-
face between a crystalline phase and the undercooled liq-
uid (glass). In principle, the energetically more favor-
able crystalline phase tends to grow into the glass phase.
While the crystalline surface grows irreversibly and un-
limited at the contact with a simple liquid (kinetic growth
of crystals in solutions or melts), the irreversible growth
of the interface into an undercooled liquid is strongly
determined by the dynamics in the glass phase (for in-
stance, a typical situation is given in polyethylene). A
theoretical description of an irreversible growth is given
by the phenomenological approach of Kardar, Parisi, and
Zhang ' to the evolution of the interface in the Eden
model. The Eden model describes a kinetic growth pro-
cess on a lattice, starting from one or more seed parti-
cles. The growth mechanism follows an iterative rule, in
which a new particle is added on a nonoccupied site of
the Eden cluster, by choosing this site at random among
all the possibilities. Defining 8; = 0, —1 to be the state
(nonoccupied, occupied) at site i the following reaction
scheme is considered:

The well-known analytical descriptions of the dy-
namic glass transition use continuous generalized hy-
drodynamic models and different types of mode cou-
pling approximations, whereas numerical approaches
are based on microscopical and/or mesoscopical models
that are usually solved by Monte Carlo (MC) like simu-
lations. A powerful numerical method for the simulation
of the glass transition in dense polymer systems (typical
glass former) is the bond fluctuation method.

Another possibility used for the following investiga-
tion is the numerical investigation of spin-lattice mod-
els by MC methods, introduced by Fredrickson and
Andersen. ' The original Fredrickson model ' (two-
spin-facilitated kinetic Ising model in d dimensions, usu-
ally acronymed as 2SFM) gives a local topological ex-
planation for some essential features of the cooperativity
in glass phases. Here, each spin on a regular lattice of
size N" (d: dimension) has two states s, = +1 (up) and
s, = 0 (down). A down state is associated with a small
liquidlike region (high mobility, low density), an up state
with a small solidlike one (low mobility, high density) in
a real glass and we can assume that the energy level of
s, = 1 is lower than the energy level of 8, = 0. The
transition between these two states is determined by an
energy difference eo between the liquid and solidlike state
and the temperature T,

p~, „,(solid —+ liquid) exp (2)

s;=0=8;=1. (4)

II. MODEL

The description of the irreversible growth of an inter-
face in an undercooled liquid should be possible in a lat-
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The cooperativity between the single-Hip mechanisms at
different lattice sites is given by additional dynamic topo-
logical restrictions: only a spin with

m & n (n: fixed integer, n & z)

(z: coordination number of the lattice) neighboring spins
in the up state (solid) can undergo transition jumps
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8,- = 0 = 8; = 1. (5)

(2) Irreversible jumps from a liquidlike state (s, = 0) to
a crystalline state (s, = —1) if one or more neighboring
spins are in the 8, = —1 state and the number m of
neighboring low mobility states (s =+1) and crystalline
states (s = —1) is also given by m & n:

tice model by continuing the kinetics of both the Eden
model and the two-spin-facilitated Ising model. To that
end we introduce a three-state spin 8, = 0, +1. Here,
the spin state 8; = —1 at the lattice site i corresponds
to the crystalline phase, whereas the states 8; = +1 and
s; = 0 are associated with low and high mobility states,
respectively, of the glass phases.

In the model the following transitions between these
states are possible:

(1) Reversible (thermodynamic) jumps between low

(s, = +1) and high (s; = 0) inobility states of the glass
[under the topological restriction, that the number m of
neighboring low mobility states (s = +1) and crystalline
states (s = —1) is determined by m & n] with the reac
tion scheme

This length corresponds approximately to the averaged
diameter of the active patches and can be interpreted in
the &amework of a phenomenological cooperativity con-
cept (see also the Appendix) as an approximate diameter
of a cooperative region (being formed by particles which
participate in a structural transition of the glass). These
regions are always characterized by a finite length (in the
temperature regime of the glass transition), no indication
for any long-range correlation can be detected (compat-
ible with the fact that a dynamic glass transition shows
no phase-transitionlike properties). The existence of such
a characteristic length induces the assumption that the
scaling law (8) no longer holds. Rather, a more sophisti-
cated behavior controlled both by the geometrical length
L and the thermodynamic (kinetic) length (";„can be
expected. Only in the case when L and the roughness of
the interface o. are suKciently large in comparison to the
thermodynamic length (";„,the inhomogeneities in space
(of the order of $k;„and caused by the glass dynamics)
become irrelevant and the roughness of the interface can
be described by the scaling law (8).

8;=0 Si= 1
III. NUMERICAL SIMULATIONS AND RESULTS

(6)

This model is controlled by the temperature which de-
termines the dynamical structure of the glass, and the
geometry as well as dimension of the initial interface.

In the following we investigate this model in a (d+ 1)-
dimensional space R, being formed by a d-dimensional
surface Sg and a spreading direction h, i.e., R, = Sd x h.
The extension in the spreading direction is unlimited,
whereas the surface Sg has the area I".

In the original Eden model after a finite relaxation time
an invariant kink &ont appears to move with a constant
velocity which suggests a solitonlike behavior. The vol-
ume ofbulk (region, in which the average of the local-spin
state is nearly —1) grows as V t, consequently the
height of the bulk as 6 t. The interface itself shows
a &actallike structure. A characteristic measure of the
roughness of the growing surface is the width

J' d'x[h(x, t) —h(x, t)]2
Ld

which depends on the length L and the height 6 by the
universal scaling law

In the present numerical calculations we analyze the
behavior in a 1 + 1 dimensional space. Therefore, we
use a square lattice with the coordination number z =
2(d+1) = 4 and the restriction n = 2 for the 2SFM with
cyclic boundary conditions in the direction (x direction)
orthogonal to the spreading direction (y direction) of the
interface.

In a first step the generation of an equilibrium con-
figuration of the glass phase was realized by using a
MC Metropolis algorithm with the weight exp( —e/T)
(e is the energy difFerence between the states s = 0
and s = +1). After reaching the equilibrium state, all
spins with coordinates (y = 0, x = arbitrary) are given
the value 8 = —1 determining the initial interface for
the kinetic growth. The following irreversible growth
of the interface is treated by Monte Carlo (MC) simu-
lations, whereas the Metropolis algorithm for the glass
phase stays unchanged. This numerical algorithm corre-
sponds to the time evolution of the probability distribu-
tion P(s, t) by a one step master equation, generated
by the reaction scheme (5) and (6).

A. Velocity of the interface

This model has a critical dimension d = 2 and univer-
sal critical exponents y and z which are obtained by a
renormalization-group approximation. ' Especially for
d = 1 follows y = 1/2 and z = 3/2. Numerical
studies ' on the Eden model show that z —1.55 +0.15
and y/z —0.30 + 0.02 in good agreement with the
renormalization-group approach.

Numerical investigations "' of the 2SFM show the ex-
istence of a characteristic length (k;„ for the glass phase.

To get a measure for the time evolution of the interface
in the present model we define the actual coordinates of
the surface by [x,h(x, t)] with

h(x, t) = max y with s(x, y, t) = —1.

The averaged height h(t) = (h(x, t)) characterizes the
growth process and depends on the length L (length of
the system in x direction) and the temperature.

Figure 1 shows the evolution of h(t) for diB'erent tem-
peratures and a fixed length L = 256. One can see that
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FIG. 1. Time evolution of the averaged height h(t) for the
length L = 256 and the reduced temperatures x = T/e = oo
9.49, 4.48, 2.80, 1.95, 1.44, 1.05, time in averaged steps per
lattice site.

FIG. 3. Temperature dependence of log v (T).

probability tends to a stationary value smaller than unity.
The density of the state s = —1 in the bulk at the time
t is defined bythe slopes of h(t), after a short relaxation time, assume

constant values. These stationary velocities of the inter-
face v(L, T) depend only on the length L and the temper-
ature T (Fig. 2). For I ~ oo the velocities v(L, T) con-
verge to finite values v (T). These velocities are strongly
temperature dependent and show the same behavior as
the inverse relaxation times of the pure 2SFM (Refs. 20,
17, and 18) in the equilibrium state (Fig. 3). Therefore,
we can expect, that the velocity of the interface becomes
extremely small with decreasing temperature (Wl F-like
behavior), but the interface should not be pinned at any
temperature. Such a pinning should only be possible if
the underlying glass phase shows a transition to a non-
ergodic state, which, however, does not occur for the
2SFM"

p(t, L, T) = g. h(x, f)

Note, that this representation neglects the possible ex-
istence of overhangs at the interface. Because the over-
hangs are only present at the surface of the linearly with
the time increasing bulk, this contributions vanishes for
t ~ oo. Figure 4 shows the time evolution of the density
(9) for different temperatures. Similarly to the velocity,
the time evolution of the density approaches (in analogy
to the velocity) stationary weakly L-dependent values.
The extrapolation for L —+ oo leads to a stationary limit
of the density p (T) = p(t, L, T) ~g |,~, which is shown
in Fig. 5. It should be remarked that all the lattice sites
with spin state 8 = —1 form a single connected struc-
ture. Consequently, such structures are not determined
by a pure random distribution, i.e., we can expect a dis-
tribution with a dominant length scale in the order of
the characteristic length scale of the glass transition. Be-
cause of the temperature dependence of the density, we

B. Density of the bulk

The probability that the spin at an arbitrary site i
is s, = —1 tends to unity in the original Eden model.
In contrast to this behavior, in the present model this

p(h)
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FIG. 4. Time evolution of the averaged density p(t) for

L = 256 and reduced temperatures v = T/e = oo, 9.49, 4.48,
2.80, 1.95, 1.44, 1.05, and 0.83. Note, that in this reduced
plot the time is replaced by the averaged height h.

FIG. 2. Stationary values v(L, T) as a function of L and
for difFerent reduced temperatures a = T/e = oo, 9.49, 4.48,
2.80, 1.95, 1.44, 1.05, and 0.83.
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FIG. 5. Averaged density p (T) of the bulk as a function
of the inverse temperature T

FIG. 7. Temperature dependence of the exponent p(T) for
the Grst time evolution regime of the roughness.

can assume that this length (which determines for exam-
ple the diameter of the bubbles or holes in the 8 = —1
structure) increases with decreasing temperature.

C. Roughness of the interface

The time evolution of the roughness (7) shows two
and three characteristic regimes, respectively, (Fig. 6)
and depends also on the length I and the temperature
T. [Note, because of the monotonic relation between the
height h(t) and the time t (see Fig. I), it is reasonable
to use the usual representation o = o (6, L, T).]

(I) The first regime is determined by an increase of the
roughness with the height h, by a power law 0 h~~

with a temperature-dependent exponent p(T) (Fig. 7).
(2) For large enough I a second power-law regime with

a constant (universal) exponent o Ixi is observed. The
prefactors of these two power laws depend only on the
temperature, not on the length L. The value of P (P =
0.3+ 0.02) is the same exponent as for the original Eden
model (see below).

(3) For large enough h, the roughness of the interface
becomes a constant o, which depends on the length
L by a power law a = A(T)Lx with a temperature-
dependent prefactor (Fig. 8).

1» 0.

The crossover from the first to the second regime is
independent on the length I and determined by the
temperature exclusively. The corresponding thickness
(k;„——o„„„(Fig.9) of the interface can be inter-
preted as a measure for the characteristic length of the
cooperative regions in the glass phase. For a relative
small thickness of the interface, the roughness is com-
pletely determined by the structure of the glass phase.
With increasing evolution time and suKciently large I.
also the thickness of the interface (characterized by the
roughness xneasure xr) increases. For a thickness of the
interface large in comparison to the length of the glass,
the structure of the glass phase becomes more and more
homogeneous as compared to the scale of the rough-
ness of the interface and the growth process shows new
the same universal behavior as the original Eden model.
In other words, the local structure (this comprises all
lattice properties, including the local-spin dynamic and
the correlations of the glass phase with a finite corre-
lation length), becomes irrelevant, because the kinetic
growth approaches a critical behavior (critical dimension
d, = 2) with dominant long-range fluctuations. Note,
that this characteristic length of the cooperative regions
is a result of the competition between the irreversible ki-
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FIG. 6. Time evolution of the roughness o for different
lengths L = 2 . . . L = 2 (I, increases in the direction of the
arrow) and the reduced temperature 7 = T/e = 1.95.

FIG. 8. o as a function of L for different temperatures
(from bottoxn to top T = oo, 9.49, 4.48, 2.80, 1.95, 1.44,
1.09). The averaged slope (full line) for the region L ) 16 is
0.48 +0.03, in good agreement with the results of the original
Eden model.
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FIG. 9. Characteristic length (k;„=o„„„asa function
of the temperature T.

netic growth of the interface and the reversible dynamics
of the glasslike bulk. Therefore, we expect a difI'erence
between the kinetic length (k;„and the usual correlation
length ( in a glass. i7' However, the temperature de-
pendence of our kinetic characteristic length (k;„should
scale in the same manner as the correlation length ( in
the glassy bulk up to an (irrelevant) prefactor.

IV. CONCLUSION

In our model the kinetic growth of an interface into
a glass phase difFers &om other kinetic growth models
of the Eden type in some essential points. Whereas
in homogeneous space no restrictions hinder the kinetic
growth of the interface, the growing process in 2SFM
shows for each temperature (T + oo inclosed) that all
sites with s = 1 (low mobility states of the glass), neigh-
boring the interface are unable to undergo a transition in
the s = —1 state (i.e. , to becoine a part of the growing
cluster).

A similar growth shows the epidemic model. ' Here,
each site of the space with s, = 0, neighbored to a site
(s; = —1) of the interface (active region) can realize ei-
ther a transition to an elementary point of the growing
cluster (s; = 0 + s; = —1) with the probability p or a
transition to a dead state (s; = 1) with the probability q,
which can never undergo a new transition in the s; = 0 or
s; = —1 state [therefore, each site s; = 1, neighbored to
a site (s; = —1) of the interface forms a passive region].
In other words, the growth of the interface is stopped in
these points.

The growing process of the epidemic model is com-
parable to the kinetic growth in 2SFM in a restricted
sense. The main difI'erence between this model and the
kinetic growth in the 2SFM is the existence of a critical
probability q for the epidemic model. The growth of
the interface in the epidemic model breaks down for each
q & q, because the production rate of dead lattice sites is
high enough to eliminate all active regions. This results
in a configuration where all lattice sites with a spin value
s g 0 neighbored to at least one spin with s = 0 are in
the state s = 1, i.e. , a further growing of the s = —1

cluster is impossible. Note, that this pinning efFect ex-
ists also for the evolution of an interface in a stochastic
force field. Here, the growth of the interface started only
in the case, that an additional force I" ) I", (I" is the
critical force) is switched on in the spreading direction of
the interface. Really, such a pinning efI'ect for the inter-
face and therefore the existence of a critical temperature
T is not observable for the kinetic growth in the 2SFM,
because the always present dynamics between s = 0 and
s = 1 states guarantees the possibility of a contact be-
tween an s = 0 state and the s = —1 cluster and therefore
a permanent growing of the interface. The nonexistence
of a critical temperature T corresponds to the fact, that
the 2SFM has no nonergodic state ' ' (in the sense of
the mode coupling theory ' or the Fredrickson-Anderson
analysis ' ). Consequently, the lowering of the temper-
ature leads only to an essential reduction of the growing
velocity, not to a total freezing of the evolution.

The analysis of both the bulk density and the
roughness of the interface suggests the existence of a
temperature-dependent characteristic length (k;„, which
determines the dynamics of the glass phase. This length
(k;„corresponds not necessarily to a correlation length of
the structure (the static structure factor of the SFM sug-
gest a randomly distributed disorder). Rather, (k;„must
be interpreted as the average diameter of a region around
an arbitrary lattice site i of the model, in which a certain
fraction of spins must change their state at least once
(s = 0 ++ s = 1), before the spin at site i can undertake
a transition to another state.

The analysis of the numerical results for the charac-
teristic length (i,;„(Fig. 9) in the investigated T interval
leads to the following approximation formula:

9.4 9.4(k;„=2.7+ ' = (o+
' + O(T ).T T (10)

As mentioned above, we have difI'erent measures of the
correlation length in spin-facilitated models. ' ' Our
kinetic length (k;„ is a special measure, which is related to
the irreversible (Eden) growth process and the reversible
spin dynamics in the glass region and difI'ers from usual
equilibrium definitions. ' ' Using the concentration
c = [1 + exp(T )], such an equilibrium correlation
length ( behaves as

= o. exp —.
C

The high-temperature limit of (ll) corresponds to the ap-
proximation (10), whereas a fit in the low-temperature
regime of our approximation leads to o, = 3.32 and
P = 0.31. As expected, the temperature behavior of the
correlation length (given by P) is in a good agreement
with the numerical results of equilibrium simulations
P = 0.27 (Ref. 27) and P = 0.21,2s respectively. The
prefactor n divers from the equilibrium data [n = 0.48
(Ref. 27) and n = 1.13, respectively] as a consequence
of definition of the kinetic characteristic length (k,„.

On the other hand, the characteristic lengths (k;„as
obtained by the numerical simulations are also consis-
tent with the approximately predictions of a fIuctuation
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theory for the case T = 0 and d = 2 (see the Appendix
and note the 2SFM has no Vogel temperature T ). (o is
an elementary length of the order of the diameter of a re-
gion of neighboring points around one lattice site, which
corresponds to the characteristic length of the 2SFM for
Taboo.

If the typical lengths, which determine the growing
process of the interface in the 2SFM (e.g. , the thick-
ness o.), are sufficiently small as compared to (i,;„(T),
the influence of the temperature on the growing process
becomes very important. This fact is expressed in the de-
viation from the universality of the original Eden model
(e.g. , a temperature-dependent critical exponent p(T) for
the first region of the growing process).

On the other hand, if the kinetic growth reaches length
scales, which are sufFiciently large in comparison to the
characteristic length (q;„(T), the system obeys the well-
known universal behavior (8) of the Eden model with
universal exponents y and z, whereas the influence of the
temperature is confined exclusive to irrelevant prefactors.
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APPENDIX: THE PHENOMENOLOGICAL
FLUCTUATION THEORY OF GLASS

TRANSITION

This theory is based on the concept of cooperativity
and gives a phenomenological reasoning for the existence
of characteristic length scale which control the glass tran-
sition. To that purpose one divides for a given temper-
ature T the volume of the glass in subvolumes of the
length ((T). This length is determined by the restriction
that each region is approximately statistically indepen-
dent from the neighbored subvolumes. The minimum
possible length corresponds to the average diameter of
a cooperative transition region (i.e. , this length corre-

sponds in our version of the 2SFM to the averaged di-
ameter of a region around the spin 8;, in which the spins
must change their state, before the restrictions allow a
change of s;).

In such an approximately statistically independent re-
gion of length ( (i.e. , volume V, = ( ) the temperature
fluctuations are given by

(A1)

with the specific heat proportional to the volume C~
V, i.e.,

(A2)

In each of these subsystems a characteristic frequency
w(T) represents a measure for the velocity of the tran-
sitions between difFerent thermodynamic states. Con-
sequently, the temperature fluctuations bT correspond
to a dispersion of the frequency bu. This means, that
each observable, which is related to the glass transition,
has a temperature-dependent width b~(T) [Fig. 10(a)].
This width is determined by two characteristic frequen-
cies wi(T) and u2(T), respectively [corresponding to the
two turning points in Fig. 10(a)]. The temperature de-
pendence of these frequencies can be fitted by a Williams-
Landel-Ferry (WLF) curve with a finite Vogel temper-
ature T

(A3)

(n = 1, 2). These two hyperbolas in the ln~ Tplot [Fig. -

10(b)] have the same asymptotic behavior, i.e. , only the
constants D are difFerent for the two hyperbolas. The
distances between the hyperbolas along the ln ~ and T di-
rection, respectively, corresponds to the width of the tem-
perature fluctuations bT and the attached width b 1n~ in
the frequency spectrum, respectively.

The hyperbolic structure implies the exact relation

In@

C

FIG. 10. (a) Frequency de-
pendence of an observable, rel-
evant to the glass transition,
the width ~2 —uq reBects
the dispersion of the frequency,
(b) 1ncu Tplot for ~i(T) an-d

u2(T), respectively.
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STb 1n~ = const.

On the other hand we have from (A3)

(A4)

and therefore with (A2)

(A6)

bin~ din~ D
bT dT (T —T )s

Using (A4) and (A3), we get

(A5)
(T T )

—z/d (A7)

This scaling law gives an empirical connection between
the characteristic length of the glass transition and the
temperature.
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