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A theory of interlayer exchange coupling is presented. A detailed and comprehensive discussion
of the various aspects of the problem is given. The interlayer exchange coupling is described in

terms of quantum interferences due to confinement in ultrathin layers. This approach provides both
a physically transparent picture of the coupling mechanism, and a suitable scheme for discussing the
case of a realistic system. This is illustrated for the Co/Cu/Co(001) system. The cases of metallic
and insulating spacers are treated in a unified manner by introducing the concept of the complex
Fermi surface.

I. INTRODUCTION

Since the first observation by Griinberg et al. of an-
tiferromagnetic coupling of Fe films separated by a Cr
spacer, the interlayer exchange interaction between fer-
romagnetic layers separated by a nonmagnetic spacer has
been a subject of intense research in the last few years.
The decisive stimulus came &om the discovery, by Parkin
et al. , of oscillations of the interlayer exchange coupling
in Fe/Cr/Fe and Co/Ru/Co multilayers, as a function of
spacer thickness. Furthermore, Parkin showed that this
spectacular phenomenon occurs with almost any transi-
tion metal as a spacer material.

Investigations of interlayer exchange coupling across
nonmetallic spacer layers have been pioneered by Toscano
et a/. , who studied the coupling of Fe films separated
by amorphous Si. A striking feature is that the cou-
pling, in contrast to the case of a metal spacer, increases
with increasing temperature. Furthermore, Mattson et
a/. found that the coupling across a FeSi spacer may be
induced by illumination by visible light; this behavior,
however, remains controversial.

For the case of metal spacers, a great number of the-
oretical studies has been performed, essentially focusing
on the oscillatory character of the coupling. There are es-

sentially two classes of approaches to this problem: total-
energy calculations and model calculations.

The idea of the former approach is to compute the to-
tal energy of the system for configurations of parallel and
antiparallel alignment of the magnetizations in neighbor-

ing magnetic layers, and to identify the energy difference
with the interlayer exchange coupling. Such calculations
have been performed either within semiempirical tight-
binding models or ab initio schemes. Although it is

very simple and straightforward in principle, this kind
of approach is actually very diKcult. The point is that
the energy difference between the parallel and antiparal-
lel configurations is tiny (of the order of 1 meV or less,
per unit cell), whereas the total energy is large. This
makes numerical convergence of the calculations a se-
rious problem. Furthermore, as the computation time
increases very rapidly with the size of the unit cell, total-

energy calculations are usually restricted to small layer
thicknesses, which makes the investigation of long-period
oscillations problematic. Another diKculty concerns the
interpretation of the results: One usually has to perform
a Fourier analysis of the coupling versus spacer thickness
to identify the oscillation periods, whose interpretation
then relies on various models. In spite of these diKcul-
ties, total-energy calculations have encountered encour-
aging success, at least as far as oscillation periods are
concerned. Nevertheless, the coupling strengths obtained
&om total-energy calculations are typically one order of
magnitude larger (or even more) than the experimental
ones (for a review see Ref. 14). Thus, complete eluci-
dation of interlayer coupling &om this kind of approach
remains a serious challenge.

In order to circumvent the difBculties mentioned above,
various models have been devised to get some better
insight in the mechanism of interlayer exchange cou-
pling. These are (i) the Ruderman-Kittel-Kasuya- Yosida
(RKKY) model, i in which the magnetic layers are
described as arrays of localized spins interacting with
conduction electrons by a contact exchange potential, (ii)
the &ee-electron model, of which many variants have
been proposed, (iii) the hole confinement model, 2 which
is essentially a tight-binding model with spin-dependent
potential steps, and (iv) the Anderson (or sd-mixing)
model '4 "

The great advantage of these models is that their sim-

plicity allows one to obtain analytical results, thus mak-

ing the physics transparent. In particular, all the models
relate the oscillation periods, in the limit of large spacer
thicknesses, to the Fermi surface of the bulk spacer ma-
terial.

The general criterion giving the oscillation periods
for an arbitrary (nonspherical) Ferini surface has been
given by Bruno and Chappert in the context of RKKY
theory. They have used this criterion to predict the os-
cillation periods for noble metal spacers, whose Fermi
surface is fairly simple and known accurately &om de
Haas —van Alphen experiments. These predictions have
been confirmed successfully by numerous experimental
observations; in particular, the coexistence of a long and
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a short period for the (001) orientation has been found for
both noble metals, in good quantitative agreement
with RKKY theory. I"blather evidence of the validity of
the relationship between the oscillation periods and the
Fermi surface of the spacer has been obtained by vary-
ing systematically the number of valence electrons via
alloying. The criterion given by Bruno and Chap-
pert has been used by Stiles to determine the oscillation
periods for transition metal spacers; however, the Fermi
surfaces are so complicated, and the periods so numer-
ous, that a reliable comparison with experimental results
seems very doubtful.

Concerning the strength of the coupling, a general
trend obtained &om the above models is that it depends
essentially on the degree of matching of the energy bands
at the paramagnet-ferromagnet interface; this appears
very clearly &om the &ee-electron model, the hole con-
finement model, and the sd-mixing model. This trend
seems to be supported by the experimental results of
Parkin for transition metal spacers; however, because
of the drastic idealization of these models, no quantita-
tive predictions for realistic systems have been given so
far.

In a recent paper, I proposed a general approach to the
problem of interlayer coupling, which overs a suitable
starting point for realistic calculations, and at the same
time provides deep physical insight into the mechanism
of interlayer coupling. In this approach, the interlayer
exchange coupling is described in terms of the quantum
interferences due to the (spin-dependent) reflections of
Bloch waves at the paramagnet-ferromagnet interfaces.
In its most general formulation, this approach embod-
ies all the models mentioned above as particular cases,
thus identifying clearly the features that are generic to
the phenomenon of interlayer coupling, and the ones that
depend on specific assumptions of a given model. Essen-
tially the same formulation has been subsequently pre-
sented by Stiles, 3 who derived the expression of the cou-
pling directly in terms of the wave functions, instead of
using Green's functions as in Ref. 34.

Until recently, it was generally believed that the in-
terlayer coupling is independent of the magnetic layers
thickness. On the other hand, Barnas found &om nu-
merical calculations for the free-electron model that the
coupling oscillates versus magnetic layer thickness; how-
ever, the origin of this behavior remained unclear. As I
discussed in Ref. 36, it becomes almost obvious, in the
light of the "quantum interference" formulation, that one
may expect such oscillations, as a consequence of the in-
terferences associated with the multiple internal reflec-
tions in a magnetic layer of finite thickness, in analogy
with the reflection oscillations in an optical Fabry-Perot
cavity. This prediction has been confirmed recently by
Bloemen et al. s~ in Co/Cu/Co(001) and by Okuno and
Inomata in Fe/Cr/Fe(001).

In contrast to the important theoretical literature de-
voted to interlayer coupling across a metal spacer, the
magnetic coupling across insulators has attracted very
little attention &om the theoretical point of view. A no-
table exception is Slonczewski's model of coupling, at
T = 0, through a tunneling barrier: The coupling in

this case is nonoscillatory, and decays exponentially with
spacer thickness. In a recent paper, I discussed this
problem within the quantum interference approach: At
T = 0, one obtains essentially the same results as Slon-
czewski; on the other hand, the coupling is found to in-
crease with increasing temperature, in contrast to the
metal spacer case.

One great virtue of the quantum interference approach
is that it allows one to treat metal and insulator spacers
in a unified manner, by using the concept of a comp/ex
Fermi surface, as discussed in Ref. 40.

The purpose of the present paper is to give a compre-
hensive and extended discussion of the theory presented
in Refs. 34, 36, and 40. It is organized as follows: In
view of pedagogical clarity, after a heuristic presentation
of the physical mechanism of interlayer coupling and of
the underlying concepts (Sec. II), I shall illustrate the
theory within the simple free-electron model (Sec. III).
In Sec. IV, I shall present the material necessary to the
general theory of interlayer coupling; in particular, the
concept of complex Fermi surface will be introduced. The
general theory of interlayer coupling will be presented in
Sec. V. In Sec. VI, I discuss the connection between the
present approach and the various models that have been
used to study the problem of interlayer coupling. Then,
I will present, in Sec. VII, the complex Fermi surfaces of
noble metals, as calculated by using the linear muon-tin
orbital (I MTO) method. In Sec. VIII, I shall discuss
how to calculate the reHection and transmission coeK-
cients for realistic multiband systems. Finally, Sec. IX
is devoted to the discussion of a realistic case: namely,
Cu/Co(001).

II. QUANTUM INTERFER.ENCES
AND INTERLAYER EXCHANGE COUPLING

In this section, I shall present a heuristic presentation
of the interlayer coupling in terms of quantum interfer-
ences in the spacer layer; the emphasis will be on physical
transparency rather than on mathematical strictness.

A. One-dimensional model

To start with, I shall first consider a simple one-
dimensional model. The model consists of a spacer layer
of width D and potential V = 0, sandwiched between
two potential perturbations A and B of respective widths
L~ and L~, and respective heights V~ and V~. Outside
the perturbations, the potential is equal to zero, and the
widths L~ and L~ may be finite or infinite. Positive
values for V~ and V~ correspond to potential barriers,
whereas negative values correspond to potential wells.

1. Change of density of states
dne to the quantum interfer ences

I et us consider an electron of wave vector k~ (with
k~ ) 0) traveling in the spacer towards the right; as this
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electron encounters the perturbation B, it is reQected
with a (complex) amplitude r~ = ~r~~e'~ . The reflected
wave, of wave vector —k~, is in turn re8ected on A with
amplitude r~ = ~r~~e'~", and so on. The module ~r~(~l~
of the reHection coefBcient gives the magnitude of the
reflected wave, while the argument p~(~l gives the phase
shift due to the reflection (note that the latter is not
absolute and depends on the choice for the coordinate
origin) .

The multiple interferences that take place in the spacer
induce a change in the density of space. The phase shift
of the wave function after a complete round trip in the
spacer is

&0 = 24.D+ 4~ + 4a

Clearly, if the interferences are constructive, i.e. , if

AP = 2nvr, (2.2a)

with n an integer, one has an increase of the density of
states; conversely, when the interferences are destructive,
i.e. )

E(j) = (2n + 1)vr, (2.2b)

4D dkg
))r~r~

~

cos (2k~D + P~ + P~)

= —Im
~

2iD r~rJ3e '" (2.3)

It is more convenient to consider the integrated density
of states (the number of states of energy lower than s):

N(~)—:f nfr') de' . (2.4)

the density of states decreases. Thus, in a first approx-
imation, the change of density of states due to interfer-
ences, An(s), should vary like cos(2k~D + P~ + P~);
furthermore, it should be proportional to the strength of
the reflections on A and B, i.e. , to ~))r~r~~; finally it is
proportional to the spacer width D and to the density of
states per unit length and energy —&~. There is also a
factor of 2 for spin degeneracy. Thus we find

constructive, i.e., when

2k~D+ P~+ P~ = 2nvr, (2.6)

WN(s) = ——Im ln(1 —r~r~e '"
) (2.7)

Clearly, when )r~r~~ is small, this expression reduces to
Eq. (2.5). A graphical interpretation of the above expres-
sion is obtained by noting that Im ln(z) = Arg(z); thus
DN(s) is given by the argument, in the complex plane,
of a point which moves, as D varies, on a circle centered
at 1, and of radius ))r~rgy ~; this is illustrated in Fig. 1.

The variation of AN(e) versus spacer thickness D is
displayed in Fig. 2, for various values of the confinement
strength ~r~r~~. One observes that, for small confine-
ment strength, the variation of AN(s) versus D is sinu-
soidal, as expected from Eq. (2.5). As the confinement
strength increases, the oscillations are asymmetrically
distorted. Finally, for total confinement (~r~r~~ = 1),
b,N(e') exhibits the jumps associated with the bound
states; in terms of the graphical interpretation (Fig. 1),
this is because the circle goes through the origin, so that
the argument jumps from m/2 to —m/2 for each bound
state. Note that the period A of the oscillations of AN(e),
of course, does not depend on the confinement strength,
but only on the wave vector k~, i.e., A = vr/k~.

So far, I have implicitly considered only states of posi-
tive energy. States of negative energy (i.e. , of imaginary
wave vector) are forbidden in the absence of the pertur-
bations A and B, because their amplitude diverges, so
that they cannot be normalized. However, this no longer
holds in the presence of the perturbations if V~ or V~
(or both) are negative: states of negative energy, i.e. ,
states that vary exponentially in the spacer, can be con-

with n an integer. As D increases, the bound states move
towards lower energy and the integrated density of states
jumps each time a bound state has energy c.

The product ~r~r~~ measures the strength of the elec-
tron confinement in the spacer. As will be shown in
Sec. V, the exact expression of the change in the inte-
grated density of states due to quantum interferences is

The change AN(e') of the integrated density of states is

2
AN(c) = —Im (r~r~e *"

) (2.5)

where the energy derivative of the reQection coeKcients
has been neglected compared to the energy derivative of
the exponential factor, which is a good approximation if
D is large.

The above derivation of the change of integrated den-
sity of states is not rigorous, but allows a clear physical
understanding of the eKect of the quantum interferences
in the spacer. It is valid when the reBection coeKcients
are small, so that higher-order terms may be neglected.
On the other hand, if (r~

~

= )r~ (
= 1, the interferences

lead to bound states and the wave vector k~ is quan-
tized; the bound states occur when the interferences are

Arg(z)

Re(z)

FIG. 1. Graphical interpretation of Eq. (2.7).
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FIG. 2. Variation of the change of integrated. density of
states due to quantum interferences, AN(e), vs spacer thick-
ness D, as given by Eq. (2.7), for various values of the con-
finement strength: (a) ~r~rn~ = 0.1, (b) ~r~rriI = 0.8, (c)
~rare~ = 1 (total confinement).

2 6'F

Im p~p~e + dp
jr (2.1i)

One sees that states for which the interferences are con-
structive (destructive) contribute to a repulsive (attrac-
tive) force between A and B He. reafter, b,E will be called
the coupling energy.

B. Three-dimensional layered system

1
r ja*~~~ i I~-.„.~.""- I,27r3

(2.12)

The generalization of the above discussion to the more
realistic case of a three-dimensional layered system is im-
mediate. It follows from the fact that, since the potential
depends only on the coordinate in the direction normal to
the layers, the in-plane component k~~ of the wave vector
is a good quantum number. Thus, for each k~~, we have
an effective one-dimensional problem such as the one dis-
cussed above; the effect of the quantum interferences in
the spacer is obtained by summing over kII. The change
in the integrated density of states per unit area is

nected to allowed states in A or B. To treat these states
consistently, we extend the concept of reHection coeK-
cients to the states of imaginary wave vectors. One can
check that, with this generalization, Eq. (2.7) accounts
coxnpletely for the effect of the states of negative energy
(evanescent states). A detailed discussion of their role
will be presented in the following sections of the paper.

g. Energy associated uiith the quantum interferences

I et us now estimate the energy change, at T = 0, of the
system, due to the quantum interferences in the spacer.
To ensure conservation of the number of particles, it is
convenient to work in the grand-canonical ensemble, and
to use the grand potential, which is, at T = 0,

and the coupling energy per unit area is

8F
l (i —„."" )d .

27r3

and

AN(r) =, Imf d'k(~ ~„ran""~
27r3

(2.i4)

AE = — Im d kII r~r~e '" de . (2.15)
27r3

(2.i3)

Of course, the reHection coefBcients and the normal com-
ponent of the wave vector k~ are now functions, not only
of the energy, but also of kII. For small confinement, the
above expressions reduce, respectively, to

6'F

4 = (e —ep) n(e) de; (2 8)

integrating by parts, this yields,

8'F

Ci = — N(e) de . (2 9)

CF

AE = — AN(e) de

2 6'F

ln (1 —r~r~e"" ) de .
jr

(2.10)

For small con6nement, this becomes

Thus the energy change due to the quantum interfer-
ences is

C. Quantum interferences in overlayers

A situation of great physical interest is the one of an
overlayer on a substrate. The overlayer is bounded on
one side by the vacuum, which can be modeled by a
semi-infinite potential barrier of height V, = c~ + W,
where TV is the work function. The vacuum barrier is per-
fectly reHecting for electrons below the vacuum level, i.e.,
Ir„,I = l. On the other side, the overlayer is bounded
by the (semi-infinite) substrate material, with a reHection
coefBcent r.

The density of states in the overlayer below and
above the Fermi level can be probed experimen-
tally by using, respectively, direct and. inverse photo-
emission spectroscopy. If, furthermore, one uses angle-
resolved photoemission, one can probe the density of
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states locally in the k)) plane. As the thickness of the
overlayer is varied, the photoemission signal exhibits os-
cillations, with a period given by the wave vector k~ in
the overlayer, and an amplitude proportioxxal to ~r~.

In the case where the substrate is a ferromagnetic
material, the refIection coefricient at the paramagnet-
ferromagnet interface depends on the direction of the
electron spin with respect to the magnetization direc-
tion in the ferromagnet; thus one has r" g r~. One then
defines

the quantum interferences are actually spin dependent
and mostly of minority-spin character.

D. Interlayer exchange coupling

In the case where two ferromagnetic films are sepa-
rated by a paramagnetic spacer layer, the quantum in-
terferences in the spacer induce an interlayer exchange
interaction between the ferromagnetic layers.

In the ferromagnetic configuration, the energy due to
the interferences, at T = 0, is

(2.16a) 1 8'F

LEF = Ixn d k)) dE'
4vrs

(2.16b)

respectively, the spin average and spin asymmetry of the
re8ection coefBcients. If the photoemission experiment is
performed in a spin-polarized mode, one observes oscilla-
tions in the intensity and spin polarization of the signal.

Observations of the quantum interferences due to con-
finement in overlayers have been reported by Ortega
and Himpsel &om non-spin-polarized inverse photo-
emission on Cu overlayers on Co(001) and Ag overlay-
ers on Fe(001). They suggested that these interferences
should be attributed to minority-spin electrons, and are
responsible for the oscillations of interlayer exchange cou-
pling versus spacer thickness. Confirmation of their sug-
gestion has been given by Garrison et a/. 42 and Carbone
et al. who performed spin-polarized photoemission ex-
perixnents on Cu overlayers on Co(001), and showed that

l

x ln 1 —r~r e' ~
A B

+ln 1 —r~r e '"~
A B (2.17)

In the antiferromagnetic configuration, one has

1 CF

LEAp —— Ixn d k)) de
4vr3

X ln 1 —r~r~e2i' D
A B

2ikg D
A B ) (2.18)

so that the exchange coupling energy per unit area at
T=ois

2ik~ D 1 r4 4 2ik~ D
1 CF A B A B

EF —EAF —— Im d k)) ln )4+3
A B A B

(2.19)

which, for small confinement, reduces to

1 CF

EF —EAF —
3 Im d k)) DrA+rB e

7r —OO

(2.20)

electron states, i.e., involves a summation over in-plane
wave vector and energy, photoexnission experiments ofFer

the unique opportunity of being wave vector, energy, and
spin selective; thus, it provides a powerful tool for investi-
gating the mechanisxn of interlayer exchange coupling. 44

The above equation expresses transparently that the
variation of the coupling versus spacer thickness depends
only on the spacer material (via the wave vectors k~),
whereas the strength and phase of the coupling are de-
termined by the spin asymmetry of the reflection coefB-
cients at the paramagnet-ferromagnet interfaces, which,
in turn, depend on the degree of matching of the band
structure on both sides of the interface. The implications
of the above expression for the exchange coupling behav-
ior will be presented in detail in the following section.

The quantum interference picture allows us to establish
a quantitative connection between the quantuxn interfer-
ences in overlayers, as observed in photoemission experi-
ments, and the interlayer exchange interaction. Whereas
the latter results from the contribution of all allowed

III. FREE-ELECTRON MODEL

In this section, I discuss the problem of interlayer ex-
change coupling for the simple &ee-electron model. For
this simple case, the calculations can be performed an-
alytically, providing a physically transparent illustration
of the various aspects of the problem.

The xnodel is as follows: The zero of energy is taken
at the bottom of the majority band of the ferromagnetic
layers; the potential of the minority band is given by the
exchange splitting 4, while the spacer, of thickness D,
has a potential equal to U. The ferromagnetic layers have
a thickness I, and their magnetizations are at an angle
8 with respect to each other. According to the position
of the Fermi level, this model describes the case of a
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metallic spacer (for sF ) U) or of an insulating spacer
(for sF ( U).

As will be demonstrated in Sec. V, the exact expression
of the interlayer coupling energy per unit area for an
arbitrary angle 0 is

1 +oo+io+
EAB(8) = Im d kii ds f(s)4m3 —oo+io+

x ln 1 —2(rArB+ b, rAKrB cos8) e'

+(—2 g 2) (
—2 g 2) 2i«D (3.1)

where iO is an infinitesimal imaginary quantity, q~ =
k& —k&, and f(s) is the Fermi-Dirac function. One can
check easily that, taking the energy difFerence between
the ferromagnetic (8 = 0) and antiferromagnetic (8 = vr)

configurations in Eq. (3.1), one recovers the expression of
the coupling [Eq. (2.19)] which has been obtained from a
heuristic argument in the preceding section. The deriva-
tion of Eq. (3.1) involves integrations over k~ &om —oo
to +oo, which are closed in the upper and lower complex
half-planes, for the incident and reHected waves, respec-
tively, by using the theorem of residues. There are two
kinds of poles: Those lying on the real axis correspond
to propagative states, while those lying ofF the real axis

I

EAB(8) = Jo + Ji cos 8+ J2cos 8+ (3.2)

where

+oo+io+
Jo —— Im d kii deaf(s)4m3 —oo+iO+

X ln 1 —2rArBe'

+ (r„'—b, rA2) (r.B —ArB) e'" (3.3)

is the nonmagnetic coupling constant, Ji is the Heisen-
berg coupling constant, and J~ the biquadratic coupling
constant; the general term of the expansion (3.2), for
n ) 1, is given by

correspond to evanescent states; both kinds of states con-
tribute on an equal footing to the coupling in Eq. (3.1).
Also, one has c& &+ = e & &- ——e with k& ———k& and

II ~ i II ~ i
k& ) 0, in the case of propagative states, or Im(k&+) ) 0,
for evanescent states.

The expression of EAB(8) may be expanded in powers
of cos8 as

+oo+io+ 1 2D Qr eiq~

4vrs "
0+ n 1 —2rArBe'«D + (r' —Ar' ) (r-' —Ar2 ) e2i«D (3.4)

With the sign convention used here, a positive (negative) sign for Ji corresponds to an antiferroinagnetic (ferromag-
netic) interlayer exchange coupling.

Alternatively, one may take, as a measure of interlayer coupling, the energy difFerence per unit area between
ferromagnetic (8 = 0) and antiferromagnetic (8 = m') configurations:

1 +oo+i 0+ D 1 4 4 . D
A B A B

EF EAF =
s Im d kii dsf(s) ln

4~3 —oo+io+
A B1 rt r~ eiq~ D 1 —rt r~ eiq~ D

A B
+~+io+

2 Im d kii ds f(s)27r3 —oo+io+

26r A krB eiq~
xarctanh

1 2pArBeipiD + (r2 ~r2 ) (r2 g&2 ) e2i&LD (3.5)

„t(4) „t(4)
A B (3.6)

The calculation of the reHection coefEcients, for the
free-electron model, is found in standard textbooks of
quantum mechanics. Obviously, since the ferromag-
netic layers are taken to be identical,

52k2
o+ II

2m
' '

2m '

h, k~ =~+zO+-
2m 2m

(3.8b)

(3.8c)

r t(S) —r t(S)
+ kt(4. ) ' (3.7)

where

h2k2
~ = ~+'o+ — II —U,

2m 2m
(3.8a)

Let us consider 6rst the case of semi-infinite magnetic
layers (L = +oo); one finds

respectively, and the sign of the imaginary part of k& is
the same as for k~. Obviously, the reHection coefBcients
for a state of wave vector k = (kii, k~) are independent
of kll, and depend only on k

In Eq. (3.1), the lower bound of the energy integration
is —oo; on the other hand, states that are forbidden, i.e.,
such that s' ( min(0, U), should not contribute to the
coupling. One can check that this is actually the case,
because for such states, both the reHection coeKcients
and the exponential factor are real, so that they give
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a vanishing contribution to the imaginary part, in the
right-hand side of Eq. (3.1).

(a) metallic spacer (b) insulating spacer

A. Metallic versus insulating spacer

Couyltny at T = 0 kgb

At T = 0, one has

f
+OO+i 0+ r F+iO+

de f(e) . . -+ de
—oo+iO+ —oo+iO+

(3.9)

Re(kq)

Changing the variable e for k&, and integrating over kll
first, one obtains, for Jq,

FIG. 3. Integration paths C and C' in the complex k~
plane, in Eqs. (3.10) and (3.11): (a) metallic spacer (ez ) U),
(b) insulating spacer (es ( U).

h2 2 2ik~ D

c ] —2T e2ik~ D + (r2 gr2 ) e4ikz D (3.10)

where the complex integration path C is shown in Fig. 3. The integrand in the above equation has no pole in the
upper right quadrant of the complex plane and decreases exponentially as Im(k~) ~ +oo; thus, one can replace, for
the case of a metallic spacer, the integration path C by C, as shown in Fig. 3. This yields the result

52 +OO 2~r2 e—2~D
Jt —— Im e *"~ dKK(k~ + im)(2k~ + ie) 2, (3.11)

4vr2m 0 1 —2r 2 e—2+De2iky D + (r-2 gr2 'I e —4+De4ikpD
OO OO OO/

valid for both cases, where the re6ection coefBcients are calculated for k& ——k~ +i+, with

kg = /2m(eg —U) for e~ ) U,

kg = i/2m(U —eg) for eg ( U,

respectively. For the energy difference between ferromagnetic and antiferromagnetic configurations, one gets

(3.12a)

(3.12b)

h2 +OO

Ey —EAF = Im dKK(k~+ iK) (2k~+ i')
2Ã fA o

x arctanh
26rA+rBe2iky De —2~D

1 2r2 e 2+De2itey D—+ (r 2 gr2 ) e 4tcDe4iky D— (3.13)

h2k2
Im (gr 2e2'I »)

4x2mD2 (3.14)

Equatians (3.11) and (3.13) allow very efficient numer-
ical calculations of the coupling, because the integrand
is not oscillatory, but exponentially decaying. It clearly
shows that the thickness dependence of the coupling is
driven by the factor e 'k~; thus the coupling oscillates
with spacer thickness in the case of a metallic spacer (k~
real), and decays exponentially with D for an insulat-
ing spacer (ky imaginary). In the limit of large spacer
thickness, and retaining only the leading contribution,
Eq. (3.11) reduces to

netic (ferromagnetic) if (kp( ( k~&k~& ((k~~ ) k~&k&),

where k& (k&) is the Fermi wave vector for majority-spin
(minority-spin) electrons in the ferromagnet. At lower

spacer thicknesses, the coupling may change sign, due to
contributions originating &om states well below e~.

Figures 4 and 5 show the coupling constant J~ calcu-
lated fram Eq. (3.11), respectively, for a metallic spacer
and for an insulating spacer.

Equation (3.14) is equivalent to the results obtained
by Sloncewski and by Erickson et a/. , respectively,
for the insulating spacer case and for the metal spacer
case, by using Sloncewski's torque method.

where the re8ection coeKcients are calculated for k+ =
k~. In the case of an insulating spacer, the sign of
the coupling at large spacer thicknesses is determined
by the argument of Lr2; the coupling is antiferromag-

Thermal variation of the coupling

At finite temperature, after integration over kll,
Eq. (3.4) for Jt becomes
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FIG. 4. Interlayer exchange coupling, at T = 0, for the
free-electron model, in the case of a metallic spacer, calculated
from Eq. (3.11). Parameters: L = +oo, e& = 7.0 eV, A = 1.5
eV, U=O.

FIG. 5. Interlayer exchange coupling, at 7 = 0, for the
free-electron model, in the case of an insulating spacer, cal-

culated from Eq. (3.11). Parameters: L = +oo, s~ = 7.0 eV,
A = 1.5 eV, U —e~ ——0.1 eV.

mk T +-+'"
Im

+,o+

2~p2 2xk~+D

2p2 e2ik~D + (p2 +r2 ) e4ik~D k~T )
(3.i5)

where

(3.i6)

One can check easily that the above equation reduces to Eq. (3.11) for T = 0. For numerical calculations, it is more
efBcient to write

Jg(T) = Jg(0) + 4J,(T), (3.17)

where Jq(0) is given by Eq. (3.11), and where

+oo+ip+

2' 2h, 2 +,.p+ 1 2p2 2aekD~+ (p2 Qr2 ) e4ik~D kgT )
(3.18)

For large spacer thicknesses, the most important contribution to the coupling arises &om the neighborhood. of c~.,
the rapidly varying exponential factor e' "&, in the numerator of Eq. (3.15), may be expanded near e~ as

+ mD
exp (2ik&D) = exp (2ikgD) exp 2i(eg —s'g)

52k~
(3.19)

this yields

+~+op+
X

—oo+io+

2mkgy T 2~p2 ~2iA:y D

2m h» ™
1 —2r e ik~D + (p2 —Qr2 ) e ik~D

mD t Ep —6'g l
de~ exp 2i(e~ —s~) ln 1 + exp! k~T )

(3.20)

The integral converges only if

1

Im(2mD/h2kF) ' (3.2i)

I

ature in the case of an insulating spacer (k~ imaginary).
The integral may then be evaluated by performing the
change of variable

this is satisfied at any temperature in the case of a metal-
lic spacer (k~ real), but only at sufficiently low temper-

f&p —eg l
x = exp !

I kgT )
(3.22)
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and by using the tabulated integral 6

x" ln(1+ x) dx =
p sin(vr p, )

for —1 & Re(p) ( 0; (3.23)

(3.24)

the result is

( ) ( )
27rk~TDm/52k~

sinh(27rk~TDm/h2k~) '

4.0

3.0—

2.0—

I

I
l
I

I
I

I
I

I
y = x/sin(x)

l
/

/
/

/

sinh ix sin x (3.25)

where Jq(0) is given by Eq. (3.14). In spite of the uni-
6ed treatment given here, the temperature dependence
of the coupling is strikingly different for a metallic and
for an insulating spacer: In the former case, the coupling
decreases with temperature, whereas in the latter, it in-
creases. Formally, this is related to the fact that k~ is
imaginary for an insulating spacer, and that

1.0

0.0
0.0 1.0

I

2.0
I

3.0
I

4.0 5.0

is an increasing function, as shown in Fig. 6.
Physically, the different behavior may be understood

from the simple following argument: In the case of a
metallic spacer, the coupling, at T = 0, oscillates with
a wave vector 2k~, as the temperature is raised, k~ is
broadened with a width Akp kgTm/h ky, which pro-
duces a blurring of the coupling oscillations for D ))
Lk& . In the case of an insulating coupling, on the other
hand, the contribution to the coupling arising &om elec-
trons of energy e increases exponentially with e; as the
temperature increases &om zero, the contribution due
electrons in an energy range k~T below c~ is lowered at
the expense of a larger contribution kom electrons within
a range k~T above e~, thus, the coupling increases.

This behavior is in qualitative agreement with the re-
cent experimental observations of Toscano et al. who
found a thermally increasing interlayer exchange coupling
across nonmetallic spacers (amorphous Si and SiO).

Of course, in the case of an insulating spacer, the
coupling does not diverge at T = 5 k~/2k~mD as
Eqs. (3.24) and (3.25) suggest; the point is that, for tem-
peratures of this order and higher, the approximation
(3.19) is no longer applicable.

The formulas given in this section provide a unified
description of the coupling, for both cases of a metallic
and insulating spacer layer, provided k~ is considered as
a complex quantity. This suggests a generalization of the
concept of a Fermi surface to complex wave vectors, as
will be discussed in the following sections.

B. Variation of the coupling
with respect to magnetic layer thickness

I now turn to the case of ferromagnetic layers of 6nite
thickness L. The expressions (3.11) and (3.13) for the
coupling at T = 0 remains valid, but the reQection co-

I

FIG. 6. Plot of the functions y = x/ sinh x (solid line) and
y = x/ sin x (dashed line).

1 —exp[2ik~L]
OO 2

1 —r~ exp [2ik~~L]
(3.26)

where k& is the minority-spin wave vector in the mag-
netic layer. Clearly, the variation of r~ with respect to
L is oscillatory or exponential, according to the nature—
propagative or evanescent —of the state of wave vector
k~&. As appears clearly &om Eq. (3.11), the interlayer
coupling is governed essentially by the states lying at the
Fermi level. Thus, if k+ is real, one can expect oscil-
lations of the interlayer coupling versus magnetic layer
thickness to show up. The oscillations are due to the
quantum interferences inside the magnetic layers: When
the interferences are constructive (destructive), the cou-
pling strength is enhanced (reduced). Below, I consider
only the former case, i.e. , k& real.

In the limit where both I and D are large, the expres-
sion of the coupling reduces to

efBcients for a semi-in6nite magnetic layer Lr and r
are to be replaced by the corresponding ones for a mag-
netic layer of thickness L, Lr, and r, respectively. For
simplicity, I shall restrict myself to the case of a metallic
spacer; more precisely, I take U = 0; thus, the magnetic
layer is transparent for electrons of spin parallel to the
majority spins, i.e. , rt = 0 and r = Ar = r~/2. —

In the case of a layer of 6nite thickness, as depicted
in Fig. 7, all the waves associated with the multiple re-
Bections inside the magnetic layer contribute to the net
reBection coeKcient. The summation is easily carried
out, and one gets

r —2
1 hk2 r" 2 ( k~L)~ Im ) ~ e""~D

4+2D2 2m 2
(3.27)
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FIG. 7. Sketch of the waves contributing to the net refiec-
tion coeKcient on a ferromagnetic layer of 6nite thickness L.
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Clearly, the interlayer exchange coupling oscillates ver-
sus L, with a period equal to vr/k~&. The amplitude of
these oscillations decays essentially as L . To illustrate
this behavior, I have performed numerical calculations for
the free-electron model; these calculations use the exact
expression (3.11), not the asymptotic one (3.27). The
results are displayed in Fig. 8; the oscillatory behavior
versus magnetic layer thickness L, of period n/k&, and
the L 2 decay appear clearly. A striking feature is that,
in contrast to the oscillations of Jq versus D, the oscil-
lations are not necessarily around zero: Instead, Jz may
oscillate around a positive or a negative value, depend-
ing on the choice of the spacer thickness D. This point
is also obvious from Eq. (3.27).

On the other hand, for large D and small L, one has

4X D2 2m

The fact that the coupling varies like L at low magnetic
layer thickness is obvious &om the analogy with optics:
The re8ection coeKcient for a thin layer is proportional
to its thickness.

Until recently, it was generally believed that the cou-
pling is essentially independent of the magnetic layer
thickness. This point has been studied experimentally in
the case of Co/Cu/Co(001) by Qiu et al. ,

ss who found no
dependence of the coupling versus Co thickness; however,
only three diBerent Co thicknesses have been used in this
study. From the theoretical point of view, oscillations of
the coupling versus magnetic layer thickness have been
reported by Barnas Rom numerical calculations for the

FIG. 8. Contour plot of the interlayer exchange coupling Jq
vs spacer thickness D and magnetic layer thickness L, calcu-
lated within the free-electron model [Eqs. {3.11) and {3.26)].
Parameters: ep = 7.0 eV, A = 1.5 eV, U = 0. The spacing
between successive contour lines is 40 x 10 ergcm; the
shaded area corresponds to antiferromagnetic coupling.

&ee-electron model. The explanation of this behavior on
the basis of the quantum interferences picture has been
given in Ref. 36; in this paper, I also estimated the os-
cillation period versus Co thickness in Co/Cu/Co(001)
to be about 3.5 atomic layers (AL). On the other hand,
Stiles, who uses a formalism very close to the present
one, has argued that such oscillations should not show

up.
The predictions of Ref. 36 have been confirmed re-

cently by Bloemen et al. , who succeeded in observ-
ing oscillations of the coupling versus Co thickness in
Co/Cu/Co(001); the observed period is about 3.5 AL,
in very good agreement with the predicted one. Further
confirmation has been given by Okuno and Inomata,
who observed oscillations of interlayer coupling versus
Fe thickness in Fe/Cr(001) multilayers. Theoretical con-
firmation was also given from ab initio calculations by
Krompiewski et al.

C. Biquadratic and higher-order coupling terms

So far, I have considered only the Heisenberg term
Jq cos0 in the expansion (3.2) for E~~(8). The general
expression for J (n ) 1) is given by Eq. (3.4); using the
same method as for Jq, one obtains

h,2 2niAF D +~
Im4' 2m n

2+r2 e —2~D
dK K(k~ + ir) (2k~ + ir)

2@2 e —2~De2iA:y D + (p2 +~2 ) e—4~D 4iA:y D
OO e

(3.29)
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at T = 0 (for simplicity, I have taken semi-infinite xnag-
netic layers). At large spacer thickness, and retaining
only the leading contribution, this expression reduces to

g2k 2 P2ng 2n 2nik~Dq

Sar'mD' 'q n' (3.30)

As appears froxn Eqs. (3.29) and (3.30), the nth coupling
constant varies like e '"~ . This is interpreted easily if
we note that the terms of order n originate &om inter-
ferences between an incident wave and a reQected wave
which have undergone n round trips in the spacer; thus,
these terms involve 2n re8ections on the ferromagnetic
layers, and, accordingly, J is proportional to Ar

Another striking point is that all the coupling con-
stants J have the same D decay. This is in contrast
with the coupling between point impurities: In the latter
case, Jz decays like D and. J2 like D . This is related
to the diferent geometry of the magnetic defects. In the
case of magnetic impurities, the coupling is mediated by
spherical waves; as the amplitude of the latter decays like
the reciprocal of the distance, each round trip contributes
a factor D; thus one has J„~J D &~ «~ ~ D
In the case of magnetic layers, on the other hand, the cou-
pling is mediated by plane waves, which propagate with
a constant amplitude; thus, one has J J~ D

In the same way as for Jz, one shows that the temper-
ature dependence of J is given by

50.0—
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J, )

I I(
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the coupling in realistic systems. Among the features
which are missing in the &ee-electron model of interlayer
coupling, we can mention (i) the discrete nature of the
lattice, giving rise to "aliasing" and multiple periods,
(ii) nonspherical Fermi surfaces, and (iii) multiple bands.
These aspects will be considered in the following sections.

FIG. 9. Spacer thickness dependence of Ji (solid line) and
12 (dashed line) for the free-electron model. Parameters:
L = +oa, e~ ——7.0 eV, A = 1.5 eV, U = 0.

sinh(2n7rkxxTDm/52k' )
' (3.31)

IV. PRELIMINARY CONSIDERATIONS

thus, J has a thermal variation which is n times faster
than Jq. Again this is related to the fact that J is due
to interferences involving n round trips in the spacer.

The interest in higher-order coupling constants has
been stimulated by the experimental discovery, by
Ruhrig et al. , of 90 coupling around the crossing
&om ferromagnetic to antiferromagnetic coupling in
Fe/Cr/Fe(001). This behavior has been confirmed by
other authors in various systems. If J2 & 0, the term
J2 cos 8 favors a 90 alignment of the two magnetic lay-
ers. Thus, Erickson et a/. have suggested that one can
neglect all terms of order larger than 2, and that, for
spacer thicknesses such that Jq —0 and Jq & 0, a 90'
alignment of the magnetic layers should show up. Fig-
ure 9 shows the respective variations of Jq and J2 versus
spacer thickness for the &ee-electron model. However,
the magnitude of biquadratic coupling J2 which arises
&om the intrinsic mechanism is in general too small to
explain the ones that are observed experimentally; thus,
presumably, other mechanisms, such as the one proposed
by Slonczewski (based on xnicromagnetic fiuctuations
of the magnetization direction due to roughness), are re-
sponsible for the large J2 observed experimentally.

To conclude this section devoted to the &ee-electron
model, let us emphasize that, in spite of its great sim-

plicity, this model exhibits a very rich variety of physical
behaviors, allowing a qualitative explanation of many ex-
perimental observations. Of course, the price to pay for
the simplicity is the lack of a quantitative description of

A. Propagative and evanescent states

In a bulk crystal, the allowed states are Bloch waves,

gk (r) = ux, (r)e'"', (4.1)

where uk„(r) is invariant under translation by a lattice
vector K; the Bloch theorem holds for any coxnplex wave
vector, but in bulk crystals, wave vectors k with non-
vanishing imaginary components are excluded, for the
exponential factor then diverges. However, in the case
of a slab of finite thickness, wave vectors with a complex
normal component k~ are no longer forbidden; only the
in-plane component k~~ has to be real. The contribution
of these evanescent states to the density of states of the
slab is inversely proportionnal to its thickness.

Let Hp be the Hamiltonian of the (bulk) spacer mate-
rial. The corresponding Green's function is the operator

Gp(e)—:(e —Hp) (4.2)

where e is a complex energy. We use a fixed basis set
~KI), where K is a site index, and L = (l, m, ) an orbital
index. From these, we construct the Bloch states

ikL)—: ) ik R ~RL) (4.3)

where JV~ -+ +oo is the number of atomic planes and

JV~~
—+ +oo the number of atoms per plane. The Hamil-
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ikn) = ) a„l,(k) ]kL), (4.4)

tonian and, hence, the Green's function are diagonal with
respect to k. let Hp(k) and Gp(k, z) be the correspond-
ing submatrices for a given wave vector k; they both are
invariant under translation by a vector G of the recipro-
cal lattice. The eigenstates are

unit cell, with a k~~ belonging to the two-dimensional first
Brillouin zone of the layers, and Re(k~) running from
—m/d to z/d, where d is the spacing between atomic
planes. ' Examples of these prismatic unit cells are
shown in Refs. 17 and 33. Unless explicitly specified, in
the following, the term Brillouin zone (BZ) will refer to
the prismatic cell.

where n is a band index.
If one selects an energy e and an in-plane wave vector

k~~, the eigenstates are given by the poles of Gp(k~~, k~, s+
iO+), taken as a function of k~, where iO+ is an infinites-
imal imaginary number. As shown in Fig. 10, we may
find two difFerent kinds of poles: (a) poles having an
infinitesimal imaginary part, which correspond to prop-
agative states, and (b) poles having a finite imaginary
part, which correspond to evanescent states. Among the
propagative states, the ones having a positive (negative)
infinitesimal imaginary part have a positive (negative)
group velocity; this is easily checked by expanding ek
around the value k& at which it is equal to e, i.e. ,

~ +
k~(k(~, a+ io+) = k~+

hvar
' (4.5)

thus one sees that the sign of the imaginary part is the
same as the one of the group velocity v~. In the following,
I shall label by an upper + index (a —index) the wave
vectors with a positive (negative) imaginary part, and
the corresponding states will be said to have a positive
(negative) velocity, independently of their propagative or
evanescent character.

One can check easily that, for each state of wave vec-
tor A:&+, one has a counterpart k& of the same character
(propagative or evanescent) with a velocity in the oppo-
site direction, and vice versa.

As usual, it is suKcient to restrict the real part of the
wave vector within a unit cell of the reciprocal lattice;
however, as discussed in Ref. 17, the standard choice of
the first Brillouin zone is not adapted to the symmetry
of the problem. A better choice is to consider a prismatic

B. Concept of a complex Fermi surface

Since evanescent and propagative states contribute a
priori on an equal footing to the interlayer exchange cou-
pling, it seems natural to extend the concept of a Fermi
surface to take evanescent states into account. This is
achieved by letting the normal component k~ of the wave
vector take complex values. Thus, we define the com-
plex fermi surface as the variety st,„=e~, in (k~~, k~)
space, with k~~ real and Ic~ complex. It is important
to note that the complex Fermi surface depends on the
choice of the crystalline orientation of the layers.

In order to visualize this object, we have to use some
conventions. I shall present some cross sections of the
complex Fermi surface, with section planes perpendicu-
lar to the layers. In these cross sections, k~~ will usually
be taken to run along a high-symmetry line of the two-
dimensional Brillouin zone, while Re(k~) runs from —m /d
to n/d. Furthermore, to represent the complex quantity
k~, I use the following convention: If k~ is real, the
cross section is represented by a solid line; if k~ is com-
plex, Re(k~) is represented by a short-dashed line and
Re(k~) + Im(k~) by a long-dashed line. The latter con-
vention has the advantage that all lines merge together
where a real sheet becomes complex, which makes eas-
ier the identification of the various sheets in complicated
complex Fermi surfaces. Also, one has to keep in mind
that the whole figure is periodic as a function of Re(k~),
with a period 2z /d.

In order to illustrate the concept of a complex Fermi
surface, I consider the simple-cubic tight-binding model;
the dispersion is given by

st, =—e'p —t [cos(k a) + cos(k„a)+ cos(k~a)] . (4.6)

(b) evanescent states

-7Tjd
Re(k, )

n'/d

The cross sections of the complex Fermi surface, with

k~~ runing along the high-symmetry lines of the two-

diinensional Brillouin zone (M-I'-X-M), are shown in
Fig. 11, for e~ ——eo. Complex Fermi surfaces of no-
ble metals, calculated using the LMTO method, will be
shown in Sec. VII.

The concept of a complex Fermi surface is one of the
cornerstones of the present theory of interlayer coupling.
As I showed in Ref. 40, its systematic use allows a unified
description of the coupling for the cases of a metallic
spacer and of an insulating spacer.

FIG. 10. Sketch indicating the possible location of the poles
of Gp(k~~, k~, s + iO+), in the complex k~ plane; wave vec-
tars having, respectively, an infinitesimal (a) and a finite (b)
imaginary part, correspond, respectively, to propagative and
to evanescent states.

C. ReQection and. transmission coefBcients

We now consider the system depicted in Fig. 12. Ac-
tually, the perturbation layer E~ may consist of an arbi-
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FIG. 11. Complex Fermi surface, for the simple cubic

(001), tight-binding model, with eR = Ro.

FIG. 12. Sketch of the system under consideration for the
definition of the re6ection and transmission coefBcients; R~p
and R&p are the origins for the outgoing waves of positive and
negative velocity, respectively.

trary stacking of different materials. The only restriction
is that the in-plane translational invariance has to be
conserved; this condition, however, is often very well sat-
is6ed in systems grown epitaxially; as a consequence, k~i
remains a good quantum number.

The Hamiltonian of the system may be written

G(e) = Go(e) + Go(e)T~(e)Go(e), (4 9)

T~(e)—:V~ + V~Go(e)V~ + V~Go(e)V~Go(e)V~ + .
= Vdt [1 —Go(e)V~] (4.10)

in terms of the Green's function of the unperturbed sys-
tem Go(e) and the t matrix of the perturbation,

H = HO+V~, (4 7)

G(e):—(e —H) (4.8)

may be expressed as

where V~ represents the perturbation due to the impurity
layers F~. All deviations with respect to the Hamiltonian
Ho of the pure system are included in the perturbation
V~, this includes in particular potential changes in a few
atomic layers near the interfaces, as well as lattice relax-
ations. The important point is that V~ drops rapidly to
zero outside F~.

The Green's function of the system,

I et us consider a wave k&n) ( k&+n)), incoming on I'~
f'rom z = +oo (z = —oo); the effect of the perturbation
V~ is to scatter it into reflected and transmitted waves.
Here and in the following, the k~~ and spin indices have
been dropped. One shows easily that the perturbed state
kiln) is given by

k~+n) = 1+G()(e„p„+iO+)Tdt(e„~„+iO+) k~~n) .

(4.11)

The infinitesimal imaginary energy i0+ ensures that the
reflected and transmitted waves are outgoing waves. Pro-
jecting this equation on the state (R~L~, and inserting
closure relations, one gets

(R~L k~n) = (R~L k~n) + ) (R( L' T~(e~ d-~0+) k~n) )
kLid f

~

X
2K ~/g

R~~ gal. I

i%~ (R~ —R~)
dk~

8'A, g + 10+ —EI I ~~
a„',~, (k~)a„L,(k~). (4.12)

In the above equation, R& is restricted to I"~ (and a few neighboring atomic planes), because V~ (and hence T~) has
vanishing matrix elements elsewhere. The integral is performed as explained in Appendix A, by closing the integration
path in the upper or lower half of the complex plane, according to the sign of B~ —B&, this picks up poles with
Im(k') ) 0 (( 0) for R~ ) R& (R~ ( R&). One obtains

ik~ R~o ik~ (Rg —R~o)1

JV~
rk~~I, + ~, e +n'L

J

(4.13a)

for R~ ) R&o (R~ ( R&o) and

R~L k+n)' = e'"L "L'0 ) t ~ ~, ,
e'"L' ("L-"LOIa„.l, (P')

k+'n'

(4.13b)
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for R~ ( R&o (R~ ) R&p). The re8ected (transmitted) waves k&'n') ( k&+'n')) have the same energy as the incident
one, and a velocity of opposite sign (same sign). The expressions of the re8ection and transmission coeKcients are,
respectively,

' a+' —a+ a+ +'~&cr„„*.„,= e'~ " ~ ' k+'n, ' T~(r ~ +i0+) k+n)
'U~ J

(4.14a)

+ +„+,, —e ~ ««o b„~„~,b'„„+,k~ n T~(e„+„+iO) k~n
J

(4.14b)

where the ez is the (complex) group velocity of the re-

8ected state k& n').
In the above equations, R&p and R&p are the origins

for the outgoing waves of positive and negative velocity,
respectively. The reBection and transmission coeKcients
are defined within a factor depending on the choice of

B&p and B&p. In this paper, I take the convention of
choosing B&p and B&p as shown in Fig. 12.

One can then define the re6ection matrices R + and
R+ and the transmission matrices T and T++, whose

matrix elements are given by Eqs. (4.14a) and (4.14b),
respectively. We also introduce the diagonal matrices K+

and K, whose diagonal elements are the wave vectors k&+

and A:&, respectively, corresponding to the eigenstates of
the spacer, for a given energy e and a given in-plane wave

vector k~~.

V. GENERAL THEORY
OF INTERLAYER EXCHANGE COUPLING

We now consider a system with two magnetic layers
FA and F~, with their magnetizations making an angle
0 with respect to each other, separated by a paramag-
netic spacer of K atomic layers. The magnetic layers
may be made of different materials, and may have differ-
ent thicknesses. The need, for the perturbation poten-
tials, to drop rapidly to zero in the spacer excludes the
case of a spacer with a long-range magnetic order such
as an antiferromagnet.

A. Derivation of the general expression

The interlayer exchange coupling is obtained &om the
variation, with respect to 8, of the total energy of the
system. If we make use of the "force theorem, " the en-

ergy change associated with the variation of the angle 8
is expressed as the change in the sum of single-particle
energies, calculated for a (non-self-consistent) frozen po-
tential. To ensure conservation of the particle number,
it is convenient to work in the grand-canonical ensemble,
and to consider the thermodynamic grand potential

1
u(e) = ——Im Tr G(a+ iO+) (5.2)

is the density of states. Here,

G(e) = (e —Hp —V~ —V~)
—1 (5.3)

is the Green's function of the whole system. Using alge-
braic manipulations or diagrammatic techniques, it may
be expressed as

G = Gp+Gp TA Gp + Gp Tgy Gp

+Gp T~Gp Tgy Gp + Gp TgGp T~Gp T~Gp +
+Gp T~ Gp Tg Gp + Gp Tg Gp T~Gp Tgy Gp +

Gp+Gp TAGO + GOTBGO

+GoTA (1 —GoTaGoT~) 'GoTa(1+ GoT~) Go

+Gp Tgy (1 —Gp T~Gp T~) Go Tg (1 + Go Tgy) Go.

{5.4)

The physical interpretation of the above equation is im-
mediate, if we remember that Gp represents the propa-
gation in the spacer material, while T~ and T~ describe
the refIections on F~ and F~, respectively. The terms
of the series express the effect, on the density of states,
of multiple reBections of increasing order; thus, there is
complete parallel between the present formalism and the
heuristic picture given in Sec. II.

Equation (5.4) may be rewritten as

G(e) = Gp(e) + AG~(e) + b.G~(e) + AG~~(e), (5.5)

where

&G~(e) —= Gp(e)T~(e)Gp(e) (5.6)

expresses the effect of F~ alone, and similarly for
AG~(e). The last term, AG~gy(e), contains all the terms
of Eq. (5.4) involving both T&(e) and T&(e); this inter-
ference term is responsible for the interaction between
F~ and F~. Thus, the interlayer coupling energy may be
expressed as

+~
4 = —k~7

where

r sz —el
n(e) ln 1 + exp

~
I

Ck, (5.1)(kgT )
x ln 1 + exp

~
cs,(k~T) (5 7)
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with

&ri~~(e) = ——Irn Tr b, G~~(e+ iO ).1 + (5.S)

d
Tr AG~~(e) = —Tr ln [1 —Ge(e)T~(e)Ge(e)T~(e)] .

de
{5.O)

One can then show that

Integrating by parts and performing the summation over

k~I, one obtains, for the interlayer coupling energy per
unit area,

1 +oo
(8) =

s ™d2kll ds f(e) Tr ln Il —Go(e'+iO+)Tz(e+ iO+)Go(e+iO+)T&(e+ i()+)
4+3 (5.10)

f(e) is the Fermi-Dirac distribution, and where the integration on kll is performed over tl e two-dimens'on 1

Brillouin zone. It then remains to integrate over k~ from —vr/d to z./d; this is done, as explained in Appe d A, b
closing the integration path in the upper half of the complex plane. The 6nal result is

+oo+iO+

E~~(8) =
2 Im d kll de f(e) Tr ln 1 —R&+exp(iK+D) U(8) R& U (8) exp( —iK D)

4vr3 —oo+iO+
(5.11)

where the reHection matrices R&+ and R& are of the form

R
—+

0 R+' )
(5.12)

with a similar expression for R&, and where the matrices U(8) and U (8) rotate the spin quantization axis (i.e. ,

the magnetization direction) of I"~ with respect to I"~'.

cos 2 sin 2
U(8)—:

—sin 2 cos
&

Then, the energy difFerence between ferromagnetic and antiferromagnetic contributions reads

(5.13)

1 W I
+oo+io+

E& —EAF —— ) oo' Im . d kll ds f (s) Tr ln 1 —R& exp (iK+D) R&+ exp (iK D)4vr3 —oo+iO+
(5.14)

The general expression (5.11) may be simplified if there is a single pair of wave vectors k& and k&, in this simple
case, the argument of the logarithm is a 2 x 2 matrix, which can be diagonalized easily. One 6nally obtains

E~a(8) = 1 +oo+io+
Im d kll ds f(e') ln 1 —2 (r&+r& + b, r&+Dr& cos8) e'{"&

—oo+iO+

+ (
——+2 ~ —+2) (

—+—2 ~ +—2g 2i{le&—k&)D (5.15)

the above result, in particular, holds for the free-electron model, which justifies Eq. (3.1).
From Eq. (5.9) and proceeding as for the coupling energy, one obtains the change b,N~~(e, kll) in the integrated

density of states at k~~ due to the interferences:

1
bA~~(e, kll) = ——Im Tr ln 1 —R~+ exp(iK+D) U(8) R~ U (8) exp( —iK D) (5.16)

which, for a single pair (k&+, k&) of wave vectors, reduces to

1 ——+-+— —+ +— i k —Ic Dbiz(e, kll) = ——Im ln 1 —2 (rz+rz + br&+br& cos8) e*{"-L
7r

+ (r
——+2 ~r —+2) (r

—+—2 ~r+ —2) 2i(k~+—kI)I)
H (5.17)
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B. Asymptotic results

Although a direct computation of the coupling from
the general expression (5.11) is, in principle, feasible, the
integrations over e and k~I make this a difBcult task. In
the limit of large spacer thicknesses, on the other hand,
these integrations can be performed analytically, which
reduces considerably the amount of numerical calcula-
tions.

Expanding the logarithm in Eq. (5.11), and retainiiig
only the leading term, one obtains for the Heisenberg
coupling constant

kBT &
Im (2D/hv~~)

(5.25)

In the above equations, q~F is a vector spanning the
complex Fermi surface; the velocity v&+ is a combination
of the complex group velocities at the extremities k&F
and k~F.

Next, the integration on kI~ is performed by noting
that, for large spacer thickness D, the only significant
contributions arise from the neighboring of critical vec-
tors k~~ where q~F is stationary. Around such vectors,
q~F may be expanded as

Ji = — Im d ~II
1 2

4vr3

+oo+i O+

oo+iO+
ds f(s) q~F ——q~F— (5.26)

x Tr 2AR~+ exp(iK+D) AR~ exp( —iK D)
(5.18)

with

~R—+ A A
A 2

(5.19)

and similarly for LRB . In terms of the various modes
with positive and negative velocity k& and k&, this gives

where the cross terms have been canceled by a proper
choice of axes; e and e„arecombinations of the cur-
vature radii of the complex Fermi surface at (k~~, kz+ )
and (k~~, k& ). Note that the stationary vectors qT may
be complex as well as real; accordingly, the curvature
radii x~ and K,„maybe complex.

The integral is calculated by using the stationary phase
approximation, and. one obtains

+~+io+
Im d k)(

2

4'~ ch f(s)
—oo+iO+

x ) 2zr„zr~e'~"'-" l~.
A:+~,k~

(5.20)

Ji ——Im Qr Ar e,'q&
4x D2

x F(27rk~TD/hvar), (5.27)

where q&, v&, ArA, LrB correspond to the critical vector
k(), and

8' —8'F
qJ ~ qJ F + 2

hv~+F
' (5.21)

with

2
+ +JF JF JF

(5.22)

The integration is performed as explained in Appendix
8, and one obtains

1 i'+
4+3

d2g J F g ~ 'q. pD
A B

x I" (2vr kg) T D/hv+~~), (5.23)

where

I (x) —= (5.24)

this result holds for

Here and below, the + and —upper indices are omitted.
for the reQection coefficients.

Let us first perform the integration over the energy.
If D is large, the exponential factor varies very rapid. ly
with c, so that the integral is dominated from the neigh-
borhood of s~, where f(s) drops &om 1 to 0. Thus the
integral on e may be calculated by fixing all other factors
to their value at cF, and by developing q~ = k& —k&
around cF, i.e.,

(5.28)

in the above equation, one takes the square root with an
argument between 0 and m.

The result expressed by Eq. (5.27) is the main result
of this section. The expression of the interlayer coupling,
in the limit of large thicknesses, is extremely simple; it
depends essentially on (i) the complex Fermi surface of
the spacer material and (ii) the spin asymmetry of the
reQection coeKcients at the paramagnetic-ferromagnetic
interfaces. The complex Fermi surface determines the
thickness dependence of the coupling (period of the os-
cillations or range of the exponential decay); it also con-
trols the temperature dependence of the coupling (via
vT) and, to some extent, its strength and phase (via vT
and r. ) On the othe. r hand, the re8ection coefficients
ArA and LrB inQuence the magnitude and phase of the
coupling.

A remarkable feature is that, for a given component
the in8uences of EA and FB are factorized; thus,

the strength of the coupling for Fe/Cu/Co, for example,
should be the geometric average of the coupling strengths
for Co/Cu/Co and Fe/Cu/Fe (for a given component n);
similarly, the phase for Fe/Cu/Co should be the average
of the phases for Co/Cu/Co and Fe/Cu/Fe.

The above result has been given in Ref. 34. Sub-
sequently, Stiles presented an alternative derivation,
without making use of the Green's functions. However,



52 THEORY OF INTERLAYER MAGNETIC COUPLING 427

in both Refs. 34 and 33, only the conventional Fermi
surface, i.e., only the oscillatory contributions, were con-
sidered. As emphasized in Ref. 40, the use of the com-
plex Fermi surface allows a unified treament of the cases
of metallic and insulating spacers. A novel feature, for
the metal case, is that we may have both oscillatory and
exponentially decaying components; the latter produce a
(ferromagnetic or antiferromagnetic) bias of coupling os-
cillations, for low spacer thicknesses, which increases with
temperature. Furthermore, as I shall show in Sec. VI, one
can find metallic spacers which exhibit only exponentially
decaying components, i.e. , which behave like insulating
spacers, with respect to interlayer coupling.

has been presented in detail in Sec. III. In the present
section, I consider further models which have been inves-
tigated in the literature: the RKKY model, the single-
band tight-binding model, and the Anderson model.

A. RKKY theory

The RKKY model was originally proposed by Rud-
erman and Kittel to explain the indirect coupling be-
tween nuclear spins via conduction electrons, and then
extended to the case of electronic magnetic moments by
Kasuya and Yosida. In this model, the interaction
between a conduction electron of spin 8 and position r
and a localized. spin S located at site R is described by
a contact exchange potential

G. Symmetry considerations
anci classification of the critical points V(r, s)—:Ah(r —R) s. S. (6.1)

In order to calculate the interlayer exchange coupling
for large spacer thicknesses, one has to identify the crit-
ical po ints kI( in the k(~ plane, for which we have sta-
tionary values g& of the vector q~~ spanning the Fermi
surface. Even for fairly simple complex Fermi surfaces,
such as the ones of noble metals, this is often a difBcult
problem. However, it may be considerably simplified by
making use of symmetry considerations, as discussed be-
low.

The problem we are dealing with consists in finding
the vectors k~~ belonging to the two-dimensional Brillouin
zone, and such that

By using second-order perturbation theory, one obtains
the effective interaction between localized spins,

V;~ = J(R;~) S; . S~. (6.2)

(6.3)

with

x cos x —sin x

For the &ee-electron approximation, the exchange inte-
gral J(R) is given byM

(5.29) cos x
x3 for x M +oo. (6.4)

This requires that the two partial derivatives with respect
to the in-plane components of the wave vector vanish
simultaneously. This is very unlikely to happen for a
general point of the two-dimensional Brillouin zone.

On the other hand, at high-symmetry points of the
Brillouin zone, the symmetry requires that both partial
derivatives vanish, so that such points are necessarily
critical points. Such critical points may be termed e8-

sential and their class will be denoted as C . For points
lying on the high-symmetry line, the symmetry requires
one of the partial derivative to vanish. Critical points
that are found on high-symmetry lines will be termed
semiessential, and their class denoted as O'. Finally,
critical points possessing no particular symmetry will be
termed accidental, and their class denoted. as C". In ad-
dition, an index r or i will indicate whether the vector

q& is real or not, i.e. , whether the coupling is oscillatory
or evanescent. For example, C„indicates an essential
critical point, giving an oscillatory contribution to the
coupling.

Examples of the use of the above classification will be
given in the following sections.

VI. CONNECTION TO VARIOUS MODELS

The general theory presented above may be applied to
various models. Its application to the &ee-electron model

The generalization to the case of arbitrary band structure
has been given by Roth et al.

To apply this mod. el to the problem of interlayer cou-
pling, Yafet has considered two-dimensi. onal layers with
a uniform distribution of spins, of areal density Ns., the
spins within a layer are assumed to be aligned and the
interlayer interaction is investigated. By using second-
order perturbation, Yafet found, for the &ee-electron
approximation, ~5

m+2 S2~2A 2

(6.5)

with

x cos x —sin x
2x2

1 + sin y
dy

2 ~ y
sin x

for x m +oo. (6.6)

Further studies on this model have been done by Chap-
pert and Renard and by Coehoorn, who discussed
the efEect of discrete lattice spacing, while Bruno and
Chappert treated the general case of an arbitrary Fermi
surface.

Here, I consider Yafet's RKKY model from the point
of view of the general theory presented in Sec. V. This



428 P. BRUNO 52

rp
k~+ +iP (6.7a)

2

k+ —'P' (6.7b)

where

approach allows an exact, nonperturbative, treatment of
the RKKY model.

The expression of the interlayer coupling given by
Eqs. (3.1)—(3.4) for the &ee-electron model remains valid

here, with, taking for rA ——rB and rA ——rB, the values

corresponding to a sheet of spins, respectively, r~~ and
rz~. The calculation of the coeKcient of reQection for a
b-function potential barrier is elementary, and one finds

Cf *
VA(B) = &A{B) —O cR R ~CRIIR

(Rll Rz ) MFA. (g)

(6.12)

In the above equations, (d~~d~) is a vector joining nearest
neighbors; c* and c are, respectively, creation and annihi-
lation operators. This model is the tight-binding analog
of the free-electron model with spin-dependent potential
steps. While Edwards et al. took the in-plane hopping
parameter t~~ equal to the interplane, one, t~, I consider
here the slightly more general situation where t~ g t~~.,
this may arise, for instance, from a tetragonal distor-
tion of the lattice, due to epitaxial growth on a substrate
having a different lattice parameter. The Hamiltonian
Hp may be rewritten in terms of the Bloch functions, i.e. ,

sÃs
2h2

(6.8)
*

Hp = g &kll A:~ Ckll A;& ~ckll k~ o &

kll A:~o

(6.i3)

Inserting the corresponding values for Lrp and rp in
Eq. (3.29) in place of Ar and r, one obtains the exact
expression of the coupling constants J, at T = 0, for the
RKKY model. The integral over imaginary wave vectors
in Eq. (3.29) converges very rapidly. In the limit P « k~,
this expression for Jq reduces exactly to Eq. (6.5), the re-
sult obtained by Yafet~5 &om second-order perturbation
theory. In the limit of large spacer thickness, and re-
taining only the leading contribution, one obtains easily
the nonperturbative expression of the coupling constant
of order n, at T = 0,

52k~2 (—1)"2" /' Pky
sin(2nk~D),

(6.9)

which is valid even when P is not small as compared to
kF, i.e., when perturbation theory may not be used.

B. Single-band tight-binding model

H = Hp+ VA + VB) (6.10)

where

Ho —— )
Rll R&cr

C* COCRll R&cr Rll R&c

+
~~ ~ RllR (R +&ll)R

dll

Rll Rg Rll (R~+dg)o
dg

(6.11)

is the Hamiltonian of the pure spacer material, and the
perturbation due to I"~ (I"~) is given by

The single-band tight-binding model has been intro-
duced, for investigating interlayer exchange coupling, by
Edwards et a3. The lattice is a simple-cubic lattice, and
the Hamiltonian is written as

with

e „=so —
2t~~ [cos(k u) + c s(k„)i

—2ti cos(kiQ). (6.14)

For simplicity, I choose

~A =~B =~O~

8'A = E'B = 8'P + L.
(6.15a)

(6.15b)

A B

A B
sin (k& —k&+)d/2

sin (k&+ + k~z+) d/2

(6.16a)

(6.16b)

where k&+ and A;~&+ are, respectively, the perpendicular
wave vectors in the paramagnet and in the minority-spin
band of the ferromagnet, for a given energy e and in-
plane wave vector kI~. The above expression for the re-
fiection is extremely simple; in the limit case where both
wavelengths are large compared to d, it reduces to the
&ee-electron result. Below,

' I shall drop the A and R
indices for the reHection coeKcients.

From the general expression of the coupling, Eq. (5.15),
one obtains

+oo+i 0+
Im d k)) ds f(e)

,.O+

2 (r"/2)'e'~"' —' ~~

1 —2 (r~/2)' e'~ "~—"~~~
(6.i7)

The energy of the electrons in the spacer may be sepa-

For this model, the coupling is given by Eqs. (3.1)—(3.4).
Here, I shall consider the case of semi-infinite magnetic
layers. The refiection coeKcients may be calculated eas-
ily by writing down the Schrodinger equation for the
atoInic planes near the interface. They depend only on
the perpendicular components of the wave vectors, and
one obtains
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rated into a perpendicular and an in-plane component,
e~ and all. Changing the variable e for e~, and integrat-
ing over kll first, one obtains

1 +oo+ip+
Im

G 7l +.p+

2 ( $/2) '(k+ —k )D

1 2 (rg/2) ei(kt —A'L ) D

deg N, q(ep —ei)

(6.18)

where

N.~(e) = f de'n. ~(e') (6.19)

1
n, (e) = 0 (4t~, —le —epl)

2 tll

is the integral of the density of states of the square lattice,
whose expression is

spacer thickness. In order for this efFect to be observ-
able experimentally, Im(qT) should be small. A general
result is that oscillatory components decrease with tem-
perature, whereas evanescent ones increase.

When t~ & tll, the necks of the Fermi surface in the
perpendicular direction occur at a lower value of e~ than
for the 2: and y directions. Figure 13(c) shows the com-
plex Fermi surface for t~/t~~ = 2/3 and e~ = e'p —2t~~.
In this case the critical points at I', X, and M are all
of the kind C,. ; the q& are all imaginary. Thus, one
has only evanescent coupling components: This metallic
spacer behaves, for the interlayer exchange coupling, like
an insulating spacer. This surprising result is merely of
conceptual interest, for such a situation seems unlikely
to happen in a real system.

The strength of the coupling is determined by the value
of r~ at e~, for the various critical points. As one can
see &om Eq. (6.16b), it depends essentially on the band
mismatch between the paramagnet and the minority spin
of the ferromagnet.

xK (6.20)
7i/d

here 8(x) is the Heaviside function, and

m/2

K(x)—:
p Ql —x2 sin

(6.21)

is a complete elliptic integral. si The functions n, ~(e) and
1V,~(e) can be calculated once and for all. These functions
exhibit Van Hove singularities for 8' = 8'p and 6' = Gp+4tll.
At large spacer thickness, the integral over e~ is domi-
nated by the neighboring of the Van Hove singularities.
Actually, for this model, the critical points giving the
coupling at large spacer thickness coincide with the ones
giving the Van Hove singularities of the square lattice
density of states.

In the limit of large thicknesses, the asymptotic ex-
pression of Sec. VB may be used. Thus, the problem
essentially consists in identifying the critical points. Fig-
ure 13 shows the complex Fermi surface for the simple-
cubic tight-binding model for various values of the Fermi
energy and of the ratio t~/t~~. The vectors q& are in-
dicated by the vertical arrows (solid and dashed arrows
correspond, respectively, to real and imaginary vectors
q&); in these representations of the complex Fermi sur-
face, ki is systematically folded into the [—vr/d; vr/d] in-
terval; the complete picture of the complex Fermi surface
is obtained by repeating this with a period 2m'/d. This,
together with the fact that q& is complex, should be kept
in mind when interpreting the length of the arrows in
terms of oscillation periods or decay lengths.

Let us first consider the case t~ ——ill. For e~ ——cp —4tll

[Fig. 13(a)], the critical points at I', X, and M are, re-
spectively, of the kind CP, C,-, and C, , according to the
classification of Sec. VC. For e~ = ep [Fig. 13(b)], the
critical points at I', X, and M are, respectively, of the
kind C, , C„,and C, In both cases, the coupling is
given by the superposition of an oscillatory component
and of two evanescent components. The latter manifest
themselves by producing a bias of the oscillations for low
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FIG. 13. Complex Fermi surface and critical vectors of the
simple cubic tight-binding model; (a) t~ = t((, sy = sp —4t((,
(b) tz = t((, 85' = 801 (c) t&/t(( = 2/3, ep=ep —2t(('.
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C. Anderson model

kII kz kII kz cr kII k L cJ
C* C

kII k~ cr

(6.22)

The Anderson (or sd-mixing) model was originally pro-
posed by Anderson to discuss the magnetic behavior
of isolated impurities in a nonmagnetic host material.
Carolie considered the problem of exchange coupling be-
tween two impurities; using perturbation theory, he ob-
tained the remarkable result that the strength and phase
of the oscillatory coupling are related directly, via Friedel
sum rules, 6 to the magnetic moment and number of elec-
trons, respectively, of the impurities virtual bound states.

The Anderson model has been adapted to the problem
of interlayer coupling by Wang et al. ;

2 they used per-
turbation theory, and focused on the case of interlayer
coupling across Cr spacer layers. In Ref. 25, I have con-
sidered this model from the point of view of Caroli; the
results are analogous to Caroli's, but for virtual bound
states taken locally in the kll plane, at the critical points.
Here, I treat the Anderson model w ithin the nonpertur-
bative theory of Sec. V.

The spacer material is described by a three-
dimensional array of "8 states"; the Hamiltonian is

I'k„(s)—ib, k„(s)= V,q )
k~

+' 'k a
II

(6.25)

+ I'k„(s)—c )
(6.26)

Adapting the Friedel sum rule to the planar geometry
of the system, one shows that the phase shift at Fermi
energy i'll (s~) is related to the displaced charge Nk,
and spin po»rization M"

II
««lly i~ the kll p«~e

(sz) = —(Nk„+o.Mkl, ) . (6.27)

This local character in the k
l l

plane di8'ers &om the
Friedel sum rule in the usual case of an impurity, which
relates the phase shifts to the total screening charge and
spin polarization.

Then, one has to compute the reHection coeKcients
for the Anderson model. This is done by straightforward
use of Eq. (4.14a), taking the sd-hybridization term as
the perturbation, which yields

One defines the phase shift ~ll (s), for an electron of
in pla, ne wave vector k

I I
& nergy e

&
and spin o.

&
a,s

The magnetic layers E~ and E~ consist of two-
dimensional arrays of localized "d states, " embedded in
the host material and located, respectively, at B& and
R&., the Hamiltonian of E~ is expressed as

r =i sin ~, (e'~) exp i~„(s~) e'" (6.28)

Thus the spin asymmetry of the reHection coefBcients at
the Fermi energy is given by

) kll kllB llR o

kII a.

+U ) nkllR&gnkllR
RII

* *
kl! R cr kII R cr kII R klI R

kII cr

{6.2a)

p( N,
,
). ( M,

, ) (6.29)

hvar K~ sin (xM ) e ' -,
~ ~D+&lJg ———Im

4&2D2 4

Inserting this result in the asymptotic expression of the
interlayer exchange coupling, Eq. (5.27), one recovers the
result obtained previously by using Caroli's method,
i.e.,

+ UnHF d
II

(6.24)

where nt and ng are, respectively, the number of d elec-
trons for majority and minority spins, to be determined
self- consistently.

Due to the Sd hybridization the "localized" levels
are broadened into "virtual bound states" with an energy
shift I'kll (s') and a width Akll(s) given by

w here d* and d are, respectively, creation and annihila-
tion operators for d states, and n = d*d is the corre-
sponding occupation number operator. The first term
corresponds to the two-dimensional band energy due to
in-plane hopping; the second one is the on-site repul-
sive Coulomb interaction and the first one the sd mixing.
Treating the Coulomb term within the Hartree-Fock ap-
proximation yields an e8'ective one-electron Hamiltonian,
with ek replaced by the Hartree-Fock energies

II

VII. COMPLEX FERMI SURFACE
OF NOBLE METAL SPACERS

{6.30)

Noble metal spacers have proved to be a model sys-
tem for the investigation of interlayer exchange coupling.
In particular, the predictions of the RKKY theory for
the periods of oscillation versus spacer thickness have
been very well confirmed by the experiment. This is
due to the fact that the Fermi surface of noble metals
is fairly simple and known accurately &om de Haas —van
Alphen experiments In this section, I present the com-
plex Eermi surfaces and the critical (stationary) vectors
of Cu, for the (001), (111),and (110) orientations of the
fcc structure and for the (001) and (110) orientations of
the bcc structure. The cases of Ag and Au are similar to
Cu.

The complex Fermi surfaces have been calculated by
using the tight-binding linear muffin-tin orbitalss (TB-
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FIG. 14. Complex Fermi surface and critical vectors, for
fcc Cu (001).

LMTO) method, which has been adapted to handle com-
plex wave vectors. I have used the bulk potential param-
eters tabulated by Andersen et al.6

Even for the simple case of noble metals, the complex
Fermi surfaces appear very intricate, because the com-
plex sheets are very numerous; however, only the ones
having a small imaginary part play a significant role.
Thus, I have considered only the complex sheets with
a small imaginary part. For representing the complex
Fermi surfaces, I use the conventions given in Sec. IVB.

The complex Fermi surfaces of Cu are shown in
Figs. 14—18, and the corresponding critical vectors are
listed in Tables I—V. The results for Ag and Au are given
in Tables VI—VIII and Tables IX—XI, respectively. In
these tables are indicated, successively, the location of the
critical point in the two-dimensional Brillouin zone, its
kind according to the classification of Sec. V C, the num-
ber of equivalent vectors the period (with taking aliasing
into account) for oscillatory terms, and the decay length
1/Im(q ) for evanescent terms.

Let us first consider the real sheets and the real criti-
cal vectors of the complex Fermi surface: One sees that,
for fcc Cu, there is good agreement between the present

Cu (111)

S k X

7T/d

h:cC (001)

0

-m/d

M

FIG. 17. Complex Fermi surface and critical vectors, for
bcc Cu (001).

FIG. 16. Complex Fermi surface and critical vectors, for
fcc Cu (110).
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FIG. 15. Complex Fermi surface and critical vectors, for
fcc Cu (111).

FIG. 18. Complex Fermi surface and critical vectors, for
bcc Cu (110).
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TABLE I. Critical points for the complex Fermi surface of
fcc (001) Cu.

Location Kind

F
F-X line

Weight

1
4

Period (AL) Decay length (AL)
5.88
2.44

TB-LMTO calculations and the results of de Haas —van
Alphen experiments. ' However, the neck diameter is
slightly smaller than the experimental one; thus the os-
cillation periods which are related to the neck diameter
[i.e. , the fcc (ill) period and the long fcc (110) periodj
are larger than the one given in Ref. 17.

The Fermi surface of bcc Cu may be viewed schemati-
cally as a fcc lattice of spheres, each sphere being linked
to the 12 neighboring spheres by necks. This case has
been considered by Johnson et al. ,

2 who calculated the
Fermi surface of bcc Cu (001) using the augmented
spherical-wave (ASW) method. However, they consid-
ered only the cross section corresponding to the I'-X line
of the two-dimensional Brillouin zone; thus, they were
able to identify only the short oscillation periods located
at I' and on the I'-X line, and they missed the two other
periods, located at M. This illustates the usefulness of
a systematic search of the critical points based on sym-
metry considerations, as exposed in Sec. V C. Johnson
et al.28 have studied experimentally the coupling across
bcc Cu (001) in Fe/Cu/Fe films; they have observed os-
cillations with a period of 2 AL's, which can be ascribed
to the critical vectors located at I' and on the I'-X line.
However, the thickness range they investigated (from 10
to 18 AL) was too narrow to allow the observation of the
long period (= 10 AL), which corresponds to the neck
diameter. The observation of this long-period oscillation
is a challenge to experiment; it would provide experi-
mental evidence of the existence of necks in the Fermi
surface of bcc Cu. The coupling across bcc Cu (110) has
never been investigated experimentally; a priori, in view
of the good lattice matching, one may expect Cu to grow
on bcc Fe (110) with the bcc (110) structure; thus, the
Fe (110)/Cu/Fe system would be a good candidate for
studying interlayer coupling across bcc Cu (110).

I turn now to the complex sheets of the complex Fermi
surface. One notices that the most relevant complex
sheets are "bubblelike" complex pockets nested in the
necks of the Fermi surface which are along the direction
perpendicular to the layers. The size of the correspond-
ing imaginary critical vector is approximately given by
the neck diameter. The coupling contributions associated
with the imaginary critical vectors are nonoscillatory and
have an exponential decay; in contrast to the oscillatory
contributions, they increase with temperature. The ef-
fect of such nonoscillatory terms is to induce a bias of the
coupling for low spacer thicknesses, so that the superim-
posed oscillatory contributions appear nonsymmetrical

TABLE III. Critical points for the complex Fermi surface
of fcc (110) Cu.

Location Kind

F
X
S
S
Y

~0

~0
~0
~0
~0

Weight

1
1
2

2
2
2

Period (AL) Decay length (AL)
2.04

1.36
2.76
2.43

11.32
1.76

with respect to zero. For noble metals, the neck diameter
is such that the decay lengths are very short ( 1.5 AL);
however, it has been demonstrated experimentally that
by alloying Cu with a metal of lower valence, one
observes a change of the periods of oscillatory coupling,
which is successfully interpreted by a reduction of the
Fermi surface and of the neck diameter. Thus, such sys-
tems are expected to have nonoscillatory coupling terms
with a larger decay length (and also a stronger tempera-
ture dependence), and might allow an experimental check
of the theory developed in this paper.

TABLE IV. Critical points for the complex Fermi surface
of bcc (001) Cu.

VIII. CALCULATION OF REFLECTION
AND TRANSMISSION COEFFICIENTS

FOR REALISTIC MULTIBAND SYSTEMS
A General case

The reQection and transmission coeKcients, for per-
turbation layers of moderate thickness, can be calculated
by direct application of Eqs. (4.14a) and (4.14b), respec-
tively. This involves numerical inversion of a matrix of
size (K Ni x N Ni), where K is the number of orbitals
per site and N~ the number of perturbed atomic layers.
However, when the perturbation layers are very thick, or
even semi-in6nite, this approach is not suitable. In this
section, I discuss how to compute the transmission and
reQection coefEcients for a thick or semi-infinite pertur-
bation, in terms of those for thin perturbation layers.

Since the in-plane wave vector and the spin are good
quantum numbers, they do not play any specific role for
this problem, and they will be omitted in this section. Let
us consider the case where the perturbation potential V
can be spatially split in two parts Vq and V2, the origins
for the outgoing waves of positive and negative veloci-
ties are noted, respectively, R&p and R&p, for Vq, and+(i) -(~)

R~p For the total perturbation, we take R&p
= R&p

and R~p = R~p+ +(2)

The Green's function of the whole system may be ex-
pressed in terms of the t matrices Tq and T2, correspond-
ing to V~ and V2, respectively, i.e.,

TABLE II. Critical points for the complex Fermi surface
of fcc (ill) Cu.

Location Kind Weight Period (AL) Decay length (AL)
F C,' 1.62
M |„3 5.88

I'
I'-X line

X
M
M

~0
~l

~0
~0

Location Kind Weight

1
4
4
2
2

Period (AL) Decay length (AL)
2.70
2.33

1.24
2.48

10.32
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TABLE V. Critical points for the complex Fermi surface
of bcc (110) Cu.

TABLE VII. Critical points for the complex Fermi surface
of fcc (ill) Ag.

Location

r
N
B

Kind Weight Period (AL) Decay length (AL)
C, 1 1.56
C„' 5.77C„4 3.10

Location Kind Weight Period (AL) Decay length (AL)
I' C, 1 2.28
M C„3 7.64

G = Go + GQTiGQ + GQTiGQT2GQ + GQT1GQT2GOT1GQ + '

+Go T2Go + Go T2GQ TiGp + Go T2Go TiGo T2Go + ' ' (8 1)

this equation may be rewritten in the following form:

G = Go+ GpTiGQ+ (1+GQTi) (1 —GQT2GpTi) GQT2 (1+GQTi) Go

(1 + Gp Ti) (1 —Go T2Gp Ti) (1 + Gp T2) Gp

Gp + GQT2GQ + (1 + GQT2) (1 —GoTiGoT2) GoTi (1 + GoT2) Go

= (1+GpT2) (1 —GpTiGQT2) (1+GQTi) Go.

(8.2a)

(8.2b)

(8.2c)

(8.2d)

Proceeding as in Sec. IVC, with inserting a closure relation on k& for each factor Gp we obtain, respectively, &om
Eqs. (8.2a), (8.2b), (8.2c), and (8.2d) the expression of the re6ection and transmission matrices R+, T++, R +, andT, i.e.,

T++

R+ + T++ exp iK+ / ( ) / ( )

x 1 —R2 exp iK B&o

x R2 exp iK B&0 —R&0 T~
+- — +(~) -(2)

T++ exp iK+ & ( ) & ( )exp z JO JO

= R2
+ + T2 exp iK B~o —R~o

x 1 —Rz
+ exp i K+ B&o —B&o

R-+ -K+ ~-( ) ~+( ) T++x g exp Jo IO )

= T2 exp iK 8&0 —8&0

Rx
+ exp iK

Rz+ exp iK+

R2 exp

~—(2) ~+(~)

~—(2) ~+(1) T++

~+( ) ~-( )

(8.3a)

(8.3b)

(8.3d)

The physical interpretation of the above expressions in
terms of multiple reHections is obvious.

Let us now consider the case where the layers per-
turbed by Vq and V2 are adjacent; i.e., we take A&0

+(i)

B&0( . Strictly speaking the procedure described above
can be used in such a case only if the perturbation poten-
tials, respectively, Vi and V2 (and hence the t matrices

Ti and T2), do not extend beyond A&0 and A&0, re-
spectively. I shall assume that this condition is, at least
approximately satisfied, so that Eqs. (8.3a)—(8.3d), re-
spectively, take the simpler form

TABLE VIII. Critical points for the complex Fermi surface
of fcc (110) Ag.

Location Kind Weight Period (AL) Decay length (AL)

I' 1 5.63
I'-X line 4 2.30

CO

C„'

TABLE VI. Critical points for the complex Fermi surface
of fcc (001) Ag.

I
I

S
S
Y

CO

CO

CO

CO

C,0

Location Kind. Weight Period (AL) Decay length (AL)
1 2.05
1 1.22
2 2.85
2 2.29
2 15.71
2 2.67
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R+ = Ri+ + Ti++ (1 —R2 Ri+) R2 Ti
T++ = T++ (1 —R,+-R;+)

R + = R2++ T2 (1 —Ri+R2 ) Ri+T2+,

T = T2 (1 —Ri+R2 )

(8.4a)

(8.4b)

(8.4c)

(8.4d)

With the above relations, one can obtain the reBec-
tion and transmission matrices for an arbitrary layer, by
"building it up" from the ones of elementary constituents.
In particular, one can compute the reHection matrix for
a semi-infinite perturbation layer. To this end, one splits
the perturbation into bulk part, in which the potential is
bulklike, and an interface region in which the potential
difFers from its bulk value. More precisely, if we take the
perturbation to be in the B~ & 0 half space, we wish to
compute R +, the reHection matrix of the whole pertur-
bation, in terms of R (&), the reHection matrix for the

bulklike semi-infinite perturbation, and. R(1+) and T(I),
the reHection and transmission matrices for the interface
region. By using Eq. (8.4c), one obtains

R
-+ = R-+ T--

(I) + (I)

x 1 —R-+ R+- R-+ T++
~(&) (~) ~(&) (I) ' (8.5)

while R (&) is calculated by noting that the bulklike
semi-infinite layer remains unchanged after addition (or
removal) of a stack of n bulklike atomic layers, so that it
satisfies

R (H)
—R (B) + T (H)

—1
1 —R (~) R (~) R (~)T (~). (8 6)

TABLE IX. Critical points for the complex Fermi surface
of fcc (001) Au.

Location Kind Weight Period (AL) Decay length (AL)
CO 8.12

I -X line C„' 4 2.37

TABLE XI. Critical points for the complex Fermi surface
of fcc (110) Au.

Location Kind
CO

CO

CO

CO

Co

Weight Period (AL) Decay length (AL)
1 2.01
1 2.25
2
2
2
2

2.38
12.60

1.70

(8.7a)

(8.7b)

Then, I shall derive the reHection coefBcients r for a
semi-infinite perturbation, and finally for an n-atomic-
layer-thick perturbation r

The reHection and transmission coeKcients are given
by Eqs. (4.14a) and (4.14b), with the origins B&o and

B&o chosen as shown in Fig. 12. Introducing the pro-
jection operators Pp and P~, which project, respectively,
on the symmetric and antisymmetric parts, one has

(k~ T k~+) = (k~+ PsTPs k~+) + (k~+ P~TP~ k~+)

(8.8)

cent states in the spacer play a negligible role, and can
be neglected. Thus, in the relations given above, the
reHection and transmission matrices are to be replaced
by simple reHection and transmission coeKcients for the
propagative states. This situation arises, in particular,
in noble metals near Fermi energy.

If, furthermore, the system is symmetric with respect
to a plane parallel to the layers, one can consider sepa-
rately the symmetric (S) and antisymmetric (A) parts of
the wave functions. Below, I shall show that the reBec-
tion and transmission coeKcents for one atomic layer of
perturbation may be expressed in terms of phase shifts
gg and g~, corresponding, respectively, to the symmet-
ric and antisymmetric parts of the wave functions. By
symmetry, these coefficients satisfy (with an appropriate
choice of the relative phase of the states k&) and k&))

B. Re8ection and transmission coefBcients
in terms of phase shifts

for both Go and V are block diagonal in symmetric and
antisymmetric parts. Then, one can show that, for a
suitable choice of the phases of kz) and kz),

Considerable simplifications occur in the case where
there is a single pair of propagative states (one in each
direction) in the host material (but not necessarily in the
perturbation material), all other states being evanescent
with a very short decay length. In this case, the evanes-

(k~ P&VP& k~) = (k~ P&VPs k~)
hv+

sin(gs) e'&',
gd

(k~+ P~VP~ k~) = —(k~+ P~VP~ k~)
A,v+

sin(rl~) e*""
A'gd

(8.9a)

(8.Sb)

TABLE X. Critical points for the complex Fermi surface
of fcc (ill) Au.

Location Kind Weight Period (AL) Decay length (AL)
I' C,. 1 1.56
M C„3 6.35 (8.10a)

and one obtains the expression of the reHection and trans-
mission coeKcents:

~ &gs 2igA, ik~dP] = — C
2

'
A:+a= 7, sin ('l7g —'g ) e ( ~ & )
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(
2igs + 2ig~) ik+~de2'

= cos(g, —g~) e'("+~-+"-") . (8.10b)

when k& is real), and varies exponentially when Ir I

= 1
I

(i.e. , when kz is imaginary), which is the behavior one
expects intuitively.

'CCtr =e (8.11)

with

slI1 ('gs + 77~ + k&d)cosA =
»n (res —rI&)

(s.12)

where one chooses the solution A giving r & 1. If o. is
real, i.e. , ~&»n(rjs+ rt~+ k~+d) ( Isin(rjs —rI&)l one
has Ir I

= 1, i.e. , total reHection; in the opposite situa-
tion, one has partial reffection only (Ir I

( 1).
By using a transfer-matrix formalism, one obtains an

alternative (but equivalent) expression for r

sin kg —k~ 2 + 'g~

n k~+k~ —"+g (s.13)

where

cos (ps+ rt~+ k~+d)

(cos k~ d
cos (gs —q„) (8.14)

and the expression of the reflection coefficient for a per-
turbation containing n atomic layers,

1 —exp 2nik&+ d
~OO

1 —r~ exp 2nik~+ d
(S.15a)

The phase shifts gg and g~ are the one-dimensional coun-
terparts of the partial-wave phase shifts in the theory of
scattering by a central potential. The expression of the
reffection coefficient for the Anderson model IEq. (6.28)j
is a particular case of the above result, with g~ ——0.

Let us now turn to the calculation of r . By using
Eq. (8.6) with n = 1, one shows easily that

IX. DISCUSSION OF A REALISTIC CASE:
Co/Cu/Co(001)

5.0
(001)

The system Co/Cu/Co(001) has served as a model sys-
tem for investigations of interlayer exchange coupling,
both experimental and theoretical. This is motivated by
(i) the good lattice matching between Cu and fcc Co,
(ii) the strong ferromagnetism of Co, and (iii) the fact
that Cu has a fairly simple Ferxni surface. Furthermore,
experiments of spin-polarized photoemission in Cu over-
layers on fcc Co(001) have revealed the presence of (spin-
dependent) oscillations in the density of states, which can
be interpreted in terms of quantum interferences in the
Cu overlayer as discussed in Sec. II.

In the present section, I shall illustrate the approach
introduced in Sec. VIII by calculating the reflection co-
efficient for the Cu/Co(001) interface, for the center I' of
the two-dimensional Brillouin zone.

The calculations have been performed by using the TB-
LMTO method. 5 The signer-Seitz radius of bulk Cu
(res = 2.669 a.u. ) has been taken for both materials,
and possible tetragonal distortions have been neglected.
For the potential parameters, the values calculated self-
consistently for bulk materials at r~s —— 2.669 a.u.
(Ref. 67) have been used. The potential change at the
interface is taken into account simply by lining up the
Fermi levels of the two materials, and neglecting changes
in potential parameters for the layers close to the in-
terface; in view of the short screening length for charge
transfers, this simple approximation is expected to yield
reasonable results.

Figure 19 shows the band dispersion versus k~ of Cu
(a), and of majority- (b) and minority- (c) spin fcc Co,

or, equivalently,

sin nk~

sin nk& d+ A
(s.15b)

e —eF (eV)

0.0—

(a) Cu (b) fccCo
majority spin

(c) fcc Co
minority spin

Clearly, kz+ should be interpreted as the effective tvave
vector for propagation through the perturbation mate-
rial. It is remarkable that, even if many propagative or
evanescent states are present in the perturbation material
for the energy and in-plane wave vector under considera-
tion, the expression of the reflection coefficient takes the
same form as if there were a single pair of allowed states
in the perturbation material.

According to whether k& is real or imaginary, one has
partial or total reHection, respectively, for a semi-infinite
perturbation. The dependence of the reflection coeffi-
cient with respect to the number n of atomic layers in
the perturbation takes the same form as for the free-
electron model; r oscillates with n when Ir I

( 1 (i.e. ,

-5.0—

-10.0
n'/d 0 7r/d 0 vr/d

FIG. 19. Hand dispersion vs k~ of Cu (a), and majority-
(b) and minority- (c) spin fcc Co, for the center I' of the (001)
two-dimensional Brillouin zone. The bold lines correspond to
states of A~ symmetry.
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for the center I' of the (001) two-dimensional Brillouin
zone. The phases shifts gp and g~, for majority and
minority spin, versus energy are presented in Fig. 20.
Figures 21 and 22 present the re8ection coefficients (in
module), respectively, for one atomic layer of Co and for
a semi-in6nite Co layer.

As appears &om Figs. 21 and 22, the reQection coef-
6cient for majority-spin electrons is very small. This is
because the majority-spin band structure of fcc Co, in
the neighborhood of the Fermi level, is very similar to
the Cu one, as seen in Fig. 19.

On the other hand, much stronger reQection coeK-
cients are obtained for minority-spin electrons. Further-
more, the reHection coefficient for minority spin increases
strongly with decreasing energy below the Fermi level;
in particular, for s —sg & —0.55 eV, one has Ir"

I

= 1;
i.e. , total reQection is achieved for minority-spin electrons

1.0

0.5—

0.0
-1.0

I I I I
I

I I I I

-0.5 0.0
(eV)

0.5
I I I

I
I I I I

1.0

1.0 FIG. 21. Module of the reQection coefBcient for one atomic
layer of Co(001) embedded in Cu, IrqI, calculated at I' vs
energy.

Qs(A) l +

0.0
-1.0

(a) majority spin

I I I I
I

I I I I

-0.5 0.0
c —a„(eV)

I I I I
I

I I I I

0,5 1.0

'g. ) e occurrence of the total reflection coi-
cides with the opening of a gap in the fcc Co minority-
spin subband of Ei symmetry, as seen in Fig. 19(c).
This is because the only states contributing to the re-
Qection are those having the same symmetry as the inci-
dent wave in Cu (i.e., b, q). The d state responsible for
the opening of the gap, and hence for the occurrence of
total confinement, is the 3d3 2 & state; it is symmetric
with respect to the x-y plane, and this is reQected by
the fact that the phase shift gg varies strongly with de-
creasing energy, whereas g~ remains almost unchanged.
In other words, one may say that the maximum of Iri I

at c —e~ —0.75 eV is due to a virtual bound state

1.0
1+0 wwww~. r

Cu / Co (001)

0.5— 0.5—

Cu / Co (001)

r

(b) minority spin

0.0
-1.0

I I I I
I

I I I I I I I I
I

I I I I

0.0 0.5 1.0

0.0
-0.5

I I I I I I I
I

I I I I

0.0 0.5 1.0
e —eF (eV) e —e„(eV)

FIG. 20. Phase shifts rIs (circles) and rI~ (triangles) vs en-
ergy at P, for the Cu/Co(001) system: (a) majority spin, (b)
minority spin.

FIG. 22. Module of the re6ection coefBcient at the
Cu/Co(001) interface with semi infinite Co,-~r~I, calculated
at I' vs energy.
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AP PENDIX 8: INTEGRATION
OVER THE ENERGY

I consider here the calculation of the integral

+oo+iO+
I = Im de f(e) A(e)e's~

—oo+iO+

Re(kq)
vrtd

FIG. 24. Integration paths in the complex k~ plane for
computing Eq. (A2); the integration is performed along the
contour C (C') if R~ ) R~ (Rz ( R~).

e F +iO+

Io ——Im Ck A(e) e'~~
—oo+iO+

(82)

The integration path may be changed for a complex path
which joins e~ at an angle P such that

For large D, the exponential factor varies very rapidly
with e; thus, the most important contribution arises &om
the neighborhood of e~, where the Fermi-Dirac distribu-
tion f (e) drops rapidly &om 1 to 0. The scattering vector
q~ is expanded around e~ [Eqs. (5.21) and (5.22)j.

Let us first calculate the integral at T = 0,

The poles always occur in pairs, one of them being
located in the upper half-plane, the other in the lower
half-plane, as sketched in Fig. 24. The ones having an
infinitesimal imaginary part correspond to propagative
states, while those lying ofF the real axis correspond to
evanescent states. Using the theorem of residues, it is
then a simple matter to show that

Arg (v~+~) + —.
2

Io = —I
ihv+ A(sg)e'~~F+

2D

For large D, this yields

(83)

(84)

(A2)
Then, I —Io can be calculated by using tabulated
integrals, 74 and one obtains

1 (&A~

A, dA~' (A3)

note that for a complex wave vector, this velocity is gen-
erally complex.

where the sign + (—) is for R~ ) R& (Rg ( R&), the
wave vectors k& are such that e&~ ——e + i0+, and where

v~ is the group velocity,

for

i hv+ A(e p) e'~iF D

2D

27rk~T D/hv~+~

sinh (27rk~T D/hv~~)

1
k~T (

Im(2D/hv ~+~)

(85)
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