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Monte Carlo studies of the temperature-dependent size of polyelectrolyte chains
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We have performed off-lattice Monte Carlo simulations of isolated, short (X=40), fully ionized po-
lyelectrolytes in the presence of a low molecular mass, monovalent salt in the concentration range
0.0~ C ~ 1.0 mol dm . The polyelectrolyte is modeled as a freely jointed chain of X hard spherical

0
beads of radius a =2.0 A. The mean-square end-to-end distance and the radius of gyration have been
calculated as functions of the Bjerrum length A, where A=e /coo, „kT. 1/A is thus proportional to the
temperature. The results show an interesting temperature dependence; at high temperatures the polyion
size decreases with increasing temperature, which is to be expected from simple considerations of the en-
ergy/entropy balance. On lowering the temperature, however, we have found that the polyion reaches a
maximum size at a certain temperature, which depends on the salt concentration. Further cooling then
results in a contraction of the chain. For low salt concentrations, the maximum size represents a rodlike
configuration, and the polymer shows a coil-to-rod-to-coil transition as the temperature is increased. We
suggest that this behavior is due to the increased screening at low temperatures. The Debye-Hiickel ap-
proximation does not take into account the fact that for A/2a ) 1 Manning condensation will reduce the
effective charge of the chain. We have therefore also incorporated this phenomenon into the model in an
ad hoc fashion by reducing the charge of each band according to the Manning fraction.

I. INTRODUCTION

A fascinating and early recognized aspect of polymer
science in general is the high degree to which universal
features of polymeric materials can be understood in
terms of the large scale structure of the single polymer,
without referring to the detailed properties of the partic-
ular repeat unit building up the polymer. This property,
which applies also to polymers with ionic groups, allows
for the use of simple models in both simulations and
analytical work. In later years, Monte Carlo simulations
have been widely used to study the conformational prop-
erties of polyelectrolytes. It is however only recently that
the temperature dependence has attracted attention. '

In a recent paper we have studied the temperature depen-
dence of a simplified model in the presence of counterions
and no added salt. The Coulomb interaction was fully
taken into account. In this work, we perform Monte
Carlo simulations of the temperature-dependent confor-
mation of fully ionized macromolecules with added salt
in the Debye-Hiickel approximation.

II. MODEL AND SIMULATION TECHNIQUE

As was pointed out in the introduction, we are primari-
ly interested in the gross structure of the polyion, which
is largely independent of the details of the properties of
its constituents. We have thus chosen to disregard such
features as fixed carbon-carbon bond angles and hindered
rotation potentials and adopted a minimal model. " The
polyelectrolyte is modeled as an ordered sequence of
X =40 spheres (or beads) of radius a =2.0 A, distributed
in space under the constraint that the distance between
two spheres is greater than or equal to the diameter of
the spheres. For two consecutive beads, the distance is
equal to the diameter. The beads, which represent the re-
peat units of the polymer, interact repulsively via a

Debye-Huckel potential
2

Qij exp[ tt(r;J —a) ],— (&)
sos„r,"(I+tea)

where e, co, c.„, and r;. are the fundamental charge, the
vacuum permittivity, the dielectric constant of the sol-
vent, and the distance between beads i and j, respectively.
x is the Debye-Hiickel screening parameter

See C
K

coo k (2)

and C, k, and T are the concentration of simple salt,
Boltzmann constant, and absolute temperature, respec-
tively. This corresponds to a chain of N beads of equal
charge e immersed in a continuous solvent represented, in
the simplest possible way, through its dielectric constant
e„. The interaction described by Eq. (1) represents the
mean-field treatment of the screening due to the presence
of mobile monovalent salt ions developed by Debye and
Hiickel.

The system is taken to be a polyion at infinite dilution,
which is apparent from Eq. (2), the counterions do not
contribute to the screening but are assumed to be diluted
away in this expression. The choice of a Debye-Hiickel
form of the mean-field potential neglects the attraction of
counterions towards the polyion. This well-known
phenomenon of counterion condensation ' thus has to
be taken into account separately.

A discussion of Manning condensation is easiest to per-
form in terms of the so-called Bjerrum length A:

2
A=

47Tcpc„kT

A can be interpreted as the distance between two elemen-
tary charges for which the potential energy equals the
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thermal energy kT. For water at room temperature,
c.„=78.5 and A=7. 14 A. Manning introduced the di-
mensionless charge density parameter g given by

(4)

where b is the average contour distance between unit
charges on the polymer, and showed that for an infinite,
cylindrical charge distribution, there exists a critical
value of g,

configurations were generated. The first 250 000
configurations at each temperature were disregarded as
atypical and averages were collected from the remaining
1 000 000 configurations.

Program verification was carried out by changing the
bondlength to 2.52 A and fixing the bond angle to
0=109.5 and comparing the results obtained for various
salt concentrations with those obtained for the free rota-
tion model by Carnie, Christos, and Creamer' at room
temperature. Our results were in all cases within the lim-
its of error stated.

such that for values of charge density, dielectric constant
or temperature leading to

counterions will condense on the polyion and reduce the
effective charge-density parameter g' to

We have chosen to incorporate Manning condensation
into our model in the simplest possible ad hoc fashion.
For values of A such that g ) 1 we have reduced the
effective charge of each bead with the condensed fraction

prescribed by Manning theory. The interaction given by
Eq. (1) between the beads is then reduced to an effective
interaction

u;J. = exp[ ~(r, —a)], g~—1 . . (1')(e/g)'
EOE„r,~ 1+Isa

0
For A & 4.0 A, we present the results of simulations with
and without Manning condensation taken into account.

The Monte Carlo simulations have been performed in
the canonical ensemble according to the importance sam-
pling method developed by Metropolis et al. " A new
configuration is generated from the previous and the en-

ergy difference is calculated. If the new configuration is a
state of lower energy, the change is accepted and the
values of the quantities of interest in the new
configuration are included in the averages. If the new
configuration is one of higher energy, the new state is ac-
cepted with probability P =exp( AE/kT), ave—rages are
collected and the process repeated.

In this work we have adopted a common algorithm for
obtaining a new configuration from the previous one. In
this algorithm, one end of the chain is selected, at ran-
dom, to be the head, and the other end to be the tail. The
outermost bead at the tail is then removed and a new
bead is attached to the head in a random direction but
satisfying the requirements of bondlength and nonover-
lapping beads.

For each value of C, simulations were performed for a
series of values of A, starting with the lowest
(A=0.0001) corresponding to the highest temperature.
This initial configuration was chosen at random, but for
the subsequent values of A, the initial configuration was
chosen to be the last one of the preceding temperature.
For each temperature (or value of A), 1 250 000

R„ is the position vector of the nth bead and RcM is the
position of the center of mass of the polymer.

Figure 1 is a plot of the mean-square radius of gyration
(S ) versus 1/A for various concentrations of added
salt. The filled symbols show that in the DH model, the
size of the polymer increases as the temperature is de-
creased, until it reaches a maximum. For all but the un-
screened case, (C =0.00 M) the polymer then shrinks
again and regains its high-temperature value.
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(A ) versus 1/A (A ) for various salt concentrations. Open
(filled) symbols represent simulations with (without) Manning
condensation explicitly taken into account.

III. RESULTS AND ANALYSIS

We have performed calculations for four di6'erent salt
concentrations C =0.00, 0.01, 0.10, and 1.00 M. In the
following, the model with (without) Manning condensa-
tion taken into account will be referred to as DHM
[bead-bead interaction is give by Eq. (1')] and DH,
[bead-bead interaction is given by Eq. (1)], respectively.
In all figures, the DH model is represented by filled sym-
bols and the DHM model by open symbols. It should be
clear from the analysis of the previous section that the
two models coincide for A ~ 4 A. We have calculated the
mean-square end-to-end distance (R ) of the polymer
and the mean-square radius of gyration (S ) where

(R ) =((RI RN) )—
and

N
&S'&=—y &(R„—R,„)'& .
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For low values of salt concentration, the maximum size
configuration represents the almost fully stretched poly-
mer and is followed by an abrupt collapse on cooling.
For higher salt concentrations, the behavior is not quite
as dramatic and the maximum occurs at higher tempera-
tures. The open symbols show the results for the DHM
model. We find that the thermal maximum now occurs
at the critical temperature A=2a independent of salt
concentration and the configurations are also far from the
fully extended conformation for all temperatures and salt
concentrations.

These results are further accentuated by Fig. 2. Figure
2 shows the ratio (S )/(R ) as a function of 1/A. It is
well known that for ideal chains, the coil configuration
corresponds to the ratio (S )/(R ) =1/6. ' For nonin-
teracting chains of hard spheres, (S )/(R ) should be
slightly larger. It can also be shown that the rodlike con-
formation is represented by (S )/(R ) =1/12. Figure
2 thus shows that in the DH model, the unscreened chain
undergoes a coil-to-rod transition as the temperature is
lowered. For C =0.01 M we find a similar behavior until
we reach very low temperatures when the polymer sud-
denly collapses. At all higher salt concentrations howev-
er, the quota (S )/(R ) has a minimum far from the
rod limit. For the DHM model, Fig. 2 shows that the
chains are far from the rod shape at all values of C and A.
The arrow at the right-hand side of Fig. 2 indicates the
high-temperature limit of (S ) /(R ). It is thus ob-
served that the results at high and low temperatures coin-
cide.

Figure 3 shows an interesting plot of the ln((R ))
versus ln(1/A). The straight line portions of the curves
can be analyzed in terms of scaling arguments showing
that, in the DHM model, the slope on the low-
temperature side of A=4. 0 A should equal the negative
of the slope on the high-temperature side for the case of
naked Coulomb interaction. This can best be understood
by the following argument. Neglecting the contribution
to the excluded volume due to the fact that the beads are
not allowed to overlap, the free energy of the polymer
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consists of the Coulomb energy part and the entropy
part. Assuming that the energy E,j can be written as a
function of R and the square of the total charge Q we
have

F =Ed(Q, R) —TS(R), E,i(Q, R) =Q f (R),
where S(R) is the entropy. The thermodynamical aver-
age of the end-to-end distance should be such that the
free energy is a minimum, which leads to a condition
g(R)=Q /T, where g(R) is some function depending on
the exact from off (R) and S(R):

BS "df

aR

Since, below the critical temperature, Q is proportional to
T, we obtain

2

, A(2.
T '

g (T), A) 2a.

FIG. 3. A plot of ln((R ) ) versus 1/A (A ) for various salt
concentrations. Open (filled) symbols represent simulations
with (without) Manning condensation explicitly taken into ac-
count.
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Flax. 2. A plot of the quota (S )/(R ) versus 1/A (A )

for various salt concentrations. Open (filled) symbols represent
simulations with (without) Manning condensation explicitly tak-
en into account. The arrow on the right-hand side indicates the
high-temperature limit of (S )/(R ).

While it is certainly nontrivial to calculate the exact form
of g(R), we thus see that if g(R) ~R in the vicinity of
the critical value of A, we expect a linear dependence of
the type shown in Fig. 3. In particular, it follows that the
slope for A & 2a should equal the negative of the slope for
A &2a as is observed.

Finally, it is important to discuss the validity of the
Debye-Hiickel approximation, especially at low tempera-
tures. Actually, in the DH model, for all salt concentra-
tions below 1.0 M, the maximum size of the polymer
occurs at a temperature such that u; /kT »1 at the dis-
tance of closest approach. There is therefore no a priori
reason to believe that the Debye-Hiickel approximation is
useful in these cases. It is instead reasonable to believe
that the Debye-Hiickel approximation actually underesti-
mates the screening in this regime. ' Remarkably, how-
ever, it has been shown' that the Debye-Huckel treat-
ment works for all values of g'~ 1 in the case of a
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cylinder-shaped polymer. The assumption underlying
this work is that this result also holds for more general
conformations. Then, if the temperature is lowered until
g) 1, condensed counterions will reduce the erat'ective

value of g to g' = 1, and the uncondensed charges may
still be treated in the Debye-Hiickel approximation, ' as
is done in the DHM model of this work.

IV. SUMMARY

For the unscreened polyelectrolyte chain without Man-
ning condensation, we find a coil-to-rod transition when
the temperature is lowered, in accordance with the re-
sults of Brender. Our investigation indicates that in-
clusion of a small amount of salt (C &0.01 M) does not
alter this behavior, except at very low temperatures when
increased screening starts to dominate and the polymer
retains a coil-like shape. It is then legitimate to talk
about a coil-to-rod-to-coil transition. For higher concen-
trations of added salt (0.01 M & C & 1.00 M) we find that
the screening efectively prevents the coil-to-rod transi-

tion, and we only observe a smooth variation of the size
of the polymer with temperature. The maximum size is
lowered with increasing salt concentration and shifted to
higher temperatures. Further reducing the interaction by
Manning condensation leads to a prevention of the coil-
to-rod transition even for the naked Coulomb chain. The
relation between the behavior in the DH and DHM mod-
els shown in Fig. 3 turned out to be a simple consequence
of the way the total charge Q scales with temperature if
Manning condensation is taken into account.
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