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Electric-fieM-gradient calculations on cadmium in cadmium-helium vacancy clusters in tungsten
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Electric-Geld gradients (EFG) at the position of the cadmium atom in low-symmetry CdV„He clus-
ters in tungsten were calculated with the augmented spherical wave method. The results agreed within
70% with experimental values. It is observed that lattice relaxation has a large effect on both the quad-
rupole frequency coo and the asymmetry parameter g. The value of g for the unrelaxed clusters CdV2
and CdV3He2 are not equal to 1.0, as predicted by the point charge model. The cluster CdV2He2 has a
temperature-dependent EFG with a transition temperature of about 100 K. The same holds for
CdV3He4, but in this case there are two transitions, at abut 170 and 250 K, respectively.

I. INTRODUCTION

Perturbed angular correlation (PAC) measurements of
the electric-field gradient (EFG) at probe atoms in ma-
terials can be of great help to identify the immediate sur-
rounding of these atoms. The results of such measure-
ments are often compared with those obtained with tech-
niques such as thermal helium desorption spectroscopy,
channelling, extended x-ray-absorption fine structure,
low-energy ion scattering, and a number of other tech-
niques which are sensitive to the configuration of small
defects. Theoretical predictions of the EFG are needed
in order to give a reliable and unambiguous interpreta-
tion of the experimental data. Several more or less suc-
cessful attempts have been made to calculate the EFG us-
ing either the point charge model, ab initio band-
structure calculations, ' ' or cluster calculations. These
EFG calculations were most times (except for cluster cal-
culations ) only performed for compounds or highly
symmetrical surrounding of the probe atom.

In this paper the results of EFG calculations that were
performed using the augmented spherical wave (ASW)
method are presented. The calculations are restricted to
a number of low-symmetry cadmium-vacancy and
cadmium-vacancy-helium clusters in tungsten which we
recently have investigated by means of PAC. One should
keep in mind that vacancies and helium atoms were
trapped at the radioactive atom "'In which decays to
"'Cd. The lattice around '"Cd will relax within a time
of the order of 100 fs, while a typical PAC spectrum
spans a time interval of the order of 100 ns. Therefore,
we have used the atom positions calculated with the atom
embedding method of Finnis and Sinclair. '

The paper is organized as follows. In Sec. II we give a
few expressions that describe the EFG and its relation
with the measured PAC frequencies. More information
about this subject can be found in the review article writ-
ten by Kaufman and Vianden. " The conversion from
frequency to EFG suffers from the uncertainty in the nu-

clear quadrupole moment of the 5/2+ state of "'Cd, as
explained in Sec. III. In Sec. IV we brie6y outline the
procedure of how to calculate the EFG using the ASW
method. In Sec. V we present the results of molecular
statics and molecular dynamics simulations that were
performed to study the atom positions and their Quctua-
tions. Calculated EFG values are presented in Sec. VI.
The discussion is held in Sec. VII, and we conclude this
chapter with some remarks in Sec. VIII.

II. THE ELECTRIC-FIELD GRADIENT

for a, b =x,y, z. It is a symmetric second rank tensor, the
trace of which is zero because of Laplace's equation,
7 4=0, and it can be diagonalized by a rotatiou of the
coordinate system towards the principal axes system
(PAS). Conventionally, the PAS is chosen in such a way
that

~ V„„[( ~ Vsy~
~

~ V„~. The EFG tensor is then com-
pletely determined by its principal component V„, the
asymmetry parameter

V
(2)

and the three Euler angles that describe the orientation of
the PAS. We note that V„=O in a cubic environment,
and that a threefold symmetry axis gives rise to q =0, i.e.,
Vzz Vyy In this case V~ = —2 V~„because of Lap

lace�

's
equation.

The quadrupole frequency coo, measured in a perturbed
angular correlation experiment, is related to the values of
V„and q at the position of the probe atom:

277n Vg

4I (2I —1 )

The electric-field gradient is defined as the second par-
tial derivative of the electrostatic potential 4?:

t) 4
V.b—
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coo=1.9(3)X10 V fs&2(g) Mrads

with V in Vm

(5)

IIL THE NUCLEAR QUADRUPOLE MOMENT
OF THE 5/2+ STATE OF "'Cd

The values reported for the nuclear quadrupole mo-
ment of '"Cd(5/2+) vary from 0.44 to 1.5 b (see Table I).
In the following we will discuss the reliability of the
difFerent values.

The frequency v is defined as

eQV
Vg =

h
(4)

where Q is the nuclear quadrupole moment, I is the nu-
clear spin, and e is the unit of charge. In Eq. (3) n =3 if I
is an integer, and n =6 if I is a half-integer. The function
fz(g) depends on the value of I, but cannot be described
by a simple analytical expression. ' In our experiments
we have used the probe "'Cd, which has a nuclear spin of
I=5/2+ and a quadrupole moment of 0.83(13) b (see
next section). In that case Eq. (3) becomes

The first two quadrupole moments listed in Table I
were derived by scaling the measured quadrupole fre-
quencies according to the Sternheimer antishielding fac-
tors for Cd + and In +. It was implicitly assumed that
the two probe atoms had the same electronic structure,
and that the local lattice structure was not influenced by
the impurity atom. Both assumptions are probably in-
correct. Moreover, the point charge model, implicitly
used, is inappropriate to describe the electric-field gra-
dient in noncubic metals. ' Therefore, we conclude
that these values of the nuclear quadrupole moment are
unreliable. The quadrupole frequency reported by
Rosenblum and Steyert' is unreliable because their ex-
periment sufFered from faults in the thermometry.

The next three quadrupole moments are based on the
known nuclear quadrupole moments of the 5/2+ state in

Cd (Ref. 20) and the 11/2 states in "'" "5Cd (Ref.
19). All these reference values have been derived using
experimental and theoretical data from Lurio. The er-
rors in the three values of Q('"Cd, 5/2+) are, therefore
strongly correlated.

The last quadrupole moment quoted in Table I was de-
rived using a theoretical value of the EFG for Cd in cad-

Q (b)

0.44(7)

TABLE I. Reported values of Q("'Cd, 5/2+).

Used data

Measured v& for '"Cd(5/2+) in indium and for" In(9/2+) in indium, as functions of T
y„(Cd +) and y„(In +)
Q('"In, 9/2+) =0.834 b

Reference

Bodenstedt et al. (Ref. 13)

Feiock and Johnson (Ref. 14)
quoted by Feiock and Johnson (Ref. 14)

0.77(12) Measured v& for "In(3/2+) and "'Cd(5/2+) in several
compounds and metals
y„(Cd +) and y„(In +)
Q('"In, 3/2+) =0.64(4) b

Raghaven et al. (Ref. 15)

Feiock and Johnson (Ref. 14)
Raghavan and Raghavan (Ref. 16)

1.5(4) Measured v&= —50(14) MHz for '"Cd(11/2 ) in
cadmium
Measured v&=138(2) MHz for "'Cd(5/2+) in cadmium
Q(" Cd, 11/2 )=0.54(5) b

Rosenblum and Steyert (Ref. 17)

Raghaven et al. (Ref. 18)
Geelhoed and McDermott (Ref. 19)

0.74(10) Measured v&=109.3(18) MHz for "'Cd(5/2+) in
cadmium and v&=136.6(10) MHz for ' Cd(11/2 ) in
cadmium
Q(' Cd, ll/2 )=—0.92 b extrapolated from the values of
Q("'" ""Cd,ll/2 )

Sprouse et al. (Ref. 20)

Laulainen and McDermott (Ref. 21)

0.83(13) Measured v& = —139(15) MHz of ' "Cd(11/2 ) in zinc
Measured v&=136.5(1.4) MHz for '"Cd(5/2+) in zinc
Q("'Cd, l 1/2 )= —0.85(9) b

Herzog et al. (Ref. 22)
Raghaven et al. (Ref. 18)
Laulainen and McDermott (Ref. 21)

0.80(10) Measured v=102(12) MHz of "Cd(11/2 ) in cadmium
and v&=110(4) MHz for ' Cd(5/2+) in cadmium
Measured v&=136.02(41) MHz for "'Cd(5/2+) in
cadmium
Q(" Cd, ll/2 )=0.54(5) b
Q(' Cd, 5/2+) =0.69(7) b

Ernst et al. (Ref. 23)

Christiansen et al. (Ref. 24)

Geelhoed and McDermott (Ref. 19)
Laulainen and McDermott (Ref. 21)

0.74 V =7.62X10 ' Vm for Cd in cadmium
Measured v~ =136.02(41) MHz for. )1iCd(5/2+) in
cadmium

Blaha et al. (Ref. 25)
Christiansen et al. (Ref. 24)
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mium. The EFG has been calculated with the aid of the
fully linearized augmented plane waves (FLAPW)
method, which is considered as one of the most accu-
rate ab initio methods available today. We conform our-
selves to cornrnon practice and will use the value
g("'Cd, 5/2+) =0.83(13) b, reported by Herzog et al.

N N N

V,b= —e g g g c;*c;bf V, bg'(r)gk(r)dr
j=l k=ii=1

N= —e X X &ik&r '&Jk f„I'i,m, IVabI'i„m„
j=l k=1

(10)

where n-k is an element of the density matrix. For
reasons of clarity we dropped the wave number k.

It is our experience that the value of ( r & hardly de-
pends on the details of the Cd environment. The EFG
scales, therefore, approximately with the density matrix
elements, n k, i.e., with the orbital occupation numbers
Icf. Eq. (9)]. Since the occupations of the (deep) core lev-
els do not much depend either on the Cd environment,
and because for Cd in cadmium V,b(core) contributes
merely 1% to the EFCx, ' the core contribution can be
safely neglected.

In order to evaluate the lattice contribution to the
EFG, we first consider a Wigner-Seitz sphere at a dis-
tance R from the cadmium atom. The nuclear charge is
centered at R and the electronic charge is distributed
over the sphere. The potential at the position of the cad-
mium atom due to the electrons in this sphere is

IV. CALCULATION: FROM ASW TO EFG

Turning to the quantum mechanical approach, we should
use an EFG operator V;g=g V;g(i). The single-particle
operator Vg(i) is defined as

3a, b, —
rt 5a b

t

V;g(i}=— = —
3 W,b(i),e e

r)

where W,b(i) is the angular part of V;g(i) According.
to the density functional theory ' ' we may write

V,b
= —e f V;gp(r )d r

(&)

= —e,*r V,' i;rdr.
i=1

The wave function can be expanded into a set of basis
functions

n

g;(k, r)= g c~j(k)P (k, r) .
j=l

(9)

Using Eq. (9) and interchanging summation and integra-
tion, we obtain

The ASW method employs the atomic sphere approxi-
mation (ASA). The crystal is divided in overlapping
Wigner-Seitz spheres, centered at the atomic positions,
with the only constraint that the total volume of the
spheres equals the volume of the crystal. The potential
inside a sphere is taken to be spherically symmetric.
When the crystal contains two or more inequivalent
atoms per unit cell, the Wigner-Seitz radii are not unique.
In the ASA approximation, regions that below to several
spheres contribute more than once to the total energy,
while regions that belong to no sphere contribute nothing
at all. The errors are expected to cancel to first approxi-
mation provided the potential varies slowly in the inter-
stitial region, and the overlap between individual spheres
is not too big. Although the potential is spherically sym-
metric, the wave functions derived from this potential are
relatively well described. '

We distinguish three contributions to the EFG tensor.
The first contribution, V,b(core), arises from polarized
core electrons of the probe atom. The second contribu-
tion, V,b(val), originates from the valence electrons in the
Wigner-Seitz sphere around the probe atom, and the
third, V,b(lat), is due to the charge excess in the other
Wigner-Seitz spheres.

We calculated V,b(val) in the following way. Consider
a charge q at point r. The electrostatic potential due to
this charge is q/r. According to Eq. (1) the classical
EFG tensor at the origin is

3ab —r 5,b
V,b =q

e(R) = e f-
ws IR—rl

Using the Taylor expansion

1 1 r R 3(r.R) —r
R

(12}

we can write the electrostatic potential in the form

4(R)=~+ + (13)

where

q = —e f p(r)dr
WK

(14)

is the monopole moment and

P= —e f p(r)rdr (15)
ws

is the dipole moment of the electrons inside the Wigner-
Seitz sphere. The circumflex indicates a vector of unit
length. The lattice contribution to the EFG follows from
a simple lattice-sum calculation. We found that the di-
pole moments of the vacancies in the CdV2 and CdV3 de-
fects contribute at roost a few tenths of a percent to the
EFCr. Therefore, the expansion in Eq. (12) is truncated
after the first term.

V. MOLECULAR STATICS
AND MOLECULAR DYNAMICS SIMULATIONS

The molecular statics and molecular dynamics simula-
tions were performed using the atom embedding method
from Finnis and Sinclair. ' The potentials needed were
constructed by the method described by van der Werf
et al. We calculated the atomic positions in a tungsten
lattice containing a cadmium vacancy or cadmium-
vacancy-heliuxn cluster like CdV2, CdVzHe, CdV2He2,
CdV3CdV3He2, CdV3He3, or CdV3He4. Here, CdVz
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means that there are two vacancies, one of which is occu-
pied by the cadmium atom. The initial periodic unit cell
contained 2000 atoms. The atoms were allowed to move
to new positions until the total energy of the cell reached
a minimum value.

In Table II we give the displacements of the cadmium
and helium atoms with respect to their substitutional po-
sitions, for the diFerent defect configurations (cf. Fig. 2).
It turned out that cadmium atoms in the clusters CdV2
and CdV2He move along the (111) direction towards the
vacancy or the helium atom, respectively, while the heli-
um atom in the cluster, CdVzHe moves into the opposite
direction. In CdV3, CdV3He2, and CdV3He3 clusters, the
cadmium atoms are displaced in the ( 110) direction to-
wards the two vacancies or helium atoms, respectively.
The two helium atoms in CdV3He2 move mainly towards
each other, but they stay in the I 110I plane.

The atomic positions obtained in this way are, strictly
speaking, only valid at 0 K, whereas the PAC measure-
ments were carried out while the sample was at a temper-
ature of 300 K. Therefore, we performed dynamical
simulations for the helium-decorated vacancy clusters in
order to investigate the rms fluctuation of the cadmium-
helium interatomic distance. The simulations covered a
period of 100 ps, with time steps of 1 fs. Temperature
and pressure were controlled using the method of
Berendsen et al. It turned out that the mean distance
between cadmium and helium is approximately equal to
the value at 0 K, and that the rms fluctuation is aniso-

0
tropic and ranges from 0.10 to 0.14 A, depending on the
particular defect structure.

The configurations CdV2He2 and CdV3He4 are special.
For CdVzHe2 there are three equivalent positions of the
two helium atoms (or rather six if the helium atoms are
distinct). If the energy barrier is low enough, we expect
the helium atoms to hop between equivalent positions
with a frequency which is large compared with the quad-
rupole interaction frequency, in which case the PAC
probe will experience a mean EFG. Therefore, we per-
formed dynamical simulations for a number of tempera-
tures between 300 and 600 K, covering a time interval of
50 ps in steps of 1 fs. The observed jump rate as a func-
tion of the inverse temperature is given in Fig. 1(a) in the
form of an Arrhenius plot. Assuming a simple jump
model, we may write

E/kTv —voe

where v is the jurnp frequency and E is the barrier height.
A least-squares fit to the data in Fig. 1(a) resulted in a
barrier height E =0.16(2) eV and a frequency
vo =9(3 ) X 10' Hz, yielding a jump frequency of about
2 X 10"Hz at 300 K.

The situation for CdV2He4 is similar, but now there are
two di8'erent jumps possible, each with its own energy
barrier and jump frequency. We performed dynamical
simulations between 300 and 1000 K covering a time in-
terval of 100 and 200 ps in steps of 1 ps. For the two
helium atoms in one of the vacancies there are two
equivalent positions. The jump rate as a function of the
inverse temperature is plotted in the upper part of Fig.
1(b). A least-squares fit to these data resulted in a barrier
height E =0.19(3) eV and a frequency vo=5(3) X10'
Hz. This results in a jump frequency of about 3 X 10' Hz
at 300 K. In the second type of jump one of the two heli-
um atoms in the doubly occupied vacancy moves into the
other vacancy. The jump rate versus the inverse temper-
ature is plotted in the lower part of Fig. 1. A least-
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TABLE II. Displacements in A of cadmium and helium
atoms with respect to the substitutional position, for difFerent
defect configurations. The lattice constant of tungsten is 3.175
A.

10"

Con6guration

CdV2
CdV2He
CdV2He
CdU3
CdU&He2
Cd V&He3
CdV3Heg

Cd

0.17
0.12
0.06
0.40
0.18
0.01
0.04

He

0.06

0.11

10 0

1000/T (K )
FIG. 1. Jump rate versus inverse temperature for jumps be-

tween the three equivalent helium positions in the cluster
CdV2He2 (a), the two equivalent helium positions in the doubly
occupied vacancy of the cluster CdV, He4 [upper curve (b)], and
jumps of a helium atom from the doubly occupied to the singly
occupied vacancy in CdV3He~ [lower curve (b)].
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squares fit to this curve resulted in E =0.25(3) eV and
vo=9(6)X 10' Hz, yielding a jump frequency of about
6X10 Hz at 300 K.

VI. EFG CALCULATIONS

In general, algorithms used for band-structure calcula-
tions fully exploit the translational and point symmetries
of the crystal under consideration. When a point defect
is inserted in a regular infinite crystal, there is no longer
translational symmetry. This symmetry is restored in an
artificial way by taking a unit cell in which the defect
configuration is included. Figure 2 shows unit cells that
contain a CdV2He, CdV3He2, or CdV2He2 cluster, as
used in the EFG calculations. The size of these cells is
twice as large as that of the original tungsten unit cell. A
point defect often reduces also the point symmetry. Cells
that contain CdV2 or CdV2He belong to space group C3,
number 146 (International Tables ), whereas cells that
contain CdV3, CdV3He2, or CdV3He3 belong to space
group Cz„number 25. In the case of CdV2He2 and
CdV3He4, the unit cell has no symmetry at all and be-
longs, therefore, to space group C'„number 1.

In the ASW calculations, a vacancy is represented by a
Wigner-Seitz sphere centered midway between the cadmi-
um atom and the next tungsten atom in a (111) direc-
tion. The nuclear charge within the sphere is zero, and
the valence configuration in 1s2p3d. For all atoms and
vacancies we used the same sphere radius of 1.534 A, ex-
cept in the cases of CdVzHe2, CdV3He3, and CdV3He4.
The reason is that these clusters contain more atoms than
substitutional lattice sites, which would cause the total
volume of the spheres to be larger than the volume of the
unit cell. We took the sphere radius for cadmium the
same as in the other cases because the largest contribu-
tion to the EFG comes from the valence electrons (see
next section). From experience one knows that the over-

lap of two spheres should be smaller than the overlap of
two adjacent spheres in a simple cubic crystal. There-
fore, we took a radius of 0.7788 A for helium and, conse-
quently, a radius of 1.5902 A for tungsten in the clusters
CdVzHez and CdV3He4, and a radius of 1.6251 A in
CdV3He3.

We calculated the EFG for the substitutional atom po-
sitions as well as for the relaxed positions obtained in Sec.
V. In the self-consistent cycle of the ASW method we
scanned the irreducible part of the Brillouin zone with a
k point density of 504—750 k points per Brillouin zone,
depending on the symmetry of the unit cell. The (partial)
density of states were evaluated with the hybrid intergra-
tion scheme of MacDonald, Vosko, and Coleridge using
1475 k points in one-half of the Brillouin zone. When
calculating the density matrix, one should choose a prop-
er energy mesh. Figure 3 shows the total density of states
for the CdV2He2 case. The large peak at 0.08 Ry is
caused by the d electrons of cadmium. It is rich in struc-
ture due to the Van Hove singularities, as shown in the
exploded view. In the numerical integrations this part of
the density of states was sampled with an energy mesh of
0.005 mRy, while for the rest we used a mesh of 0.1 mRy.

In Table III we give the results of the EFG calcula-
tions. The contribution of the p electrons to V„ is by far
the largest, as has been observed for most hcp metals. '

The lattice contribution is relatively small, typically be-
tween 1% and 5%. The sd contribution to the EFG of
cadmium-probe atoms has, as far as we know, never been
calculated before. It turned out to be of the same order
of magnitude as the d contribution: both contribute
about 10% to the total EFG, except for the
configurations CdV3He3 and CdV3He4.

(a)

M 1000-

, %%~,
I &I IR II Iw

~is@ Ef

(b) (c)

'-0.4 -0.2 0 0.2 0.4 0.6 0.8

II gX II

1000-

Cd

~ He

(d) (e)

FIG. 2. The CdV~He (a), CdV2He& (b), CdV3He& (c),
CdV3He3 (d), and CdV3He4 (e) units cells as used in the ASW
calculations.

0.08
E (Rydberg)

0.09

FICi. 3. Total density of states for the cluster CdV2Hez.
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TABLE III. Partial and total EFG in 10 ' Vm . The partial
V„ is the diagonalized value for the particular contribution, i.e.,
the PAS of the partial V„need not be the same as the PAS of
the total V„. Numbers given on the first line are for the unre-
laxed defect clusters; those on the second line for the relaxed
configurations.

Configuration V,' VP V„ Vsd
zz

Vtot
zz

CdV2He

CdV2Hez

0.320
—0.129

0.254
—0.056

7.465 —0.042 —0.499
14.392 —1.045 —1.068
6.850 0.068 —0.566

10.943 —0.935 —0.879

7.24 0.00
12.15 0.00
6.61 O.OO

9.07 0.00

CdV3

CdV3He2

CdV3He3

CdV3He4

0.005
—0.172

0.218
—0.139

0.175

5 ~ 893
8.730

13.242
—7.664
14.014

1.093
1.395

—1.245
1.309
1.598

—0.241
—0.566

1.003
—0.661

1.101

—0.011 7.715 —3.006 —0.335

—0.013 9.295 —2.071 —0.343

4.87 0.44
—7.51 0.84
11.04 0.95

—7.09 0.52
—12.37 0.84

4.38 0.85

7.02 0.69

In Table IV we compare the results of our caIculations
with the experimental values that we previously ob-
tained. We compare quadrupole frequencies rather than
EFG values because the quadrupole frequency depends
on the asymmetry parameter g and because there is some

TABLE IV. Comparison of theoretical and experimental
quadrupole frequencies (Mrads '). The column headers "re-
laxed" and "unrelaxed" are explained in the text.

Configuration

Unrelaxed Relaxed
COp 'g

Experimental'
Q)p 7l

CdV2
CdVzHe
CdV2He2

CdV3
CdV3He2
CdV3He3
CdV3He4

0.00
O.OO

0.84
0.52

230 0.00 133
171 O.OO 121
110 0.44

O.OOb 122
356 0.95 301
370 0.84
132 0.85 218
190 0.69

o.63'
184 0.99

0.0
O.O

0.0
1.0

'Reference 9.
Values averaged according to molecular dynamics simulation

(see text).

In the ASW calculations for CdV& and CdV2He the z
axis of the coordinate system coincided with the principal
z axis of the EFG. In these cases the off-diagonal ele-
ments of the EFG tensor should be equal to zero. The
calculated values of these elements were of the order of
0. 1 X 10 Vm, which indicates the size of the numeri-
cal errors.

uncertainty about the measured value of g in the case of
CdV3He3.

The agreement between theoretical and experimental
values is not quite satisfactory. Whereas the quadrupole
frequencies calculated for the unrelaxed clusters CdV2
and CdV2He agree very well with the experimental data,
the relaxed values deviate by 75%%uo and 41%, respectively.
In the case of the cluster CdV3 both the unrelaxed and
the relaxed value of the quadrupole frequency differs by
about 25% from the experimental value, the unrelaxed
value being too small and the relaxed value being too
large.

We list two different coo and q values for CdV2He2.
The first set is valid at a temperature of 0 K, the second
set should be valid at 300 K. The transition from one set
to the other takes place at a temperature of about 130 K.
At 300 K the two helium atoms jump at a rate which is
three orders of magnitude larger than the quadrupole fre-
quency, and the cadmium atom will experience an EFG
which is due to the time-averaged superposition of the
charge distributions for the three equivalent
configurations. ' Having calculated the EFG for one
configuration, we obtain the other two by cyclic permuta-
tion of the x, y, and z indices. The asymmetry parameter
obtained in this way is zero because the average charge
distribution is axially symmetric. However, the quadru-
pole frequency at 300 K is 60%%uo smaller than the experi-
mental value.

It was argued that the frequency of 218 Mrads
should be assigned to the cluster CdV3He3. The calcu-
lated quadrupole frequency for this cluster is 65% larger
than the experimental one, but the asymmetry parameter
is within the experimental range of values.

In Table IV we list three sets of values for the cluster
CdV3Hez. The first set is valid in the temperature range
for 0 K up to the first transition temperature of about 170
K. Above this temperature the two helium atoms in the
doubly occupied vacancy jump at a rate which is large
compared with the quadrupole frequency, and the second
set of values should be valid. At about 250 K a second
transition occurs. One of the helium atoms in the doubly
occupied vacancy jumps into the other vacancy at a rate
which becomes larger than the quadrupole frequency,
and the third set of values should be valid. The second
and third set of values were obtained by averaging the
proper static EFG tensors.

On the basis of the point charge model one expects an
asymmetry parameter g=1 for the unrelaxed clusters
CdV3 and CdV3Hez. This is not what we obtained from
the ASW calculations (see Table IV), and only for the re-
laxed configuration of CdV3 the asymmetry parameter
approaches the expected value. Apparently, the value of
q depends strongly on the actual atomic positions. This
may explain the scatter of the experimental asymmetry
parameters for CdV3 in different bcc metals: g=1.0 in
tungsten and molybdenum, ' g=0.65 in tantalum,
and g=0.58 in niobium.

We conclude this section with a brief discussion of the
most important error sources. First, even the EFG for a
highly symmetric system like an hcp metal calculated
with the ASW or FLAPW method ' differs from the ex-
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perimental value by an amount varying from 10% to
100%. This can be due to uncertainties in the quadru-
pole moments or to the accuracy with which the density
matrix is calculated. But it may also be a consequence of
the local density approximation and, in the case of ASW,
the atomic sphere approximation.

Second. , our calculations make it clear that relaxation
of the atoms has a large impact on the quadrupole fre-
quency as well as the asymmetry parameter. 'I'he atom
embedding model and the potentials derived from it are
not perfect. A slightly di6'erent potential may give rise to
slightly diferent atom positions, which might lead to
completely difFerent values of coo and g.

Third, the EFG has been calculated for T=0 K, but
the measurements were performed at a temperature of
300 K. Because the mean atom positions at this tempera-
ture do not significantly di6'er from the static positions
(see Sec. V), we have calculated the EFCx for the mean
lattice position. This value of the EFG is not necessarily
the same as the value of the mean EFG for all the possi-
ble lattice positions. Experimentally, we found for CdV2
and CdV3 that coo varies by less than 1% in the tempera-
ture range from 15 to 500 K. Thus, for the undecorated
defects the EFG at 0 K will be almost the same as that at
300 K. However, the calculated rms Auctuation of the
cadmium-helium distance in the helium decorated defects
is of the order of the static displacement (see Sec. V).
Thus in this case it is not a priori clear that the tempera-
ture dependencies of coo and g are small.

Fourth, we have used a unit cell of only twice the size
of the lattice constant of tungsten. Although it is clear
that the atoms close to the probe atom contribute most to
the EFG [cf. Eq. (7)], we did not check if this unit cell is
large enough.

VIII. CONCLUSIONS AND QUTLDQK

We have calculated electric-field gradients at the posi-
tion of the cadmium atom in low-symmetry CdV„He
clusters in tungsten, using the augmented spherical wave

method. We were able to reproduce the experimental
quadrupole frequencies within 70%, though this is not
yet accurate enough to unambiguously identify the struc-
ture of the corresponding defects.

There is a large diIIFerence between the calculated EFG
tensors for the relaxed and unrelaxed defect
configurations. We conclude, therefore, that lattice re-
laxation has a large e6'ect on both the quadrupole fre-
quency coo and the asymmetry parameter g. In this
respect it is interesting to note that the value of q for the
unrelaxed clusters CdV2 and CdV3He2 are not equal to
1.0, as predicted by the point charge model. So, it is cru-
cial to accurately know the atom positions in order to ob-
tain a reliable EFG.

We predict that the cluster CdV2He2 has a
temperature-dependent EFG with a transition tempera-
ture of about 100 K. The same holds for CdV3He4, but in
this case there are two transitions, at about 170 K and at
about 250 K, respectively. It would be worthwhile to
measure the temperature dependence of coo and g fol
these clusters.

To get insight in the error introduced by the atomic
sphere approximation, the EFG calculations on the clus-
ter CdVzHe„should be repeated using a full potential
method. The inAuence of the size of the unit cell should
be investigated by performing calculations with a larger
unit cell.

We calculated the EFG only for unrelaxed and fully re-
laxed systems. The e6'ect of the position of the separate
atoms in the unit cell could be studied by performing
EFG calculations for a number of cadmium or helium
positions in an otherwise rigid lattice. If the inhuence of
the helium atom positions would turn out to be small, it
might be possible to draw conclusions about the tempera-
ture dependence of the EFG.

The EFG of the vacancy cluster CdV2 has been mea-
sured in nearly all the fcc and bcc metals. It would,
therefore, be desirable to calculate these EFG values and
compare them with the experimental results.
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