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Variational analyses of series expansions of the potts model
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A linked-cluster type of series expansion of the free energy with a variational parameter is developed
to the eighth order for the q-state Potts model. The order parameter and the internal energy are then de-
rived. By analyzing these series expansions, critical temperatures T„ latent heats, and discontinuities of
the order parameters at T, are determined for the cubic lattices.

The analysis of series expansions for thermodynamic
functions has been a powerful method to study phase
transitions and critical phenomena for spin systems. '
There are three types of series expansions: high-
temperature series expansions, low-temperature series ex-
pansions, and linked-cluster series expansions. In the
linked-cluster series expansion, ' a parameter which is
the mean-field order parameter is introduced, such that
the series expansions give approximations to thermo-
dynamic functions at low temperatures as well as at high
temperatures. The linked-cluster series expansions,
therefore, can be used to study critical properties for sys-
tems which undergo either first-order or second-order
phase transitions.

In this article we study critical properties of the q-state
Potts model ' by the series-expansion method. It is
known that the Potts model on three-dimensional lattices
undergoes first-order phase transitions for q )3.
Determinations of critical parameters for first-order
phase transitions are more difficult and less successful
than those for continuous transitions. Previous studies
on three-dimensional Potts model have determined the
critical temperature T, quite accurately. But estimates of
the discontinuities of the order parameters, to be denoted
as AM, and the latent heats, denoted as 6U, are
sparse. ' ' Although there are numerous series-
expansion studies of the Potts model, ' ' ' to the best of
our knowledge, linked-cluster series expansions of general
q-state Potts model have not been reported before. Here
we derive series expansions similar to the linked-cluster
series expansions, but the parameter involved is con-
sidered as a variational parameter. We have obtained the
series expansions to the eighth order. Critical parameters
are then determined for the Potts model on cubic lattices
for general values of q.

For convenience we let q=2S+1. The q-state Potts
model can be considered as a spin-S Ising-like model with
spin-multipole interactions. ' The Hamiltonian of the
spin-S Potts model is

Kronecker delta function, K =J/kT, and the summation
is over nearest-neighbor pairs of spins. The

coefficients 2 (S, l) are

A (S,l)=2 '(2l+1)(2S —1)!/(2S+l+1)!,
and Qo(" are spin multipole moments:

(2)

Q(0) —
1

Q(i) —S

Q()
' =(3/2)S, —S(S+1)/2,

QI) =(5/2)S, —[3S(S+1)—1]S,/2, etc.

(3)

It has been shown that under the mean-field approxi-
mation the Potts model has exactly the same thermo-
dynamic properties as the exchange-interaction model. '
For the ferromagnetic case, these two models have only
one order parameter. At T=O, all spins are in the same
state, say, ~

a ) . The thermal averages ( Q 0 ) normalized
by the matrix elements (a~QI)" ~a) are independent of l
for l ~ 1. We can define the order parameter as
M = ( Q 0" ) /( a

~ Q I)"
~
a ) . The mean-field Hamiltonian of

these models is then given by'

—pHMF~ =KZM+p (S;, ) (4)

where the summation is taken over all spins. The parti-
tion function of the Potts model is then expressed as

Z =Tr exp( PH ) =Zo( exp[ ——P(H Ho)] )o, —

where z is the coordination number of the lattice, and
p (S;, ) is the density matrix that the spin S,, is in the
pure state a ), which is any eigenstate of S, .

In this article we define a single-spin Hamiltonian Ho
with a variational parameter p:

PHD=I(.zpgp —(S,, )=Lgp (S,, ), —

pH = (J—/k T) g 5(S;,SJ., )
(&j)

2S
=Kg g A(S, l)QI)" (S;, )Q()"(SJ,),

(i~ & I =O

where

Zo =Tr exp( —PHo ) =exp(L ) +2S,
(1)

and the average ( A )o for any operator A is defined as

where p= 1 lkT, J is the coupling constant, 5(n, m) is the ( 2 )o=TrA exp( PHD)/Zo . —
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Following the standard series-expansion method, ' the
exponential function in the bracket of Eq. (6) is expanded
in power series

Z(K, L)=ZO 1+ g Kg 5(S;,S~, )
n =1 (ij)

n

L'zp, (s—;, ) )~ n!
1

The free energy F= —kT lnZ is then expressed as

(9)

PF—(K,L) =lnZD+ g [a„oK"+a„iK" 'L
n=1

+ +a„„L"]/n! . (10)

The coeNcients an can be calculated by the diagram-
matic method, or by the cluster expansion method. '

If the summation is taken up to the nth order, we ob-
tain the nth-order free energy, denoted as F'n'. The first-
order and the second-order free energies depend only on
the coordination number z. They are

—PF'"=lnZO+ [(zD~/2)K xL ], —

PF"'= P—F"'+[z'—(D, D,')—
+z(Di+D2 —2Di )/2]K /2

(2SM'"'+1)/(2S+1)=(8/dL)[PF'"'(K, L, a; z )] . (15)

The coefFicients a; . are functions of L as illustrated in
Eqs. (11)—(14). But, in the above equation Zo and a; are
regarded as constants when we take the derivative of F'n'
with respect to L. Similarly, the nth-order internal ener-
gy of the system is given by

U'"'/J=(a /a K)[PS'"'( K,L,a;. )] . (16)

ature K ' will be denoted as L,'"'(K). We calculate L,'"'
as functions of the temperature numerically. At low tem-
peratures, L,'"' are positive, and above a critical tempera-
ture, kT,'"'/J(=l/K, '"'),L,'"' vanishes. For q =2,L,'"'
are continuous as expected for second-order phase transi-
tions. For q ~ 3, L,'"' are discontinuous at T,'"'. For ex-
ample, kT,'"'/J for the three-state Potts model on the
face-centered-cubic (f.c.c.) lattice are 4.32809, 4.078 58,
4.000 94, 3.963 73, 3.942 53, 3.929 00, 3.91972, and
3.91245, for n =1 through 8, respectively. The values of
L,'"' at T,'"' (or the discontinuities of L,'"') are 1.38629,
1.276 81, 1.183 62, 1.11655, 1.06655, 1.028 88, 0.999 192,
and 0.963 757, respectively.

As mentioned above L,'"'/Kz are not the conventional
order parameters (defined as (Qo" )/(a~QO'"~a)) of the
system. It can be shown that the nth-order parameter
M'n' is given by

where.

+zx(Di —x )KL+(x x)L /2—, (12)
TABLE I. Critical temperatures kT, /J, discontinuities of the

order parameters AM, and latent heats (per spin) hU/J of the
q-state Potts model on the cubic lattices. Values with super-
script indices are results of previous studies.

x =exp(L)/[exp(L)+2S], Lattice KT, /J

D„=[exp(nL)+2S]/[exp(L)+2S]" . (14)

F' ' and higher-order free energies depend on the details
of the lattice structure. %'e have calculated the
coefficient a„ to the eighth order (m ~ n ~ 8) numeri-
cally for the general lattices. It is too lengthy to present
these coefficients in this article. If L =0, Eq. (10) reduces
to the high-temperature series expansion; and if
L =Kz [exp(KzM) —1]/[exp(KzM)+2S], Eq. (10) is the
same as the linked-cluster expansion. In the present
method, L (or p =L/Kz) is a variational parameter.

As defined in Eq. (5), zp is the effective field (or the
symmetry breaking field) acting on each spin. The
effective field is related to the thermal average (Qz" ),
and is nonzero if and only if the system is ordered.
Therefore, the stable value of p (or L) may be considered
as the order parameter of the system. But it is important
to note that p (or L) is not the conventional order param-
eter M defined as the thermal averages of the spin multi-
ple moments.

We consider L as the Landau order parameter, and
F'"'(K,L) as the Landau free energy of the systems. At a
given temperature K ', one can plot F'"' versus L. The
values of L which has the lowest free energy F'n' is the
stable value of L (or p, ) at the given temperature. For the
nth-order free energy, the stable value of L at the temper-

f.c.c.

b.c.c.

s.c.

3.861
3 90'
3.345
3.032
2.816
2.655
2.515
2.187
1.990
1.850
1.745
1.807
1.826
1.816'
1.816"
1.816'
1.817
1.583
1.444
1.34?
1.274

0.421
0.448'
0.620
0.721
0.783
0.824
0.426
0.628
0.718
0.778
0.819
0.427
0.4
0.460'
0 434
0.395'

0.611
0.715
0.777
0.830

0.482
0 585'
1.338
2.056
2.602
3.028
0.293
0.840
1.306
1.668
1.985
0.199
O.24b

0.222'
0 197
0.240'
O. 17'
0.573
0.899
1 ~ 178
1.367

'Kikuchi variational method using a four-site cluster {Ref.7).
"Monte Carlo simulation via a coarse-grained averages on a
N=30 lattice (Ref. 11).
'Multilattice microcannonical simulation for X= 16' (Ref. 12).
Multilattice microcannonical simulation for X=32' (Ref. 12).

'Metropolis Monte Carlo simulation for %=48 (Ref. 13).
'Histogram Monte Carlo method for N = 15' {Ref. 14).
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X'"'=X+cn '+Q(n ) . (17)

Extrapolation of the nth-order critical parameters to

In Eqs. (15) and (16), M'"' and U'"' are evaluated at
L =L,'"' for the given temperature. In this article, we are
interested in the critical parameters, i.e., the discontinui-
ties of M'"' and U'"' at T,'"', denoted as b,M'"'
and AU'"', respectively. For illustration consider the
three-state Potts model on the f.c.c. lattice again.
We obtain hM'"'=0. 5,0.492 181, 0.478 300, 0.467 349,
0.458 758, 0.452 344, 0.447 329, and 0.439 354;
and 5U'"'/J (per spin) = 1, 0. 860 667, 0.767 994,
0.707238, 0.664359, 0.633 534, 0.610112, and
0.581002 for n =1 to 8, respectively.

When n = 1, the present results are the same as those
of the mean-field theory, and M '~=L,~ "/ICz. As n ap-
proaches in6nity, F'"' gives exact free energy. Similarly,
T,'"', hM'"', and AU'"' approach the correct critical
values as n ~~. It is not known theoretically how these
nth-order critical parameters converge to their limiting
values. Our numerical results show that X'"'
(X=T„bM or b, U) can be fitted quite well in the form

n —+ ~ yields critical properties of the Potts model. Our
results based on the series expansion up to the eighth or-
der are shown in Table I. Results of previous studies
which have determined b,M or hU (available only for
q =3) are also included for comparison.

The uncertainties in our estimates of T, are within one
percent; and those for AM and 6U are within a few per-
cent. In general, the successive orders of critical parame-
ters converge more rapidly for the f.c.c. lattice than for
other cubic lattices. Our results are in reasonable agree-
ment with (although a little lower than) various Monte
Carlo studies for the three-state Potts model on the sim-
ple cubic lattice. We are presently deriving higher-order
coe%cients a„ for the Potts model. It is expected that
more accurate estimates of the critical parameters can be
obtained from longer series expansions.
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