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We consider quantum rotors or Ising spins in a transverse field on a d-dimensional lattice, with
random, frustrating, short-range, exchange interactions. The quantum dynamics are associated
with a finite moment of inertia for the rotors, and with the transverse 6eld for the Ising spins.
For a suitable distribution of exchange constants, these models display spin-glass and quantum
paramagnet phases and a zero-temperature (T) quantum transition between them. An earlier exact
solution for the critical properties of a model with in6nite-range interactions can be reproduced
by minimization of a Landau effective-action functional for the model in 6nite d with short-range
interactions. The functional is expressed in terms of a composite spin 6eld which is bilocal in time.
The mean-6eld phase diagram near the T = 0 critical point is mapped out as a function of T,
strength of the quantum coupling, and applied fields. The spin-glass phase has replica symmetry
breaking; but, as in the classical Ising spin glass, the order parameter becomes replica symmetric
as T —+ 0. Next we examine the consequences of Buctuations about the mean-field for the critical
properties. Above d = 8, and with certain restrictions on the values of the Landau couplings, we find
that the transition is controlled by a Gaussian fixed point with mean-field critical exponents. For
couplings not attracted by the Gaussian fixed point above d = 8, and for all physical couplings below
d = 8, we 6nd runaway renormalization-group Bows to strong-coupling. General scaling relations
that should be valid even at the strong coupling 6xed point are proposed and compared with Monte
Carlo simulations.

I. INTRODUCTION

Models of quantum rotors or the Ising model in a
transverse field on a d-dimensional lattice are among the
simplest systems which exhibit a zero-temperature (T)
quantum transition. This is particularly true in the
absence of quenched disorder: then the critical proper-
ties map directly onto those of the corresponding classi-
cal spin model in d + 1 dimensions, with the quantum
time behaving just like another spatial dimension. How-
ever, in the presence of quenched disorder, the situation
is more complicated. The disorder has no dynamic Quc-
tuations, so the corresponding classical spin models have
randomness which is constant along the "time" direction;
unfortunately, there is only a rather limited existing body
of knowledge on such classical systems that one can draw
on. Nevertheless, these models still constitute an attrac-
tive setting for the study of the complicated interplay of
quenched disorder, interactions, and quantum mechanics.
One can quite reasonably hope that the insight obtained
&om their analysis might prove profitable in other sys-
tems which involve the same ingredients these include
the metal-insulator and superfIuid-insulator transitions
and have been the focus of a large number of experi-
mental investigations. Direct experimental studies of the
models studied in this paper have been much more lim-
ited, although a recent investigation of a system which
can be well described by the Ising model in a transverse

field is noteworthy. Three component quantum rotors
with quenched disorder may also be a reasonable start-
ing point for understanding some of the spin-Buctuation
properties of the doped cuprate compounds in a regime
with localized holes.

We consider the following Hamiltonian of quantum ro-
tors on the site i of a regular, d-dimensional lattice:

O—n;„
On, ~ )

(1.2)

where the sum (ij) is over nearest neighbors, although
our results should also apply to models with more general
short-range interactions. The M-component vectors n;,
with M & 2, are of unit length, n; = 1, and represent
the orientation of the rotors on the surface of a sphere in
M-dimensional rotor space. The operators L;~ (p ( v,
p, v = 1.. . M) are the M(M —1)/2 components of the
angular momentum I, of the rotor: the first term in RR
is the kinetic energy of the rotor with 1/g the moment
of inertia. The different components of n, constitute a
complete set of commuting observables and the state of
the system can be described by a wave function 4'(n, ).
The action of I,. on 4 is given by the usual differential
form of the angular momentum
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The commutation relations among the L; and n, can now
be easily deduced. We emphasize the difference of the
rotors from Heisenberg-Dirac quantum spins: the com-
ponents of the latter at the same site do not commute,
whereas the components of the n; do.

Let us also introduce the Hamiltonian of the Ising
model in a transverse field, 'H I.

n;~ for M&2
o, forM=1. (1.4)

We will use the general S;~ notation in most of the re-
mainder of the paper.

We now want to describe the possible phases of 'R~

Here o, o' are the x, z components of the three Pauli
spin operators, with the Pauli operators on difFerent sites
commuting with each other. Each site, therefore, has an
Ising degree of freedom, represented by the eigenvalues
of the o; . The cr; is the kinetic energy term and induces
on-site flips of the Ising spins.

The analogy between 'R~ and 'RI should be quite clear.
'RR has a global O(M) symmetry, while 'Rl has a global
Z2, spin-flip symmetry associated with the unitary trans-
formation U = Q, o; . In both models, the interaction
terms proportional to the J,~ would, if g were zero, pre-
fer a ground state in which each rotor or Ising spin has
a definite orientation which minimizes the exchange en-
ergy, and quantum fluctuations are absent: any such
choice will break the global O(M) or Z2 symmetry in
a given sample (although the spin-glass phase preserves
a statistical spin symmetry after averaging, discussed in
Sec. IIB2). A small g will not necessarily destroy this
phase, in suKciently high spatial dimension. In the op-
posite limit J,~

= 0, both 'H~ and 'Rl possess nondegen-
erate ground states which preserve the global symmetry.
For the rotors, each site is in the spherically symmetric
"s-wave" state (using the language of M = 3). Similarly,
each Ising spin is in the eigenstate of o. with eigenvalue
+1: =

(~ g) +
~ $))j~2 which is Z2 invariant. In both

cases, the J;~ = 0 ground state is separated from the Brst
excited state by a gap of order g. It is therefore reason-
able to consider the J;~ s as perturbations in this limit
(though the random nature of the J;~ causes some prob-
lems which we will discuss later) and to expect that this
"quantum-disordered" phase persists at finite values of
J;~. Thus we expect both ordered and disordered phases
to exist at zero temperature.

The above discussion should make it clear that it is
natural to consider the transverse-Beld Ising model as
simply the M = 1 case of the quantum rotors. As in
the classical and nonrandom quantum cases, the main
difFerence between M = 1 and M ) 1 is that the latter
has a continuous symmetry and possesses gapless spin-
wave excitations in magnetically ordered phases. For ease
of the subsequent discussion, it is convenient to introduce
a notation which allows simultaneous discussion of the
rotor and Ising models. We therefore introduce an M-
component spin S,~, with M & 1, such that

or 'Rl at zero temperature. The J,~ are assumed to be
statistically independent between different links and to
possess the following first and second moments:

[J;,] = Jp,. (J;,. —Jp)' = J'.
Here, and henceforth, the square brackets will represent
an average over the quenched disorder. Averages over
quantum or thermal fluctuations will be represented by
angular brackets. On bipartite lattices, the properties
of the system are invariant under the global sign change
J;~ ~ —J;~' this is because the sign of the exchange en-
ergy can be reversed by a global spin-flip S,~ + —S,& on
one sublattice. On such lattices we can therefore assume
without loss of generality that Jp & 0, and we will so
assume. Note that this property is not shared by mod-
els where S;~ is replaced by quantum Heisenberg spins
whose components do not commute.

It is also possible to modify 'R~ and 'Rl by allowing g
to have random fluctuations about its mean value. This
does not affect the analysis of the phases of the model.
It does represent an important type of randomness that
will be considered in our discussion of the Landau theory.

We have now introduced three energy scales, g, Jp, and
J, and the nature of the ground state becomes especially
clear when one of the three scales is much larger than
the other two. The three phases so obtained are the
ferromagnet (Jp )) g, J), the spin-glass (J )) Jp, g), and
the quantum paramagnet (g )) Jp, J). We review the
structure of the three phases in turn (analogous to finite-
temperature phases in classical models):

(a) Ferromagnet: Each site acquires a static moment,
and further the average of the moments on the different
sites is nonzero:

(S;„)P 0; [(S,„)]= M „g0.

The ferromagnetic order parameter is Mp„, note however
that the first, quantum expectation value will have fluc-
tuations Rom site to site about Mp~. The reader may
be aware of mappings between the low-energy properties
of clean quantum Heisenberg spin models and quantum
rotors: we note here that it is the antiferromagnetically-
ordered Neel phase of Heisenberg spin that maps onto the
ferromagnetic phase of quantum rotors.

(b) Spin glass: Ea-ch site now has a random static
moment, ' and the average moment is therefore zero:

(S' ) &0 [(S' )] =0.

The Edwards-Anderson order parameter, qE~ is given by

1
&EA = l'm [(S'v(0)S'~(r))] .

[We are using here the Einstein summation convention on
the O(M) vector index p, ; this convention will be implic-
itly assumed throughout the paper. ] One would expect
that qEA is also equal to



N. READ, SUBIR SACHDEV, AND J. YE

In classical spin glasses, q g qE~ when replica symmetry
breaking takes place, because the () average must be
carefully defined. In spite of the quantum Huctuations
that are present, the appearance of the ferromagnetic and
spin-glass phases is quite similar to that of their classical
analogues at T = 0 or T g 0.

(c) Quantum paramagnet: This phase has no static
moment:

(l.10)

It differs in one important respect from the strong-
coupling, J;~ = 0, picture discussed earlier. The gap in
the excitation spectrum is Glled in by contributions from
rare regions in which the local values of J;z are such as
to place the system in one of the magnetically ordered
phases. A brief discussion of such "GriKths effects" is
presented in Appendix B.

There has been some earlier work on the ferromag-
netic and paramagnetic phases and the transition be-
tween them. In one dimension, many exact proper-
ties have been determined for the transverse Geld Ising
model. In d = 1, the M = 1 spin-glass phase and its
transitions are closely related to those of the ferromag-
net, as the former can be related to the latter by a gauge
transformation which makes all the J,~ positive. (The
magnetically ordered phases do not exist for M & 2 in
d = 1.) In higher dimensions, there has been a discus-
sion of the Geld-theoretic properties of the ferromagnetic-
paramagnetic transition. Boyanovsky and Cardy
identified d = 4 as the upper-critical dimension and dis-
cussed the scaling properties of the correlation functions.
A study of the critical properties below d = 4 in an ex-
pansion in e = 4 —d yields a How to strong-coupling with
no stable, physical fixed point (the only stable fixed-point
has unphysical properties like a negative variance of some
observables). However, Boyanovsky and Cardy showed
that a stable, physical, Gxed point could be obtained in
a theory with e time dimensions, in a double expansion
in e and e; it is not known whether this Gxed point
continues to be pertinent all the way to e = 1.

We will not make any further references to the ferro-
magnetic phase. It is convenient, therefore, to specialize
henceforth to the case of J;~ distributions which are sym-
metric about J,z ——0 and in particular have

In this case, it can be shown that the disordered-
averaged correlation functions are in fact invariant under
a Z2 gauge transformation S,„~g;S;„, with q; = +1
and site dependent. A zero temperature spin glass to
quantum paramagnet phase transition will occur as the
ratio g/1 is increased and is the subject of most of the
following.

The spin-glass phase and its transitions were stud-
ied in Refs. 15 and 16, with considerable additional in-
terest in the last year. Huse and Miller studied
the transverse-Geld Ising model with infinite-range inter-
actions and determined exact critical properties of the
transition separating the spin-glass and paramagnetic
phases. We have studied the quantum-rotor model

with infinite-range interactions and obtained essentially
identical results. The independence of the critical prop-
erties on the value of M was also understood. We now
highlight features of these results which will be important
for our discussion.

A. B.eview of results
for the in6nite-range model

In the infinite-range version of 'R~ (1.1), or 'Rl (1.3),
the interactions J;~ are taken to be independent random
variables with distribution

P(J;~ )oc ex.p ( NJ; /—21 ) (i.i2)

for all pairs i, j of distinct sites; N is the number of sites.
Note that the variance of J,~ J2/K in the infinite-range
model, but is J in the finite-range model. As % ~ oo
mean-Geld theory becomes exact, which means that one
only need solve a problem of a single site with a self-
interaction between diff'erent times 7i 72 of J D(Ti —T2)&
where D has to be determined self-consistently as

1
D (+i +2 ) (~P (+i )~P ( 2 ) ) g7

(1.14)

in the original random problem. It was found that a spin-
glass to paramagnet transition occurred at g = g, J.
At g ) g, D decays exponentially with 7 as 7 M oo,
indicating a gap 4 in the corresponding spectral density;
at g = g„D decays as 1/r2, and in the ordered phase,
D + constant = qE~. The Fourier transform D(cu) of
D(r) has the form

D(w) const —gee + b,

for g ) g„which is responsible for the 1/r behavior at
g, and it turns out that the correlation time (
diverges as

t!- - [(g —g.) 'ln(g —g.)]

Thus we can define an exponent zv, anticipating
anisotropic scaling in space and time in the short-range
model, which takes the value zv = 1/2 in the infinite-
range model. The log correction originates from effects
of the length constraint. Its signiGcance will be fully ex-
plained in our later analysis. Since D(7 ~ oo) is the
Edwards-Anderson order parameter, we may also define
qE~ = (g, —g) and it is found that P = 1. At g = g
one expects D(r) 7 ~~', which is satisfied with the
values already obtained.

with the average being calculated with the same self-
interaction D. This was done by self-consistency argu-
ments on the spectral density by Miller and Huse, and
by taking the limit M ~ oo and then expanding in 1/M
using similar arguments, by the present authors. D rep-
resents the disorder average
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It is perhaps surprising that the critical properties of
the self-consistent single-site quantum problem can be
obtained exactly for all M, and it remains to explain
some features of the results, such as the logarithmic vi-
olations of scaling. One of our goals in this paper is to
provide a conceptually simpler derivation of the results
based on a Landau action functional and to explain the
logarithms as due to the decay of a marginally irrelevant
variable which we will identify. We also wish to calcu-
late critical properties in short-range, Gnite-dimensional
models, and. to this end we will study mean-field the-
ory and Gaussian fluctuations around it in the Landau
theory framework. We will show that in this approxima-
tion, z = 2 and v = 1/4. We will also define correlation
functions in the next subsection and obtain their scal-
ing properties in the same approximation later, obtaining

g = 0 by definition in mean-field theory. For suKciently
large d (d ) 8) and for a certain range of values of Lan-
dau couplings, we will show that these mean-Geld theory
results are valid and have the same critical properties as
in the infinite-range model (where comparisons are pos-
sible, i.e. , not for correlations at large spatial separation
and not for the nonlinear susceptibility which has a sin-
gular infinite-range limit ). However outside this range,
and for all couplings at d ( 8, we find a renormalization-
group flow to a region where perturbation theory breaks
down.

B. Order parameter and ebservables

In classical finite-temperature transitions the equilib-
rium critical properties can be studied in terms of static
fluctuations of some "order-parameter" Geld. For clas-
sical spin glasses in the replica formalism, this is a ma-
trix q, a, b = 1.. . n are replica indices and n + 0.
The off-diagonal components of q b can be related to the
Edwards-Anderson order parameter in a somewhat sub-
tle way we will not go into here. ' In quantum (T = 0)
phase transitions, time-dependent fluctuations of the or-
der parameter must be considered (in "imaginary" Mat-
subara time w) and in the spin-glass case it is found that
the standard decoupling, analogous to the classical case
introd. ucing q leads now to a matrix function of two
times (see also Appendix A) which we can. consider to
be

vector index p is being used in (1.18). However, no such
convention is used for the a, 6 replica indices. 1 It is im-
portant to note here that the definition (1.9) also relates
qE~ to the replica off-diagonal components of Q, whose
expectation value will be time independent. We have
introduced above double angular brackets to represent
averages taken with the translationally invariant replica
action (recall that single angular brackets represent ther-
mal and/or quantum averages for a fixed realization of
randomness, and square brackets represent averages over
randomness) .

We saw in the infinite-range model that the behavior of
D at long times in mean-field theory changed significantly
at the transition and it is clear that the theory of fluc-
tuations must include the whole matrix function Q, for
both its diagonal and ofF-diagonal components. Strictly
speaking the replica diagonal Q at finite T] —T2 is Ilot
an order parameter because its expectation is nonzero on
both sides of the transition; nonetheless it does play the
role of the order-parameter field in the Landau theory.

In the Gnite-dimensional model, where J;z couples
nearest neighbors only, D(7) is expected to acquire a
long-time limit only at the transition to, and in, the
spin-glass phase. However its behavior in the param-
agnetic phase may differ from that in mean-Geld. theory
(the infinite-range model) for the following reason. Since
the J;~'s are random, there is some chance of any given
region having all J,z 's large in magnitude and thus resem-
bling a patch of the ordered phase. Such an event would
be statistically rare, but can contribute signiGcantly to
the long-time behavior of D (which is the average on-site
correlation function) because the finite region will have
slow overturns of its instantaneous moment. The effects
of these "Grifriths singularities" on D has been discussed
recently by Thill and Huse for M = I; the extension of
their argument to M ) 1 is presented in Appendix B; for
M ) 1, we find only weak essential singularities at u = 0
in the spectral function for D. An important question is
whether similar fluctuations affect the critical properties,
an effect presumably not included in the treatment that
will be given later.

It is also helpful to introduce here a number of cor-
relation functions of the order parameter whose scaling
properties will be described in the paper. A quantity in-
timately related to the spin-glass long-range order is the
quantum-mechanical disconnected. correlation function

(1.17)

where lV(x) is a coarse-graining region in the neighbor-
hood of x. The definition (1.8) of the Edwards-Anderson
order parameter now implies

(1.20)

(1.18)

qE~ = lliil D( ), 7 (1.19)

relating qEg to the replica diagonal components of Q.
[A reminder: the Einstein summation convention on the

Note that [(S;~(vi)S~~(&2))] = 0 for i g j because of
the Z2 gauge symmetry, and no subtraction of products
of disorder averages is necessary, as a subtraction anal-
ogous to that in (1.22) below will vanish for this case.
After coarse graining both i and j over their respective
averaging regions in the neighborhoods of x and y, we
obtain the correlator of the order parameter Q
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G(z —y, Ti T2 T3 T4)

= lim ) ((Q„(z,Ti, T3)Q„„(y,T2, 74))).
agb

(1.21)

G will be found later to behave as the propagator for Quc-

tuations of the Q order parameter field about the mean-
Geld theory, and is directly analogous to a corresponding
object in the classical spin glass.

A second correlator arises upon considering Buctu-
ations (due to the randomness) of the on-site spin-
correlation function (S;„(Ti)S,„(T2)). The second cumu-
lant of these fl.uctuations can be obtained &om a quantum
mechanically disconnected correlation function

G (i j Ti 72 T3 T4) = [(S.~(Ti)S.p(T2)) (S, (T3)S, (T4))] [(S,p(Ti)S,p(T2))] [(S, (T3)S~ (T4))] (1 22)

After coarse graining this becomes another two-point correlation function of the order parameter Q,

G (z —y, Ti —72, T3 —T4) = lim ) ((Q (z, Ti, T2)Q„„(y,T3, T4))) —D(T, —72)D(T3 —T4)a~o n(n —1) agb
(1.23)

obtained as before by averaging over i and j in neighborhoods of x and y. The analog of G" in a classical spin glass
is trivial, since S;„=1. Higher moments of the on-site correlation function can also be constructed, and the entire
set is expected to have rather nontrivial scaling properties near the quantum phase transition.

Finally, to exhaust the set of diferent two-point correlators of the Q field, we consider the connected correlation
function G

G'„(i —j, Ti —T4~T2 —74, T3 —T4) = [(S;„(Ti)S;~(T2)S~p(T3)S7 (74))]
1
,a„„S,.[(S,-.(,)S;.(,)) (S,,(,)S, ( .))]

1
pp - [( *-( i) 2-( 3))(S'P(T2)S2P(T4))l

1
24 ~ p [(S' (Ti)Si ( 4)) (S'P(T2)SiP( 3))] (1.24)

where we used the symmetry properties. After coarse graining, we obtain

G'„„p (z —y, Ti —T4, T2 —T4, T3 —T4) = lim —) ((Q „(z Ti, T2)Q (y T3 T4)))

1 d
2 ~pv~pa (G (Z y& Ti T2& T3 74) + D(7i T2)D(73 T4))

1
2 ~~p'LaG(z yi Ti —T3) 72 T4)

1
2 4a~&pG(z y~ Ti T4~ T2 T3). (1.25)

Any scaling theory of the transition should obtain the
scaling dimensions and functions of D, G, G, and G,
and the possibilities appear rather varied.

Two important susceptibilities can also be related
to the correlators considered above. The Edwards-
Anderson spin-glass susceptibility y, g is given in the
paramagnetic phase by

(1.26)

classical theories. After coarse graining we have the ex-
pression in terms of G

y,g
—— d"xd7yd72G X&7y 72 (1.28)

The second susceptibility associated with the spin-glass
order is the nonlinear susceptibility, y„~, which is given
by

where
gnl = d & d'T1d72d73G~~~~ X& 71 {1.29)

p'j: d7 S p 0 Sjp 7 (1.27)

and is analogous to the corresponding object used in the

The outline of the remainder of the paper is as fol-
lows. In Sec. IIA we begin by setting up the Landau ac-
tion functional for the Gnite-dimensional models near the
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zero-temperature phase transition, on which most of our
results will be based. In Sec. IIB, this functional is min-
imized to yield mean-field. theory, including for the first
time external fields; correlation functions are discussed at
the Gaussian level. In Sec. III, a renormalization-group
method is used to examine the stability of the mean-field
results to Buctuations, and to search for nontrivial ex-
ponents below the upper critical dimension d„= 8 (no
accessible perturbative fixed points are found in d ( 8,
however). Section IV discusses general scaling theory
and compares with results &om numerical simulations.
Sketches of a derivation of the Landau theory and of Grif-
fiths singularities appear in the appendices.

II. LANDAU THEORY

A. Landau action functional

In order to write down the Landau theory for our
model it will be useful to first review what is required
in general of such a theory. The starting point of a Lan-
dau theory is a Landau (or Landau-Ginzburg-Wilson)
functional which as a first step describes the free energy
of the system near its critical point as a functional of
its order parameter, for example the magnetization P of
an Ising-like ferromagnet near its classical finite temper-
ature transition. In principle, the functional arises by
considering the free energy in the presence of a field, say
h(x), that is thermodynamically conjugate to P (so that
—f hgd x appears in the Hamiltonian), finding the ex-
pectation of P for each h(z), and then writing the free
energy as a functional of P through a Legendre transfor-
mation. In the present example this would be assumed
to take the form

dd~ ~ 2+ p 2+ p 4+
2 2 4

where the dots denote terms with higher powers of P
and/or more derivatives. Mean-field (or Landau) critical
behavior can be obtained by taking P(z) = P indepen-
dent of x and minimizing with respect to P. Note that

T —T, appears linearly. Then for r ) 0, P = 0
and for r ( 0, P = +(~r~/A) ~, and the usual critical
behavior of Landau theory can be obtained.

The key assumptions of Landau's approach are that,
since P is zero on the disordered (paramagnetic) side,
then we can consider P small and expand in powers, and
the lowest powers will dominate near the critical point
(odd powers are dropped by symmetry in this particu-
lar example). Similarly dependence of the coefficients on
T—T is analytic and all except the leading one r = T—T
can be dropped. In considering position dependent Buc-
tuations, W can be used as the action in a functional
integral over P, and the interactions of P at different po-

sitions are represented by the expansion in powers of gra-
dients, corresponding to the short-range interactions in
the original physical problem.

Turning to the quantum spin glasses discussed in Sec. I,
we notice as mentioned there that the "order parameter"
((Q„„(2:,r, r'))) is found in mean-field theory to be a
function b„„D(r r')—, independent of z, which is nonzero
for all finite ~ —w' even in the paramagnetic phase. We
therefore cannot expand in powers of Q as Q is typically
not small. If instead we attempt to expand in powers
of Q —D, it turns out that the action obtained contains
very nonanalytic &equency dependence near g = g and
so is unsatisfactory according to the criteria above.

The solution is found by examining the Fourier trans-
form D(ur) of D(r), Eq. (1.18). D(r) is a positive
function that decreases monotonically with ~r~, and its
Fourier transform has similar properties in u. The con-
stant in Eq. (1.15) is thus of order 1, and in fact can
contain dependence on g —g and on u, but these are
analytic and negligible compared with the more singular
dependence contained in gu2+ A2. The latter part is
nonanalytic in both u and g —g as g ~ g and u ~ 0,
but it is small in this region, and it is this part in which
we wish to expand the free action. That is, we expand
in Q(x, ~i, ~2) —const'(cui + u2) where the constant is
chosen so that ((Q)) —const is zero (only) at ~i ——~2 ——0
and g = g, . The nonanalytic behavior of ((Q)) —const
away &om this point should emerge from minimizing the
action that should be analytic in form in both &equency
(or 7 derivatives) and g —g, . The ln(g —g, ) corrections
to power-law scaling should also emerge in this way.

In Appendix A we sketch a direct derivation of the
action functional in a microscopic model. Here we will
proceed by the alternative procedure of writing down all
terms allowed by the above considerations, together with
simple symmetry requirements. We use the same nota-
tion Q(z, ri, r2) for the new, shifted field. As it difFers

only by a h(ri —r2) from the original field, which has
little eKect on the scaling of critical correlations, we can
usually ignore the change in definition.

Explicitly, the terms allowed in the action must satisfy:
(1) The action is an integral over space of a local op-

erator which can be expanded in gradients of powers of
Q evaluated at the same position x.

(2) Q is bilocal (i.e. is a matrix) in time, and each
time is associated with one of the two replica indices and
with one of the two O(M) vector indices [see definition
Eq. (1.17)]. All these "indices" can appear more than
once in a term and are summed over freely subject to the
following rules before summations:

(a) Each distinct replica index appears an even number
of times.

(b) O(M) vector indices appear twice each, and only
when the corresponding replica indices are the same, due
to the O(M) symmetry of the randomness.

(c) Repetition of a time "index" corresponds to interac-
tion of spins, which must be local in time and accordingly
can be expanded as terms with times set equal plus the
same with additional derivatives; it occurs when the cor-
responding replica indices are the same, and only then.

(3) The action should be invariant under space and
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time translations, and under space and time inversions
(under which Q is invariant).
(The rules for the indices may be best appreciated dia-
grammatically or from the microscopic approach in Ap-

pendix A. )
This procedure yields the Landau functional [recall

that we are using the Einstein summation convention for
the O(M) vector indicesj:

=1 d 1 aa 1 abA = — d x &
— d~) + r Q„„(x)ri, ~2) + — d~id~2) VQ„(x, ri, ~2)t K — O~q 8~2

t

d7id72d7s ) Q„(x,7i, ~2)Q (x, ~2, ~s)Q „(x,vs, 7i)
a, b, c

d7 Q » Z)7.)7 &~ Zy7)7 + 5 » Z)7)7 » Xy7.)7

d"z d7j.d72 ~„x~~y~wy ~v ~~~2) 2 +
a, b

There are four terms in A whose coefficients contain
products of powers of only two coupling constants, r and
t; this form can be reached without loss of generality by
suitably rescaling the space and time coordinates. The
reasons for our rather peculiar choices for these couplings
will only become evident when the structure of perturba-
tion theory is discussed. We have only retained the terms
which our later power counting will tell us are relevant
or marginal in high space dimension d, together with the
leading irrelevant term. The exception to this statement
is a quadratic term

f d xd7.,d~2 ) [Q„'„(x,~„r,)]
a, b

(2.3)

which appears to be highly relevant in all d. However,
it is a "redundant" operator as it can be removed by a
further transformation Q M Q —Cb b~„b(wi —72) for
a suitable choice of C. This relies on the presence of
the cubic term with coefficient r/t, and on the implicit
n ~ 0 (replica) limit to eliminate the contribution of the
last 1/t term. The net effect is that if r is redefined
to absorb a constant, the action has the form given in
(2.2). We will see that this choice of definition of Q
to eliminate the term in (2.3) also makes ((Q)) = 0 at
u = 0 and g = g . This leaves r, the coupling in the
term linear in Q, as the parameter expected to drive the
system through its transition.

The possibility of eliminating a quadratic term by such
a shift in the field variable arises generally in field theories
containing a cubic term. The simplest example is for a
theory with a single scalar field P, which arises physically
in the Yang-I. ee edge of a classical Ising-like ferromag-
net in an imaginary magnetic field. The Geld induces
an ixnaginary expectation of P, which when eliminated
by redefining P by a shift, generates, due to the real P4
coupling in the Ising system, an imaginary qP term in
the new P. In the Landau theory of this critical point,

due to Fisher, 27 it is again convenient to shift away the
quadratic term and leave a linear terin in P in the ac-
tion. The coefficient, r, of this term controls the distance
&om the critical point, where power-law correlations of
P appear. Since r appears in the same form as an (ad-
ditional) external field, there is only a single scaling field
(P) in the critical theory, '2 and there is a scaling rela-
tion between the exponent g governing correlations of P
at the critical point, and the correlation length exponent
v. In our spin-glass model, one might similarly expect
an exponent relation, since the operatori Q„„(x,7., w) is
the "thermal" operator whose coeKcient in A drives one
across the transition, while Q„(x,7i, w2) is the basic or-
der parameter field. However due to the "trace" over
replica, O(M) vector, and imaginary time indices in the
thermal operator, it is far from clear that these two will
in fact have the same scaling dimension in general. We
will address this point further in Sec. IV. However at
mean-field level, i.e., at the Gaussian Gxed point, such a
relation holds and we will find v = 1/4, the same value as
for the Yang-Lee problem in mean-field, this being due in
both cases to the linear plus cubic form of the action, in
contrast to the value v = 1/2 found in most mean-field
theories. We note that for the classical spin glass, though
the leading coupling is cubic, the replica diagonal com-
ponents Q are not critical and are omitted from the
Landau theory, so the same mechanism does not apply,
and v = 1/2 in mean-field theory.

A few last remarks on the action A: the terms with co-
eflicients u/t and v/t arise from quartic couplings of the
spins within. a single replica (see Appendix A). They are
the ozily terms retained that break replica O(n) symme-
try to S, the permutational symmetry. If they were
omitted, the action would describe randomly coupled
simple harmonic oscillators which is definitely an unsta-
ble system in finite dimensions, and so anharmonic terms
(and hence u and v) are expected to be necessary for
stability. The last term with coefBcient 1/t represents
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randomness in r (with variance = +1) which could orig-
inate from randomness in g (see Appendix A) but is also
generated by the random J;z's. It turns out to play a
central role.

sence of a static moment in the paramagnetic phase. In-
serting this into A in (2.2), we obtain for the &ee-energy
density W/n (as usual, X/n represents the physical dis-
order averaged free energy)

B. Phases of the model

In this subsection we will solve the action A in the
mean-field, or more accurately, tree approximation, i.e. ,
without any momentum loop integrations for Huctua-
tions. For the infinite-range model, where spatial de-
pendence of Q can be dropped to obtain either thermo-
dynamic quantities as averages over the whole system,
or on-site correlation functions, this is exact and consti-
tutes a simpler rederivation of results obtained earlier.
For the short-range finite-dimensional quantum models,
as in the classical case, mean-field theory should be a
useful starting point towards understanding the overall
phase diagram and properties of the phases. For the
critical properties of the quantum transition, the mean-
field theory is an approximation whose validity as an at-
tractive weak-coupling fixed point under renormalization
group in sufBciently high dimensions will be examined in
the next section. Here we will concentrate on the cor-
relators defined in Sec. IB, and study first in Sec. IIB 1
the paramagnetic phase and critical point. We will then,
in Sec. II8 2, study the spin-glass phase and the appear-
ance of replica symmetry breaking at finite temperatures.
The properties of these phases in a longitudinal magnetic
field will be discussed in Sec. IIB3 and in a field cou-
pling to the conserved angular momentum (defined only
for M ) 1) in Sec. IIB4.

- 2

(2.6)

The contribution &om the last 1/t2 term in A vanishes
in the replica limit n —+ 0 and is therefore absent. The
stationary point with respect to variations in D((dd) gives
us the result

D(pd) = ——((u + r)')2, (2.7)

where r is given implicitly by

r =r —(u+Mv) —) (~ +r) ) (2.8)

~2 r- i/2
y" (ur) = sgn((v) (2.9)

The sign of D((d) is determined by the fact that the
Fourier transform D(r) is positive. This solution for
D(pd) is well defined for r & 0, while no sensible para-
magnetic solution exists for r & 0, suggesting that the
critical line in the r, T plane between the paramagnetic
and spin glass phases is r = 0. The local density of exci-
tations y" ((v) can be obtained by analytic continuation
of D((dd) to real frequencies and is therefore

Quantum paramagnet and the critical point

The saddle-point and perturbative analysis are most
conveniently performed in momentum (k) and frequency
(w) space. We will work at a finite, but small, temper-
ature T = 1/P, and (v will therefore take values at the
discrete Matsubara &equencies. The normalization of the
Fourier transform is set by

There is a gap, ~r, in the spectral density which van-
ishes at the critical point r = 0. This gap is expected to
be filled in at finite temperatures by loop corrections in-
volving inelastic efFects; in addition, Griffiths effects (see
Appendix B) will lead to subgap absorption at both zero
and finite temperatures.

From (2.8) we determine that the critical point r = 0
occurs when

p
q(k, w&, wg) = f d z d7&dTap(T+&, 7a),

0

= .(T) —= ).I I
~ (2.10)

Xei(A:~ —Cd1 V1 —Cd 2 V.2 ) (2.4)

In these Fourier transformed variables we expect the
saddle-point value of Q to obey the following ansatz in
the paramagnet and at the critical point

Q„„(k,(ui, (v2) = Pb'„„h (2rr) b (k)b', +, pD((ui).

(2.5)

The &equency summation is obviously divergent, and the
result will depend upon the nature of the ultraviolet cut-
ofF. However the temperature dependence of the result
is entirely in the subleading term, which turns out to be
cutofF-independent (provided the cutofF is smooth on the
scale of T). The summation can be evaluated by the
Poisson summation formula, which yields

The momentum and frequency structure of the right-
hand side follows &om the Fourier transform of (1.18).
An explicit factor of P has been inserted to make D((d)
finite in the zero-temperature limit. The structure in the
0(M) spin space follows &om spin rotation invariance,
while the replica-diagonal structure follows &om the ab-

7rT2
r, (T) = r, —(u+ Mv)

3

where for a high-frequency cutoK around A g

(u+ Mv)A2
r, = r, 0 2'

(2.11)

(2.12)
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A2
((u + b, )'~ = + ln(ciA /b, )

+.O(e ~ ) for b. )) T,
A2 mT2 Q2

+ TA+ ln(c2A /T)2' 3 27r

+O(A'/T) for 4 « T, (2.13)

where c~, c2 are constants of order unity. Then, upon
examining the solution of (2.8), we find that there are
three difFerent regimes in the paramagnet phase, labeled
as I, II, and III in Fig. 1. The conditions defining the
regimes, and the corresponding results for F are given
below:

(„+M„&&„~A,"&&"„„)~, Regime I, (r —r, ) ~ )) T

Regime III, [r —r, (T)]i~2 && T.

(2.14)

The line between the paramagnetic and spin-glass phases
is shown in Fig. 1 in the r, T plane.

We now turn to determining the behavior of the "gap"
parameter r close to r = r, and at finite T, by solving
(2.8). First we evaluate the &equency summation, using
the following identity:

Regime I is that of the quantum paramagnet, where the
properties are those of the quantum-disordered ground
state, and thermal efFects are not important. Regime
II is "quantum-critical:" here the system behaves as if
it is at the critical point r = r, and the properties
reflect those of the critical ground state and its exci-
tations; it is the analog of the quantum-critical region
discussed in Refs. 2 and 3 for quantum rotors in the ab-
sence of disorder. Finally, in regime III, close enough
to the finite-temperature phase transition, classical ef-
fects take over completely, and the behavior is that of
the usual finite-temperature spin-glass —paramagnet tran-
sition in the classical model. Regime III also extends
into the spin-glass phase, although here we have only ob-
tained results for its paramagnetic portion. Notice that
in regime III, r now depends upon the square of the dis-
tance from the transition r —r, (T): as will become clear
from later results, r / plays the role of an inverse corre-
lation length, so this is just what is needed to transform
the quantum model with v = 1/4 to the classical model
with v = 1/2 in mean-field theory. The results (2.9)
and (2.14) for the local spectral weight and the asymp-
totic form of the gap, including the logarithmic correction
are seen to be identical to those obtained in the infinite
range model by difFerent methods earlier, as quoted
in Sec. I A above [there was a factor of 2 error in the
result for regime II in (2.14) in Ref. 18].

The asymptotic form of the free-energy density, T can
be obtained &om (2.6), (2.7), and (2.14). At zero tem-
perature this yields

SPIN
GLASS

PARAMAGNET

r

/
i

W(T = 0) 1 A ('1 u+ Mvi A2

nM tK2 vr q6 8~ j
1

2(u+ Mv)

(r —r, )2 2Ã

lnfh2/(r —r )] (ui MnI' I'
(2.15)

FIG. 1. Phase diagram of the action A [Eq. (2.2)] as a func-
tion of temperature T and the Landau parameter r which is a
measure of the strength of quantum Iluctuations (for M = 1,
r is proportional to the transverse field'). There is no sig-
nificance to the position of the y axis, i.e., r = 0 does not
correspond to zero quantum fluctuations which for (1.1) and
(1.3) is g = 0. The full line is the only phase transition and
dashed lines denote crossovers between different regimes. The
position of the phase transition is given by r = r, (T) where
r, (T) —r, (0) T ~'" [in mean-field theory zv = 1/2 and
the position is given by (2.11)]. We now list the character-
istics of the regimes, and the conditions which bound them
[note r, = r, (0)]: (I) (r —r, )' )) T, quantum paramag-
net: thermal eifects are secondary; (II) ~r —r,

~

"
&& T, quan-

tum-critical: the critical ground state at r = r and its ther-
mal excitations determine the physics; (III) ~r r(T)~ "

&& T, —
classical: the behavior similar to that of the classical, fi-
nite-temperature, spin-glass; and (IV) (r, —r) " &) T, quan-
tum spin-glass: as in I, thermal effects are secondary, but the
ground state now has long-range, spin-glass order.

W(r = r„T) —W(r = r„T = 0)
nM

4~'r'
(I+ O[I/ln'~'(A /T)]}+.45t+2 (2.16)

Note that the first three terms in W involve only integer
powers of r —r . This does not immediately imply that
these terms form a smooth background through the tran-
sition, as there could be discontinuities in the coefIicients
of r —r: a computation on the spin-glass side is required
to determine this. Intuitively, we might guess that the
first two cutofF-dependent terms will be analytic through
the transition, while the coeKcient of the (r —r, ) term
may have a discontinuity —we will see that even this dis-
continuity does not appear. The last term has a manifest
logarithmic singularity at r = r, : we will relate this sin-
gularity to marginal operators in Sec. III.

We also examined the temperature dependence of the
&ee energy in regime II (Fig. 1), above the quantum crit-
ical point r = r, and found
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This predicts a low-temperature specific heat T . A
scaling interpretation of the power of T will be given later
in Sec. III.

We now turn to a tree-level determination of the cor-
relation functions that were introduced in Sec. IB. To
do this we must expand Q about its saddle-point value

Q„(k, id„(u, ) = Ph„h (2vr) "h"(k)h, +, pD(qadi)

+Q (k, tdi, Cd2) (2.17)

Mt
G(k, ldi, Ld2) =

k + Qadi + r + Q(d2 + r
(2.1S)

Note that this propagator has a factor t in the numerator
and is independent of e—the factors of K, were placed

and evaluate correlators of Q. Expanding A to order Q
we can obtain the propagator of the Q field. It is easy
to see that when a g b, this propagator is in fact 1/M
times the G correlator [Eq. (1.21)]

judiciously in A to achieve this. From the form of (2.18)
we can deduce that at the critical point r = 0, !id! k2,
so the dynamic exponent z = 2, while for r g 0 there is
a length scale ( r ~ so that the exponent defined by

(r —r, )
" in regime I is v = 1/4.

It is useful for the subsequent considerations to develop
a diagrammatic representation of the Q propagator and
the interactions in A. As Q is a matrix field, we will
use a double-line representation for the Q propagator,
G [Fig. 2(a)]. Each line can be considered to be one of
the 8 field components of the composite Q [Eq. (1.17)],
and carries with it a replica index, spin index, and fre-
quency. The momentum is however carried by the pair
of lines. The u/t and v/t terms now become two-point
interactions [Fig. 2(b)] at which frequency is transferred
between the four lines. The rc/t interaction is the three-
point vertex shown in Fig. 2(c), while the 1/t2 term is in
Fig. 2(d): no frequency is exchanged between the lines
in the ~/t and 1/t2 vertices.

The connected Green's function is given by the sum
of all diagrams with repeated two-point u and v interac-
tions. Such diagrams can be easily summed and yield

1 u(b„ph„ + h„ b„p)/2G' (k, qadi, id2, ~ds) = — G(k, ~i, ~d2) G(k, ids, ~4)M2t 1 + uL qadi + (d2 ~ k, r

vb„„bp
[1+uL (a i + ~2) k) r)][1+(u+ Mv)L(~i + a 2, k, r)]

(2.19)

where the three &equencies uq, cu2, u3 arise &om the
Fourier transform of the three time arguments in (1.24)
and (ug + u)2 + (us + ~4 ——0, and

1I (u, k, r
/3 ~ k2+ /02+ r 4- Q(O —id)2+r

(max (k', !id!, ~r, T) )
(2.20)

is the frequency integral that appears between two two-
point vertices (we have assumed that we are not in the
classical regime III). Note that the connected Green's
function is proportional to the quantum-mechanical in-
teractions u, v as it should be. Further note that G t
as the two G's carry a factor of t.

Finally we can also evaluate the disconnected Green's
function G". This is obtained by attaching G' and G on
the ends of a 1/t2 vertex [Fig. 2(d)], and carrying out
the intermediate frequency integral (it is not necessary
to include graphs with repeated 1/t insertions as they
all vanish in the replica limit n -+ 0); this gives

of t. It is seen that, even neglecting the denominators
that contain L, G, and G" both vary as G, so are more
strongly divergent at long wavelengths than G.

The results for the correlation functions now allow us
to define the correlation exponent g. The basic correla-
tion function is G, and we define g by

G(k, o, o) k +", (2.22)

G"(k, o, o) - k-'+~, (2.23)

so that g is also zero in the Gaussian approxixnation.
In real space G" x ~ + +"~. Discussion of these
exponents will be continued in Sec. III and IV.

so that g = 0 in mean-field theory, as is conventional.
In real space) G then decays as x ~"+ +"~. Our def-
inition, though conventional in its relation to mean-field
theory, difFers &om that used in two recent papers.
Their g, which we call g', is related to ours by g' = g+ z.
We can also define another exponent for G", in analogy
with the random-Geld Ising model, by

G~(k )
1 G(k~ui~ —ui)G(k~w ~

u
(2.21)

t [1 + (u + Mv) L(0, k, r)]
2. Spin-glass phase

Note that the factor of 1/t with the vertex will cancel
against the two t's in the G's, and G is independent

We will now look at the mean-field behavior of A for
r ( r, (T) where spin-glass order appears. This phase
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au N~
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b

N&+ N& = C03+ C04
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a vN~

au N4

a v N~

U/t
avN4

Q„„(k,~„(uz) = (27r) b"(k)8„[PD(~i)h,+, oh

+p'/i „o/i „oq'],
D(u)) —= D(oi) + Pqb o. (2.24)

Sec. III; all such terms will continue to be innocuous at
zero temperature, but one of them becomes dangerous
at any finite temperature and leads to replica symmetry
breaking, whose strength is proportional to temperature.
The mechanism of the replica symmetry breaking at low
temperatures will be discussed within the framework of
our Landau theory.

The generalization of the saddle-point ansatz (2.5) to
the spin-glass phase is

(c) (d)

FIG. 2. (a) The double-line representation for the propa-
gator of the Q field; each line represents one of its constituent
S fields, and carries its own replica (a, b), vector O(M) (p, v)
and frequency (ui, u2) indices. Momentum (k) is however
only carried by the composite double-line propagator. Also
shown is a twisted partner which can replace the untwisted
propagator in all the Feynman diagrams in Figs. 6 and 7.
(b) The quantum-mechanical interactions u/t and v/t with
replica, O(M) and frequency indices shown explicitly. Note
that the single lines do preserve their replica and O(M) la-
bels, but can exchange frequency. All double-line propaga-
tors carry the same momentum. (c) The cubic coupling r/t
Each single line now preserves replica, O(M) and frequency
labels through the vertex. The double lines however do ex-
change momenta, with the total momentum being conserved.
(d) The randomness-induced 1/t quadratic coupling. Again,
each single line preserves replica, O(M) and frequency labels.

was studied in Ref. 18 for the infinite-range model only
at M = oo, and a replica-symmetric solution for the Q or-
der parameter was obtained at all temperatures. The ab-
sence of replica-symmetry breaking was not surprising as
the classical model is also known to preserve replica sym-
metry at M = oo.2 The present mean-field theory is be-
ing carried out at finite M, and so one expects, first, that
at finite temperature replica symmetry breaking should
occur since the system maps onto the classical system,
and second that at zero temperature the ordered ground
state resembles that of a classical system, However, this
leaves open the question how replica symmetry breaking
behaves as T ~ 0. This turns out to be quite subtle al-
ready in the classical spin glass, ' ' with which we will
compare and contrast our results after they have been
described.

We will begin this section with a mean-field treatment
of A [Eq. (2.2)], which yields a replica-symmetric solu-
tion for the spin-glass phase at all temperatures. We
will then consider the consequences of adding higher-
order terms to A, terms which are formally irrelevant
under the subsequent renormalization-group analysis of

We have introduced the parameters q, q, and D(w),
which have to be varied to determine the stationary point
of the free energy. As before, factors of P have been
judiciously placed to ensure that all these parameters
are finite in the limit p -+ oo. Note that the replica
off-diagonal components of Q at the saddle-point are
nonzero only when both frequencies are zero: this is be-
cause they represent averages of the type [(S(ri)) (S(r2))]
which must be time independent by time translational in-
variance of the quantum-mechanical averages. Without
loss of generality we may assume that the diagonal com-
ponents of q are zero, and that D(u = 0) = 0, as both
of these can be absorbed into q. We expect a solution in
which D(cu) is finite and continuous (except perhaps at
u = 0) as p -+ oo, in which case (1.19) implies that at
zero temperature q is just the Edwards-Anderson order
parameter qEA, the equality between GAEA and q does not
hold at nonzero temperatures, although we always have
qEA = max~pi, q . We now insert this ansatz into A and
find for the Bee-energy density T

Mn prt ) ((u + r)D(cu) + —q — ) D (~)rt 3Pt

(u+Mv) 1 ) -( )i
2t P

rP' /'
s Trq' Trq')

q +3@ +3t ( n n
(2.25)

All factors of P have been written explicitly and all other
variables are expected to be finite in the limit P ~ oo.
Let us now examine this limit in T. In the first four
terms, we only have factors of 1/P associated with fre-
quency summations, and the combinations should be fi-
nite as P ~ oo. The remaining terms all arise &om the
static contributions to the Q term in A, and appear to
have a dangerous divergence P2 as P ~ oo. We will de-
termine the saddle point of W for finite P below, and find
that in the replica limit of n m 0, all the terms of order
P2 (and also of order P) in fact cancel with each other
at the saddle point, yielding a finite zero-temperature
&ee-energy density.

We now find the saddle point of W with respect to vari-
ations in q, the function D(w), and the space of ultramet-
ric matrices q . This can be done by a straightforward
extension of the classical methods and we simply quote
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the final results, valid for arbitrary P

1

„):l~l—r(u+ Mv)

1= („+M„)„[&.(T)
'—&]

q =q fora/6,

(2.26)

(2.27)

D(~) =— (2.28)

where r, (T) was defined in (2.11). Note that this solution
is replica symmetric as all ofF-diagonal matrix elements of
q are equal. The order parameter q has to be positive
in the spin-glass phase, which is therefore restricted to
r ( r, (T). At zero temperature, the properties of D are
a little more transparent in the time domain,

D(~) = q+
1 atT=O,

7l K7
(2.29)

where it decays to a finite, positive value (= q = qE~)
at large time. Note also that the classical definition
qE~ = max ~i,q, and (2.27) give the same value of
qE~, this equality between the two approaches to qFA is
also easily seen to lead to a cancellation of all terms of
order P in P. The 1/7 decay in D(7) also holds at
the critical point r = r„T = 0 where the decay is to
zero. The power-law decay is related to the gaplessness
of the spectral density in the entire spin-glass phase [from
(2.28) y" ((u) = u)/K].

The results [(2.26)—(2.28)] are actually valid in both
regimes III and IV of Fig. 1 in the spin-glass phase. As a
result, the order-parameter exponent P = 1 in both the
classical and quantum transitions. Crossovers between
regimes III and IV will presumably appear upon consid-
ering Huctuations about the present mean-field theory.

We also quote the result for the free-energy density in
the spin-glass phase at zero temperature:

&(T = 0) A4 (I u+ Mvl
!+nM 7rK2t i6 8vr )

r —r — r —r'
27rdr2t

' 2(u+ Mv)Kzt

(2.30)

This difFers from the expression (2.15) for the param-
agnetic phase only by the absence of the term with a
logarithmic singularity. The terms in (2.30) thus do con-
stitute an analytic background to the singular part.

Replica symmetry breaking. It is known from the Lan-
dau theory of the classical spin glass that replica symme-
try breaking does not appear until terms of order Q4
have been included in the action. So to address the sta-
bility of the replica symmetric mean-field solution (2.26)—
(2.28), we have to extend A to include at least such terms.
Upon examining these terms, a second obstacle imme-
diately con&onts us: one of the quartic terms has four
time integrals, so the contribution of the static moments
to the free energy appears to diverge as P in the zero-
temperature limit. It is also easy to see that this obstacle
gets worse with terms of higher order, which appear to
contribute even higher powers of P to the free energy.
It might therefore appear that it is necessary to resume
these strongly divergent terms and that the whole Lan-
dau theory &amework is breaking down in the spin-glass
phase. We now argue that this is not the case, and that
enough factors of P cancel out to yield finite results for q,
q

~ and D(w) in the P -+ oo limit. One can proceed by
the usual Landau theory &amework to develop an expan-
sion for all physical quantities in powers of [r, (T) —r],
and all dangerous factors of P will cancel out order by
order. We illustrate this cancellation explicitly for the
quartic terms. We consider three of the many quartic
terms which can be added to (2.2) (we drop all vector
indices p, v and treat only the case M = 1, as the vector
nature plays no role in the following):

——f d T(yz J dvxdvg) ]Q ]T, v&, ~s)] +yg f dvgdvgd s) ]Q T]T, T&, v2)]']Q ' z,]Tv~)]'
a, b a,b, c

+y3 d7] d72d73d74 X) 7] 'T2 Z) 72) 73 X) 73 74 Z 74 7 y )

a, b, c,d
(2.31)

where the initial dots denote the terms already in (2.2).
Let us now insert the mean-field ansatz (2.24) into the
extended action A. The analysis for arbitrary ultramet-
ric matrices q is rather complicated fortunately the
general principles become clear by allowing for a small
amount of replica symmetry breaking. We will begin by
considering the replica symmetric case, and then add a
perturbation to allow for replica symmetry breaking. For
the replica symmetric case q = q for all a g 6, we find
for the free-energy density:

K

3 (q —q)'(q + 2q)

+
6
'

(q —q)(q + q)(q' + q')

+ (q —q) (q+3q) +/3'Vs

6 (2.32)
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- + yiq
, 1 2y2 - + ys (2.33)

with omitted terms being higher order in both q and
1/P. Here we see an example of our earlier claim that the
Landau-type expansion in powers of the order parameter,
q q, is well behaved, with no singular powers of P
appearing. We also see that q —q 1/P as desired. Note
that the most important contribution to q —q comes &om
yi, the terxn associated with the fewest powers of )9 in the
original expansion for T. Terms associated with y2 and
ya, had higher powers of P in X, make contributions q —q
which are higher order in q. This happens because

We have explicitly written down terms which depend only
upon the static moments; all omitted terxns are explic-
itly finite in the limit P ~ oo and play no role in the
following discussion. The key observation that we make
from (2.32) is that, term by term, powers of P are al-
ways paired with an equal number of powers of (q —q): a
mean-field solution with (q —q) 1/P will therefore give
a finite limit as P ~ 0. That this actually occurs can be
verified by obtaining an explicit expression for q in terms
of q: we take the derivative of W with respect to q [all
terms not explicitly displayed in (2.32) are independent
of q], equate it to zero, and obtain an expansion for q in
terms of q; this yields

nitude of the replica symmetry breaking will be propor-
tional to 1/)9, in which case n ~ 1/P. The contribution
of the replica broken component of q to W is now seen to
be 1/P, as is also the case in the classical limit. ~ We
will verify these expectations in a more complete analy-
sis of the replica symmetry breaking below. For now we
note that if we insert the expansion (2.33) in (2.36) we
find the n-dependent contribution to the &ee energy

—4Pn yiq /t +2 -2
(2.37)

~ ~ ~

K

ahab

The couplings e, y2, and y3 have canceled out and there is
an instability towards replica symmetry breaking driven
solely by yq, the analogous result for the classical model
is well known. 7

Let us now reiterate the rather simple conclusion to
which the above chain of reasoning has lead us: the low-
temperature replica symmetry-broken state of the spin-
glass phase can be determined simply by adding to A the
single quartic term proportional to yz, and solving the
saddle-point equations. All corrections from other terms
will involve higher powers of q, and hence (r, r), and —no
dangerous powers of P will appear in this expansion. The
q contribution to T, including the yz term, for general
q has the form

P(q —q) - q'; (2.34) (2.38)

q'=q+o. ', agb, (2.35)

so each factor of P(q —q) actually ends up behaving like
two powers of the order parameter. Thus contrary to
naive expectations, it is the terms with the fewest powers
of P which are most important in the Landau expansion.

Let us now add some replica symmetry breaking to the
mean-field ansatz

(a/ai)q(1) for 0 ( s ( si
q(1) for si ( a ( 1 (2.39)

It is a straightforward matter to obtain the optimum
saddle point of T with respect to arbitrary ultrametric
matrices q . Such matrices are characterized by a func-
tion q(s) on the interval 0 & s & 1, which is found to be
of the forms

6 2

PK(q —q) + yiq'+ 3'(q' —q')

+/3'ya(q —q)' + ".. (2.36)

where n is a small perturbation along the direction
in replica space where symmetry breaking is expected.
We choose o. to lie along the "replicon" direction of de
Almeida and Thouless, proportional to an eigenvector
along which they found an instability of the replica sym-
metric solution: n = a for a, b ) 2, n = 2(3 —n)a
for a = 1, 2 and b ) 2, ni2 = 2(3 —n)(2 —n)n, and

. For this form of q, we expand the free en-
ergy to order o.2, and obtain in addition to the terms in
(2.32)

with (expanding to the appropriate order in q):

q(1) = q ~

2yiq(1)
(2.40)

To leading order in powers of r —r, (T), we may use the
value of q from (2.26) in the above. Note that q(s) dif-
fers &om a constant over a region of length Sq which is
therefore a measure of the strength of replica symmetry
breaking; as expected this vanishes as 1/P at low tem-
perature. Alternatively we may compute, &om the above
and (2.26), the "broken ergodicity" order parameter A~
(Ref. 8)

Again factors of P are paired with (q —q) and the com-
bination will be finite as P —i oo. There is however an
overall prefactor of Pn2 which needs attention. By anal-
ogy with the low temperature properties of the solution
to the classical spin-glass, we may expect that the mag-

Eq ——q(q) —J q(N)ds

)
T[r,(T) —r]; (2.41)
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Pg(q) = ) P Ppb(q —q P)
cxP

(2.42)

is the Gibbs probability of finding overlap equal to q. The
disorder average P(q) of Pg(q) is given in terms of Parisi s

q(s) by P(q) = (dq(s)/ds) . A further key result is
that the &ee energies f are independently exponentially
distributed random variables (due to the randomness in
the J;~. 's): their distribution is

P(f) oc e~~, (2.4S)

where p is a function of T and any external fields. Thus
p is the inverse spacing of the low-lying f 's It turn. s
out that p = Psi, where si is the value of s such that
q(s) = q(1) for s ) si, and that similar results hold for
the distributions of clusters of pure phases.

We assume that similar results hold for the quantum
spin-glass (with sums over states replaced by traces).
Then our result that si ~ 0 as T —+ 0 does not mean
that many pure phases do not exist, but rather, since
by (2.40) p -+ const, that the typical energy difFerences
approach a constant, and so only the lowest Bee-energy
phase is significant in this limit. This difFers &om what
has been found in the classical Ising spin glass, where
q(s) ~ 1 as T ~ 0 for each s, but si m 1/2. ' In the
latter model, the nature of the T ~ 0 behavior of q(s)
afFects the calculation of, e.g. , the energy at T = 0 and
although we have not done the correspond. ing calculation
in our system, we expect that the same is true here. Thus
the T = 0 behavior cannot be obtained by setting T = 0
and doing a replica symmetric calculation, as the factors
of P in the free-energy calculation make clear.

Finally, we comment in passing on claims in the
literature that the infinite-range, transverse-field Ising
spin-glass has a region of stability for the replica-
symmetric solution just below the finite T transition to
the paramagnet, i.e. , for r close to but below r, (T) and
T finite. These claims disagree with our Landau theory
which finds broken replica symmetry at all finite T in

notice the prefactor of T indicating suppression of
replica symmetry breaking at low temperatures. A
renormalization-group interpretation of the dependencies
on T and r —r will be given in Sec. III.

The meaning of the statement that replica symmetry
breaking disappears as T ~ 0 in the spin-glass phase
is as follows. For the infinite-range classical spin glass,
it is well known that Parisi s order-parameter function
q(s) is related to the existence of many minima in the
energy landscape, separated by infinite energy barriers
in the ordered phase. ' ' Thus "ergodicity is broken"
and (in each realization of the disorder) configuration
space breaks up into disjoint regions, labeled by o., on
each of which a Gibbs weight e ~~ can be computed
by summing e ~ over all configurations in the region.
The partition function is then Z = P e P~ and P
e P~ /Z is the Gibbs probability for each of the "pure
phases" n, for a given set of random bonds. Each phase
o; has a thermal average spin m, for each site i; q l

(I/N) P,. m; mP is the overlap of difFerent phases, and

the spin-glass phase. We believe the earlier results are
artifacts of the approximations used therein.

3. Phases in a longitadinal field

(2.44)

while for the rotor Hamiltonian (1.1) we have

+xR h) (2.45)

with the field pointing along the 1 direction. Carrying
h, through the derivation of the effective action in Ap-
pendix A, wc find the following modification to the Lan-
dau action:

d xd~idT2) Q„(X,T1)T2) Xhbh
ab

(2.46)

where gp, g is a background, local contribution to the lin-
ear susceptibility. We will now extend the above mean-
field theory to include the additional term. It turns out
to be useful to consider the cases M = 1 and M & 1 sep-
arately, as there are significant differences between them.

(a) jrI=I, the Ising spin glass T-he fiel. d term acts like
a source for the ofF-diagonal components of Q, which are
therefore always nonzero. We will first find the complete
mean-field solution in the absence of Q4 terms, in which
case, replica symmetry will be unbroken and. all the oft-
diagonal components of q will be equal. We will then
proceed to examine the consequences of a small quartic
yi coupling, and will find that replica symmetry break-
ing occurs at finite temperature for small enough 6 and
r ( r, (T). The instability line towards replica symmetry
breaking is of course the quantum analog of the well-
known de Almeida-Thouless (or AT) line.

First, the solution at yi ——0. We insert the ansatz
(2.24) into A, determine stationary points with respect
to variations in q, q b, and D(~) and find the following
solution, valid everywhere provided h g 0:

D((u) = ——(ar + b, )'~, (u g 0,
1

h,

4L' a-f b,

~p'

(2.47)

where we have as before D(0) = 0, and the parameter 4
is d.etermined implicitly by the equation

We now consider the behavior of the system in a field,
6, which couples linearly to the on-site spin field. In
such a field, the Hamiltonian of the Ising model (1.3) is
modified by
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/~a'= r +(u+e) ——) (~ + & )'~ . (2.48)

Small h behavior. For small 6, the solution to these
equations depends strongly on the sign of r —r, (T), and
we consider the difFerent cases separately.

In the paramagnetic phase r ) r, (T), and we see by
comparing (2.48) and (2.8) that A ~ r as h ~ 0. This
value can be inserted in (2.47) to obtain the low-field
dependence of q and q. We also expanded the free energy
to order 6 and thus obtained the linear susceptibility, yp,

to order h, and we get

u+v
4[r (T) —r]

(2.55)

Finite h properties. The main phenomenon at finite
6 is the appearance of the AT surface in the phase dia-
gram; replica symmetry breaking occurs at fields below
this surface (see Fig. 3). Determination of the position of
the initial instability towards replica symmetry breaking
closely parallels the 6 = 0 calculation of Sec. IIB2. For
nonzero Ii, the generalization of (2.33) is

and the nonlinear susceptibility y„~

(2.49)
y, q' hq=q+ + (2.56)

u+v
4r 1+ (u+ ~)1,(O, 0, r-) ' (2.50)

(32m.K)'~s (2.51)

where A = (Kh2)i~a, while the &ee energy behaves as

1/3
~(~) —~(~=0) =u —

~4t (16K2ln A A )
(2.52)

Above the zero-Beld spin-glass phase we find

A = (u+ u)rk'/[4(r, (T) —r)] + G(hs),

where I was defined in (2.20), and r is given by (2.14) for
small r —r, (T); note that the result for y„i is consistent
with (1.29) and (2.19). As expected, at the transition
where r = 0, yp, remains finite, while y„~ diverges. The
singularity of y„~ at the T = 0 quantum transition is

1/(r —r, ), while at the finite T classical transition
we have y„i 1/[r —r, (T)]. The mean-field result for the
T = Osingularityiny„i asr ~ r, [y„i (r—r, ) ] difFers
&om that in the infinite-range model [y„i (r r,)—
up to logarithms]. 2

Precisely at the T = 0 paramagnetic —spin-glass phase
boundary, we find the following low-field dependencies

where we have turned on quartic yi coupling, but not the
unimportant yz, ys terms [this equation is consistent with
(2.53)]. We now perform a replica symmetry-breaking
deformation of q as in (2.35), and evaluate the change in
the free energy to order n2 This .generalizes (2.37) to

6Pn2 f h~ 2yiq2 )
(4q 3

(2.57)

~~AT =
s( )s [r&(T) (2.58)

A sketch of hA~ as a function of r and T is shown in Fig. 3.
An important feature of the above result is that hA~ has
a nonzero limit as T —+ 0. So, even though the strength
of the replica symmetry breaking becomes vanishingly
small as T —+ 0, it requires a Bnite field strength to re-

h

There is an instability towards replica symmetry break-
ing only above the spin-glass region, r ( r, (T), in which
case we find from (2.53) the following final result for the
position of the AT instability:

which gives from (2.47)

[r,(T) —r]+ O(h ),

h2

4qrP

(2.53)

The absence of any h term in q leads to the vanishing of
the Q-field contribution to yi„, which is now given only
by its background value

(2.54)

Recall that the classical model also has a constant linear
susceptibility in the spin-glass phase. The nonlinear sus-
ceptibility can be obtained by expanding the free energy

FIG. 3. Mean-Geld phase diagram for the M = 1 Ising
spin-glass in a longitudinal Geld h. The surface shown is the
analog of the de Ahneida-Thouless (Ref 33) line; E.q. (2.58)
determines the surface position close to quantum critical point
r = r and T = 0. Replica symmetry breaking occurs for
values of h below the surface. However the strength of the
replica symmetry breaking vanishes both as h approaches the
surface, and as T —+ 0; the strength of the replica symmetry
breaking is given by (2.6G).
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store replica symmetry even at an infinitesimal T. We
can quantify this by obtaining an explicit solution for the
replica symmetry breaking for h below hAT. The compu-
tation parallels that of Sec. IIB2 and that for the clas-
sical case: the only modification of the h, = 0 result for
the order parameter q(s) in (2.39) is that there is an ad-
ditional plateau at q(s) = qo for 0 ( s ( sp = s]qo/q(1)
with

/3a2i"
qo ——

I(8yq )
(2.59)

As in (2.41) we can also obtain the broken ergodicity
order parameter

T(t"-h."i')i/3
q— AT (2.60)

which is clearly nonzero for 6 ( hAT. Notice however
the prefactor of T, which indicates the weakness of the
replica symmetry breaking.

M ) 1, quantum rotor spin-glass. We now have to
consider the distinct behavior of the components of Q
which are longitudinal and transverse to the applied field.
For a field along the 1 direction, the replica oK-diagonal
components of the longitudinal Qqq are always nonzero,
while those of the transverse Q», p ) 1, do not couple
linearly to the applied field, and need not be nonzero.
The Gabay-Toulouse (GT) lines identi6es the boundary
along which transverse, replica o8'-diagonal components
of Q turn on, and we will determine its position below.

We find it slightly more convenient to determine the
GT boundary by approaching it from below, where
the transverse, replica-og-diagonal components of Q are
nonzero. We generalize the ansatz (2.24) by introduc-
ing the longitudinal parameters qL, qL„and Dl, (~) for

p = 1, and the transverse parameters q2, , qT, and DT (~)
for p & 1. As the GT boundary is present even in the
absence of replica symmetry breaking, we will work with
the action A with the quartic terms omitted. In this case
ql ——qL, for a g 6 and similarly for qT . The generaliza-
tion of the saddle-point equations (2.47) to the M ) 1
case is

) (
2 + ~2)l/2

/3

= p+(zc+v)
I

4A

+(M —1)v r.qT ——)
0=V+v ——) (cd +A )

)
t'

+(u+ (M —l)v)
~

KqT ——)
/3

(2.62)

It is not difBcult to solve these equations and determine
the position of the GT boundary by imposing the condi-
tion qT

——0. We give below the results of this procedure
atT=O

FIG. 4. Phase diagram for the M ) 1 rotor spin-glass in a
longitudinal field h at zero temperature. The boundary hG. T
is the quantum analog of the Gabay-Toulouse line (Ref. 8) and
is given by (2.63) in mean-field theory. The spin-glass order
parameters qL, and qT refer to replica ofF-diagonal components
of Qqq and Q», p ) 1 respectively. (Replica off-diagonal
components of Q~„with p g u are zero everywhere. ) The
6eld 6 points along the 1 direction and couples linearly to the
rotor coordinate n. Replica symmetry breaking is expected to
occur in the mean-field theory at nonzero T for all h ( hc,&.

1
DT(u)) = ——~~~, (u g 0

DI, (~) = ——((u'+ A')'/', (u g 0,

h2

4A'

62
q&: 4~ p)

(2.61)

/
1/2

p
2/4

(vrv) ( v )
where A = (r —r, ) / . The resulting T = 0 phase
diagram is sketched in Fig. 4. The T = 0 singularity in
hGT as r ~ r is seen to be quite di8'erent Rom that in
the classical model.

Phases in a field coupling
to the con8evved total angular momentum

where DT (0) = Dl, (0) = 0 and A and q2 are determined
by solution of the equations

For spin-glass models with a continuous, global sym-
metry, Noether's theorem implies that there is a con-
served charge which commutes with the Hamiltonian.
For the present quantum rotor models this charge is the
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total angular momentum. In this section, we will exam-
ine the properties of 'RR in a Geld which couples to this
total angular momentum:

1 A

&R ~ &R Hgsv ) ~ipv ~ (2.64)

(dd"x dr ) ~
b„~ +iH„„~

K't

For M = 3, H~„= e~„pHp, for the usual vector Geld
Hp. For the experimental situations in which the quan-
tum rotor model may be realized in systems with short-
range antiferromagnetic order, H corresponds simply to
a uniform external magnetic field. Obviously there is no
analog of such a field for the M = 1 Ising case.

The properties of nonrandom quantum rotor models
in the presence of a Geld H were examined recently in
Ref. 35, where it was found that, in high enough dimen-
sions, a strong H always induced magnetic long-range
order in a plane perpendicular to the applied Geld. We
will find an analogous phenomenon here for the spin-glass
case.

The coupling to H in the effective action can be deter-
mined by general gauge-invariance arguments: ' these
are equivalent to the physical requirement that the only
effect of an applied H is a uniform precession of all the
rotors. By this method, we can deduce that the only ef-
fect of H is to replace the linear, time derivative terms
in A in (2.2) by covariant derivatives:

where H~„= —H„~. Note that unlike the longitudinal
Geld, h, H does not couple directly to the replica off-
diagonal components of Q. Related to this is the rather
straightforward consequence of H in the classical limit.
This can be seen by looking at the zero-frequency com-
ponent of (2.65) (which dominates in the classical limit)
&om which we obtain a shift —H„H~~ in the value of r
controlling spin-glass ordering in the vp plane; the only
effect of H is therefore to break the O(M) invariance by
inducing anisotropic shifts in the critical point towards
ordering in different directions.

The consequences of H in the quantum model are a lit-
tle more interesting, as we now see in a mean-field treat-
ment of A in the presence of H. For simplicity, we will
present the analysis of the M = 3 case only. Let us choose
H to lie along the three axis, i.e.) Hgg ———Hpg ——H)
with other components zero. We will also restrict our-
selves to the paramagnetic phase in which case we can
use the ansatz (2.5), with the modiffcation that D has
to be replaced by a general tensor D„„in O(3) space. It
turns out that the following parametrization of D„, in
a "circularly-polarized" basis is most convenient:

1
Dgg ——D22 ———(D+ +D +),2

(2.66)

2D»-—-D» ——-(D+ -D +),2

rd +H IQ:;(» )
Tl =T2=T

(2.65)
with all other components, except D33, set equal to 0.
Inserting this result in A, we find that the result (2.6)
for the free-energy density is modified to

) (( 2+ )D ( ) + [(~+ iH) + r]D (~) + [(~ —2H)'+~]D — (~))
tv.p

Dss(~) + D+-(~) + D'-+(~)
3tP

'll 1—) D+ ((u)
p

4P

'g 1+——) Dss(~)
p

+—, —).[Ds.(~) + D+-(~) + D-+(~)]

—).D-+(~)
- 2

(2.67)

Dss((u) =—

D-+(~) =—

1
(

2 + — )1/2

1—[(or+ iH) + r2] /,
—[((u —iH) +P2] /,

(2.68)

where rq and Fq are to be determined from the solutions
to the equations

The saddle-point equations for D33, D+, and D + can
now be obtained and solved. The solution is

'u+'U ) (
2 — )1/2

——) [(~ + iH) + r2]'/,

r2 ——r ——) (~ +rg) /

).K +'H)'+ .]" (2.69)
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which generalize (2.8). The only eff'ect of H has been
to shift frequency u by iH (corresponding to transform-
ing to a rotating reference &arne in Euclidean time) for
fluctuations in the 12 plane.

It is useful to have a better understanding of the H-
dependent &equency summations above. The following
identity, obtained from the Poisson summation formula,
is helpful:

)~[( + .H)2 + ~2]l/2 d~
(

2 + ~2)x/z

1 dna& —Sz

SPIN 0

q=q 0

1
X

( eP{xx H)—I'

+eP{n+xr) —I )
(2.70)

valid for 4 ) H. The physical meaning of the second
term in the above equation should also be clear: this
is the contribution of the thermally excited, circularly
polarized states with zero-Geld energy 0, and d.ensity of
states QA2 —Az; these states have been split into states
with energy 0 + H in the presence of a field. Notice
that at T = 0, (provided H ( A), the second term in
(2.70) vanishes, and the entire contribution comes &om
the first term which is independent H. This allows us to
immediately obtain an important T = 0 solution to the
Eqs. (2.69):

rx ——P2 ——r at T = 0, provided H ( ~F, (2.71)

(2.72)

This is sketched in the T = 0, finite H phase diagram
of Fig. 5. This finite H spin-glass —paramagnet quan-
tum transition is in a difFerent universality class &om
the H = 0 transition. Some of its critical properties can
be deduced. 6.om the results above, using methods very
similar to those described in this paper for the H = 0
transition. We will not go into any details on this issue
in this paper, apart &om noting that examining the low cu

behavior of (2.68) tells us immediately that the ffnite H
quantum transition has the mean-field critical exponents

where x' is the solution of the H = 0 equation (2.8). This
solution could have been anticipated a prioH —at H = 0
we had an O(3) singlet paramagnet ground state with
a gap i/x', and the energy and wave function of such a
state will not be modified by a uniform external field.
However, when H ) ~x, the energy of an excited spin-1
state will go below that of the ground state. By analogy
with the nonrandom case, we then expect condensation
into the spin-1 state, and appearance of spin-glass order
in the plane perpendicular to the field —qxx

——qz2 g 0
for a P b. The phase boundary to the appearance of this
spin-glass ordering is H = ~r, which at T = 0 gives us
&oxn (2.14)

FIG. 5. Phase diagram for the M = 3 quantum rotor
spin-glass at T = 0 in the presence of a 6eld H which cou-
ples to the conserved total angular momentum in the 1, 2
plane. The position of the boundary of the paramagnetic
phase is given by (2.72) in mean-field theory. The finite H
spin-glass —paramagnet quantum transition is in a different
universality class from the H = G transition. As in Fig. 4,
the spin-glass order parameter q denotes replica off-diagonal
components of Q, and replica off-diagonal components of Q„„
with y, g v are zero everywhere. The boundary Hs is given
by (2.73) in mean-field theory. Replica symmetry breaking
is expected to occur in the mean-Beld theory at nonzero T
everywhere in the spin-glass phase.

1/2
H3 —— —r, —r (2.73)

We close our discussion of H by examining the special
point r = r . At finite H and T, we expect a transi-
tion to a spin-glass phase when H/T is greater than a
universal number [which can again be determined &om
(2.69)]. For H (( T however, the paramagnetic phase is
stable and we can perform an expansion in powers of H
to obtain the finite-T spin susceptibility of the quantum-
critical point. An expansion of the free-energy density in
the paramagnetic phase in powers of H yields

W(H) —X(K = 0) PH' O(A' —x)x/'

n sinh (PA/2)

(2.74)

where r is determined by the solution of H = 0 equation
(2.8). Evaluating the integral at r = r and at low T
(regime II of Fig. 1) we find

z = 4 and v = 1/4.
A second phase boundary in Fig. 5 at H = Hs(r)

marks the appearance of spin-glass order in q33. Or-
dering in q33 is clearly present for r ( r at H = 0,
and should therefore also be present for small enough
H ( H3 (r ) . Determining Hs requires computations in
the spin-glass phase, with replica oE-diagonal compo-
nents of q nonzero. As the coxnputation is rather similar
to those already carried out, we will not present any de-
tails and simply state the final result. We Gnd
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W(H) —W(H = 0)
(2.75)

z=2, q={), (3.5)

The susceptibility, g~ associated with H therefore be-
haves as T at low temperatures. We may combine this
result with T dependence of the specific heat in (2.16) to
obtain the dimensionless, universal Wilson ratio. TV,
characterizing the quantum-critical regime II of Fig. 1:

Txa-
6~2 (2.76)

III. RENORMALIZATION-C ROUP ANALY SIS

This section will attempt to go beyond the mean-field
results of Sec. II by subjecting the finite-dimensional the-
ory to a Wilson-style renormalization group (RG) which
integrates out degrees of &eedom at high energies and
large momenta.

We will study the properties of A under the rescaling
transformation

2." = x/b, v' = 7/b', . (3.1)

(3.2)

The exponent —0 will be the scaling dimension of t near
a fixed point with t = 0; all fixed points found below in
fact will have t = 0, and 0 ) 0, making t a (dangerously)
"irrelevant" coupling. As is conventional, we define the
anomalous dimension g such that g = 0 in the approxi-
mation in the previous section; in RG this means that the
coefficient of the (V'Q) 2 term is not rescaled at tree-level.
This imposes the Geld rescaling

qi qb(d 8+2z 2+@)/2— —
(3.3)

The exponents z and 0 will be Gxed by demanding that
the transformations of the 1/et linear term with time
derivatives, and the 1/t2 quadratic coupling, are consis-
tent with (3.2) and the RG equation for the cubic r/t
coupling.

It is now a simple matter to determine the tree-level
rescalings of the remaining couplings (we determine the
rescaling of r from the cubic term):

g2z r g(6+0 —d —3g) /2
)

v =vu/ g2 —z —g
(3 4)

The full action remains invariant at tree level under these
transformations if we choose

where z is the dynamic critical exponent. The coupling
t will play a special role in the following, and we Gnd it
convenient to give it its own independent rescaling trans-
formation

A~ A+ d"xdr J', (3.6)

and keep track of the flow equation of f We will obtai. n
the differential form of the scaling equations with b = e~.

The diagrams which contribute at one loop order are
shown in Figs. 6 and 7. There are two types of diagrams
at this order. The Grst have a loop with an internal
momentum [Figs. 6(a), 6(c), and 7] which must be inte-
grated over, with all frequencies pinned to the external
ones: these are associated with a momentum space fac-
tor of KgE:—SgE/(2')" where Sg is the surface area of
a sphere in d dimensians. The second [Fig. 6(b)] are

We see then from (3.4) that u and v are always marginal,
while K becomes relevant below d = 8. As 8 is positive, t
is irrelevant and Bows towards t = 0.

Before we can reach any conclusions on the meaning
of these scaling dimensions, we need to understand the
role of the coupling t in the loop corrections. Recall that
we determined in Sec. II8 1 that the propagator G came
with a prefactor t, the cubic interaction was r/t, and the
quadratic couplings are u/t, v/t and 1/t (Fig. 2). The
presence of inverse powers of t leaves open the possibility
that the loop corrections acquire even higher powers of
1/t. In fact, it is not difficult to check that this does not
happen. The argument is similar to that in the classi-
cal problem of a Ising ferromagnet in a random Geld:
there are always enough t factors in the numerator from
G to cancel those from the couplings. In particular, there
can be only one insertion of the 1/t quadratic coupling
in any propagator, as two of them will involve a van-
ishing trace over replica indices. This discussion can be
summarized in terms of a simple result: all loop correc-
tions to any coupling or Green's function are no more
singular as t ~ 0 than the results at tree level. The co-
eKcient of this leading singular power of t will however
contain an inGnite number terms with positive powers of
the couplings u, v, and r. These three couplings, there-
fore, do indeed measure the strength of the loop correc-
tions. Above d = 8, the cubic K coupling is irrelevant,
and we expect that the mean-Geld and tree-level results
of Sec. II 8 are related to those of a Gaussian fixed point.

Now we turn to determining loop corrections to the
renormalization-group equations. We will obtain the one
loop Bow equations by integrating out degrees of free-
dom with frequencies w such that A /b' & w & A or
momenta k such that Ak/b & k & A~, where Ag i's a cut-
oK in momentum space. We determine the saddle-point
of the action with respect to variations in Q fields in
this range of momenta and frequencies only, and obtain
fluctuation corrections to one loop. This is followed by
the rescaling transformation discussed above. It is also
useful to keep track of the free-energy density T in this
procedure: we intraduce an overall constant to A
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(a)

is convenient to absorb these factors into the coupling
constants by the transformations K u —+ u, K v m v,
KI,+2 -+ e, r/A -+ r and f ~ K A4 f. Evaluating the
diagrams by completely standard methods we obtain the
following flow equations (dropping innocuous factors of
Az in the terms with a momentum integration):

z=2+4p" )

7/= 2K )

2(u+ Mv)
gl+ r

—= —et,
dt
dE

dr = ~a 2—= 2zr —2(u+ Mv)gl+ r—
dE A

(c)

FIG. 6. Diagrams contributing to the one-loop renormal-
ization group equations. The diagrams contribute to the
renormalization of (a) r/mt, (b) u/t, v jt, v/t, 1/t, and 1/t,
respectively, and (c) g, 1jt, v/t, and u/t, respectively. Not
shown are the diagrams with double-line propagators replaced
by their twisted partners [see Fig. 2(a)j.

d~ 8 —d s (u+ Mv)rv+9+
dZ 2

dtL 2 Vl= —2tLK
dE gl+ r'
dv 2 2uv + Mv2—2vK gl+ r
df 4—= (d+ z)f — (I+r)"
dE 3tK2

really tree-level diagrams but have a &equency integra-
tion because of quantum-mechanical interactions: these
have a frequency space factor of K E = 2zE/(2 x 2') (the
factor of 2 in the numerator comes &om the &equency
shells at +A, and the 2 in the denominator is &om the
propagator which at zero momentum is I/2+uz + r). It

dU 2
U~

(3.8)

[As an aside, we note here that the dependence of the flow
equations (and therefore the critical exponents) on M is
illusory. The couplings u and v enter into the equations
for the other couplings only in the combination U = u +
Mv. The equation for U is in fact M independent:

FIG. 7. As in Fig. 6; diagram contributing to the renor-
malization of m/t

We may trade the couplings u, v for U, u, and the equa-
tions for the latter are M independent. This indepen-
dence on M is similar to that found in the infinite-range
model .]

We begin by determining all the fixed points of these
flow equations. The parameter r is obviously associated
with the thermal operator, and has relevant flows from
all the fixed points we fEnd. The value of r at these fixed
points is of order e = 8 —d, and to leading order in e this
value of r does not feed into the positions of the other
couplings. We can therefore set r = 0, and focus on the
other couplings. We find five fixed points; their positions
to leading order in e are listed below, along with the three
eigenvalues controlling flows near the fixed point in e, u, v
space (there is, of course, also the omnipresent relevant
eigenvalue associated with r). All the fixed points have
t = 0 and the eigenvalue controlling Bow in the t direction
ES —0:
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(A) r. = O, u = O, v = 0 (e/2, 0, 0)

(B) r = —e/22, u = e/ll, v = 0 [
—(5 + ~14)e/ll, —e/11]

(C) e = —e/22, u = 0, v = e/11M [—(5 + ~14)e/11, e/11]
(D) r = —e/18, u = O, v = 0 (—e, e/9, e/9)
(E) r. = —e/18, u = e/9) v = —e/9M (—e, e/9, —e/9).

(3.9)

The properties and stabilities of these fixed points depend
strongly on the sign of e, and we will consider e ( 0, e = 0
and e ) 0 separately.

A. d&8

While all five fixed points have real values of ~, the
only stable fixed point is the Gaussian fixed point A.
Related to the two zero eigenvalues, the couplings u and
v are both marginal. The renormalization-group Bows
are shown in the K, U = u+ Mv plane in Fig. 8. Observe
that the basin of attraction of A is limited to a portion
of the U ) 0 quadrant (the basin of attraction is actually
also restricted to u ) 0, v & 0). For initial values of the
couplings outside this basin, we have runaway fl.ows to
strong couplings and are therefore unable to make any
firm predictions. The rest of the discussion in this sub-
section will therefore be limited to initial values within
the basin attraction of A. Some speculations on the prop-
erties of the remainder of the phase space will be made
in Sec IV.

0.15-

(3.io)

We also know Rom the fixed-point values of v, u, and v,
and (3.7) that

z=2, g=0, 0=2 (3.ii)
as found in the mean-field theory of Sec IIB1. There
are two irrelevant couplings, t and K, associated with
eigenvalues —8, and —8„/2, respectively, with

8„=d —8. (3.12)

Now we turn to the Green's functions of Sec. IB. Their
scaling dimensions will be given by those of Q in (3.3)
and any dependence they have on the irrelevant t,
couplings. From the results of Sec. IIB1 we see that
D 1/K [Eq. (2.7)], G t [Eq. (2.18)], G' t [Eq.
(2.19)], and G to [Eq. (2.21)]. Combining this in-
formation with the scaling dimension of Q [Eq. (3.3)],
we obtain the following results for the scaling dimensions
of the Green's functions after their arguments have been
Fourier transformed to k and u:

The properties of A are obviously related to those of
the mean-field theory of Sec. IIB. The logarithmic cor-
rections found there can be attributed to the couplings
u, e which are marginal near A for all d & 8; this will
be shown below. First we focus on the scaling proper-
ties, modulo logarithms. The "thermal" coupling r has
eigenvalue 4, leading to the critical exponent

0 gK
0.4

dim(D) = (d —8 —8„—2+ rl)/2,
dim(G) = —2+ rl,

dim(G") = —2 —8+ rI,

dim(G') = —2 —z+ rl.

(3.i3)

-0.15-

FIG. 8. Renormalization-group fiows in the U, r plane (re-
call U = u+ Mv) for d ) 8 (we chose e = 8 —d = —1).
The filled circles represent fixed points, and are labeled in the
notation of Eq. (3.9). The fixed points B, t coincide in this
plane, but have difFerent fixed points values of u (similarly
for D, E). The only stable fixed point is A and its basin of
attraction is restricted to a portion of the U & 0 quadrant.
The remainder of the quadrant, and all U ( 0, eventually
have runaway Hows to strong coupling. The Bow into the sta-
ble fixed point A remains marginal in the U direction for all
d&8.

The &ee-energy also has a singular dependence upon
v. and t: W 1/trz [see Eq. (2.15)]. Related to this
is the singular 1/t+2 term in the renormalization-group
flow equation for f in (3.7). From this flow equation it
is easily seen that

dim(W) = d+ z —8 —8„. (3.15)

Thus hyperscaling is violated; notice that 0 does not

Note that these results are consistent with those in
(2.18)—(2.23) and that

(3.i4)
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Gd( )
—(d+zz —4+r))

) ) (4 1)

terms. This means that in each realization of disorder, t
plays a role similar to 5 in quantum field theory (or T in
classical statistical mechanics): when it is small, certain
types of disorder-induced fiuctuations (those directly re-
sponsible for determining the local position of the critical
point) dominate. (The analogy is not exact because of
the internal &equency integrals that can occur even in
tree diagrams in Q within Landau theory. )

Defining G" as in (1.22), we can then define the expo-
nent g by

in a single replica of the system. For the disconnected
correlator of vP we may define at criticality

[(@(, ,)) (y(0, ,))] - -('-'+"~ {4.8)

(so that the Fourier transform k +"@;note the corre-
lator is independent of ri, r2) so that the scaling dimen-
sion of @ is (d —4 + g@)/2. The connected correlation
function then goes as t and so

[H(*,0)O(0, 0))]- [W(*,0)) (@(0 0))] - -'"-'" "'
—(d+z —2+~+)

for fixed r/x' at criticality; there is no dependence on t
on the right-hand side. Thus the dimension of Q SS
when the spins are separated in time is (d+ 2z —4+ i))/2.
Therefore also [recall (1.18)]

(&om k +"~ in Fourier space) and hence

0 = 2+ z+ gg —gg.

(4.9)

(4.10)
—(d+2z —4+g) /2z (4.2)

The spin-glass correlator G [recall (1.21)] vanishes if t =
0, so is proportional to t (as t + 0) and thus behaves as

G( 0 0)
—(d+zz —4+r)+8)

) (4.3)

Comparing with the definition of q, G x ("+ +"~

yields

(4.4)

From these we may obtain other scaling relations, e.g. ,
the spin-glass susceptibility y~~ (r —r, ) ~ with

1—= d+ z —0 ——(d —4+ re)
V 2

1= —{d+z —0+ 2 —gg).
2

(4.11)

An interesting rigorous inequality was proved by
Schwartz and SoÃer for the exponents gy, gy in any
system where a local field g couples to Gaussian disor-
der, as is the case for our g. Extending their proof to the
case where the disorder is time independent, we obtain

As usual the dimension of @ determines that of r —r„
and hence the value of v, through modified hyperscaling,
that is

p = (2 —q)v, (4 5) (4.12)

and the order parameter q = [(S) ] (r, —r)~ with and hence from (4.10) 9 ) 2 + z —rI@. Using (4.11) this
implies

P = (d+ 2z —0 —2+ rI) —.
2

(4.6)

In general, the usual scaling relations are obeyed, except
that hyperscaling involves d + 2z —8 in place of d for
classical critical phenomena whenever the bilocal field is
involved (hence the 2z) and the 8 is due to the DI vari-
able t. On the other hand, a field that is local in time
behaves normally (on including z and 8). Thus the free-
energy density scales as (r —r, )( + l as r ~ r„and
the specific heat at finite temperature T + 0 at r = r
behaves as T(" ~/; the values z = 2, 0 = 2 yield T
at d = d = 8 in the Gaussian theory, as was obtained
directly in the infinite-range model and &om the mean-
field theory in (2.16). The response of the system to an
external field coupling to the conserved angular momen-
tum scales as T( 'l~' (Ref. 35) in the quantum-critical
region II of Fig. 1 at d = 8 this is T, in agreement with
(2.75).

A local variable, which has not been introduced so far,
but is important for the present scaling considerations,
is the "thermal" operator @(z,7). This variable couples
to the control parameter r that tunes the system across
the quantum transition:

2v)— (4.13)

@(z,r) = S„(x,r) S„(x,r) (4.7)

gy ——z+ g. (4.14)

However @ involves bringing spins S to the same time as
well as position (and summing over spin indices) and so
may have different renormalizations than Q. Thus we do
not expect this relationship to hold.

Finally, let us consider the connected correlation func-

This inequality was proved by Chayes et al. The present
approach appears easier but rests upon the use of a scal-
ing relation to obtain v.

For the classical random-field Ising model, it has been
claimed that gq

——2' is satisfied as an equality. This
would imply that the correlation length at T = T due
to a uniform field Ii would go as ( Ii 2~ . However
we find the proof unconvincing, though series results do
seem to show that the equality is accurately obeyed in
d = 3, 4, 5 in that problem.

Since g = SS it is tempting to equate the scaling di-
?mensions of Q and g (d + 2z —4 + rl = d —4 + rj@) and

obtain using (4.4) and (4.10)
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tion G defined in Eq. (1.24). Similar scaling ideas sug-
gest the following form at criticality (taking the M = 1
case for simplicity)

with I"(y) a universal function. Taking either of the lim-
its v ~ 0, or x ~ 0 has the consequence of bringing two
of the four 8 fields in G to the same space time point, so
that G' reduces to a correlator of g. Knowing the scal-
ing dimension of g, this procedure fixes the asymptotic
limits of I':

y~"~ "~~ as y M 0
(y) (q+z rpg)/z— (4.16)

V. CONCLUSIONS

In this section we summarize our main results and dis-
cuss their relationship to other open problems. A com-
parison of our results with some recent work has already
been presented in Sec IV.

We have studied models of quantum rotors or Ising
spins in a transverse field with random, short-range, frus-
trating exchange interactions. We examined properties
of these systems in the vicinity of a zero-temperature

Similar statements hold for the general G'(x, wi 72 T3),
and for G with a different scaling function I'".

We now compare the above relations to Monte Carlo
results for M = 1 in d = 2 (Ref. 20) and d = 3.i Their
results are v 1.3, z 1.3 (d = 3) and v —1,
z = 1.5 (d = 2). They examined scaling of several sus-
ceptibilities, most of which are related to G and hence
involve g in straightforward ways; however their de6ni-
tion of q is what we denote g' = g+ z. In our notation
their results are g = —0.2 (d = 3), g = —1.0 (d = 2). (We
have corrected an arithmatical error in the paper Guo,
Bhatt, and Huse: g' = l.l, not 0.9.) They also exam-
ined y„i which is related to G' [Eq. (1.29)j and find its
scaling dimension is consistent with the assumption that
the scaling forms like (4.15) can be integrated so that qy
drops out and y„~ I + ", and using the same g as the
other susceptibilities. Note that the negative value of g
is quite reasonable in a disordered system.

The numerical results so far give no test of hyperscal-
ing, but Guo, Bhatt, and Huse also studied D, obtain-
ing D(7 ) v . Using the scaling relations and values
of exponents in d = 3 we obtain 0 = 0.0. This may mean
that conventional hyperscaling is obeyed, though because
of uncertainties in exponents, a small positive 0 cannot
be ruled out. Clearly more work on this point, and tests
of other scaling relations, would be welcome. (If 0 = 0
then gy = z + g is ruled out. ) It is interesting that in
both d = 2 and 3, v i = d/2 and this also holds exactly
in the d = 1 model —this raises the question whether
the inequalities (4.12), (4.13) are saturated; at present
we have no argument why this might be so.

quantum transition between a spin-glass and a quantum
paramagnet phase. We characterized this transition by
an order-parameter field Q „(x,ri, 72) which is a matrix
in spin components (p„v) and replica indices (a, 6), and is
bilocal in Matsubara time (wi, w2). The expectation value
of Q is the on-site two-spin correlation function which be-
comes long-range in time at the onset of spin-glass order.
We then introduced a Landau effective-action functional
for Q: the functional was written down as the most gen-
eral one consistent with a set of symmetry criteria and
the usual Landau theory requirements of locality in space
and time. The functional involves both the replica di-
agonal and off-diagonal components of Q—contrast this
with classical spin glass for which the Landau theory
involves only the replica off-diagonal components of an
order parameter matrix field which is also independent
of time.

A mean-Geld functional minimization of the Landau
action yielded a great deal of structure. For parameters
favoring large quantum Buctuations, we found a para-
magnetic phase whose properties (as well as those of
the quantum-critical point at which the paramagnetic
phase terminates) were identical to those obtained in
an earlier exact solution of a model with infinite-range
interactions. In systems with weaker quantum Buc-
tuations, we found a replica-symmetric spin-glass ground
state, with replica symmetry-breaking appearing at any
nonzero temperature. We were able to study systemati-
cally the behavior of replica symmetry breaking at small
T, in contrast to the classical Sherrington-Kirkpatrick
model where the order parameter is of order unity as
T ~ 0, and no Landau expansion exists (see however
Ref. 31). In the present situation, we used the proximity
to a quantum-critical point to our advantage, and de-
veloped a Landau expansion valid even at T = 0. The
response of the spin-glass and paramagnetic phases to a
variety of external Gelds was also studied.

Next we examined consequences of Buctuations about
mean-field for the critical properties of the quantum tran-
sition. We identi6ed d = 8 as the upper critical di-
mension. Above d = 8, and with certain restrictions
on the values of the Landau couplings, we found that
the transition was controlled by a Gaussian fixed point
with mean-field critical exponents. For couplings not at-
tracted by the Gaussian fixed point above d = 8, and
for all physical couplings below d = 8, we found runaway
renormalization-group Bows to strong coupling. An im-
portant feature of the renormalization-group analysis was
the appearance of a dangerously irrelevant coupling (even
below d = 8), which played a role similar, though not
identical, to Planck's constant h. As a result certain dis-
connected correlation functions measuring Buctuations
due to quenched disorder were found to be more singu-
lar than the corresponding connected correlations which
contain quantum-mechanical Buctuations. The structure
implied by this dangerously irrelevant coupling was used
to motivate a general scaling scenario for the quantum
transition, conjectured to be valid even in the region of
runaway Bows to strong coupling.

We conclude by discussing implications for some re-
lated problems. It would clearly be desirable to extend
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our results to the case of insulating spin-glasses of true
quantum Heisenberg spins. Unlike the case for quan-
tum rotors, the different vector components of a Heisen-
berg spin do not commute with each other this leads
to Berry phase terms in the path integral which can-
not be removed by any obvious choice of variables, and
complicates the problem substantially. A Heisenberg
spin model with random infinite-range interactions was
studied recently and dramatically different behavior
was found even at this "mean-field" level —the quantum
paramagnetic phase was gapless, unlike the fully gapped
quantum paramagnet in infinite-range quantum rotor
model. ' A starting point for further analysis might
be to obtain a suitable Landau action functional whose
minimization reproduces the properties of the infinite-
range quantum Heisenberg model.

A great deal of work has appeared recently on an-
other quantum transition in the large dimensionality
limit: the metal-insulator transition in Mott-Hubbard
type models. Like the spin-glass problem, the order pa-
rameter for this transition is the long-time limit of a
correlation function —at short times the correlation is
nonzero on both sides of the transition. The techniques
developed in this paper could perhaps be helpful in ex-
tending the infinite dimensionality results to the metal
insulator transition in finite dimension systems. While
this paper was being written, we learned of the work
of Kirkpatrick and Belitz on the Landau theory of a

metal-insulator transition in random electronic systems.
While we do not understand the details of their analysis,
there does appear to be at least a passing resemblance of
their methods to ours like us, they find it necessary to
consider a linear term in the order parameter, to which
randomness couples most effectively.
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APPENDIX A: DERIVATION OF THE LANDAU
EFFECTIVE ACTION

In this appendix we outline an explicit derivation of
the Landau effective action A in (2.2) from the Hamilto-
nians 'RR and Al. It is slightly more convenient to work
with soft spins rather than the fixed-length quantum ro-
tors or Ising spins (although the derivation below can be
extended to these cases). We begin with the path inte-
gral for these spins in the presence of fixed realization of
the disorder

Z = DSi„exp — d7. ( 80 Si„— J,jSi„Sj„)

m2—(a.S,„)'+ S,'„+—(S,'„)' .

(A1)

This action may be interpreted as that of M-component harmonic oscillators on the sites i of a lattice, with a nonlinear
self-coupling u and a random interaction Jij. We now introduce replicas and average over symmetric distribution of
the Jij. Neglecting all but the second cumulant of the Jij, we obtain the replicated, translationally invariant result

2
]Z"] = f 17 exSp — «) 'Co(S,„)——)

a (ij)
d~gd72 ) S,„(~))S,„(~g)S,'„(~2)S,'„(~2) (A2)

Now, as in classical spin glasses, we decouple the quartic term by a Hubbard-Stratonovich transformation

]Z"] = f DQ;„'.exp — S, f«o«o). ).Q;„'.(», »)S,,'Q;,'.(», ») Zs IQI

l ij ab

Zs]Q] = f ZOS;oexp —f «) Zo(So) —f «o«o) ) Q;o'. (», »)Se(»)S,'.(»)
a i ab

(A3)
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FIG. 11. Feynman diagram which generates an efFective
coupling 1/t even if only the cubic coupling r/t is present
originally.

where K,.z is the connectivity matrix of the lattice. It
is now straightforward to expand Zg[Q] in powers of
Q& (x, 7y, 'r2) —Cb& b(7 y

—'72) for a suitably chosen value
of C, as explained in Sec. IIA; the constant C can then
be absorbed into 80 and becomes part of the quadratic
S,„ term which can be shown to remain stable at small
u. It is easy to see that this procedure will generate all
terms consistent with the criteria enumerated in Sec. II A.
In particular, the term linear in Q appears immediately.
The rather unfamiliar looking time derivatives in this lin-
ear term can be seen to follow from a gradient expansion
of a term like

d xd~gd7. 2Q„„(x,~g, ~2) f(~g —~2)

where f (v) is an even function of r which falls rapidly to
zero within a r of order 1/g. All the terms in A in (2.2)
will be generated at higher orders, with the exception of
the last 1/t2 term. There are two routes to generating
such a term:
(i) Renormalize the functional integral over Q itself. At
order v. one observes &om the Feynman diagram in
Fig. 11 that an effective 1/t term is generated. Thus,
even though it is absent in the bare Q action, it will even-
tually appear. For the renormalization-group analysis, it
is therefore advantageous to include the 1/t term at the
starting point.
(ii) Introduce additional on-site sources of randomness
in 80. Randomness in the value of m, couples to the
[S,„(v)]2, an operator which has the same quantum num-
bers as Q (x, w, w). Integrating over the randomness will
then generate the 1/t term. Randomness in g or u has
the same effect, eventually.

APPENDIX B: GRIFFITHS SINGULARITIES
IN THE QUANTUM PARAMAGNET

"GriKths" effect has been presented by Thill and Huse
for the M = 1 case: they found a power-law u& ab-
sorption at low frequency, where the exponent P varies
continuously with microscopic couplings and need not be
positive. Here we will extend their argument to M ) 1
and find a very different result: there is only a much
weaker essential singularity in the absorption spectrum
for rotors with a continuous internal symmetry.

We will be satisfied here by sketching the basic idea:
it should not be too dificult to formalize the argument
below along the lines of Ref. 23. The important contri-
bution to the long-time limit of the average, local, spin-
correlation function in the paramagnetic phase comes
from regions whose local environment has couplings sim-
ilar to those in the spin-glass phase. Let us examine the
contribution of a region 'RL, of linear dimension I, whose
coupling constants are those required to be well within
the spin-glass or ferromagnetic phase. Such a region will
occur with a probability exp( —cqL") where the can-
stant cq depends upon the precise criteria chosen. Apart
&om short-lived fluctuations, the spins in RI. will follow
each other and behave like a single block spin evolving in
imaginary time. Neglecting the coupling to the environ-
ment, the fluctuations of this block spin can be described
by a one-dimensional (corresponding to imaginary time
direction), classical, M-component spin chain with a fer-
romagnetic coupling K L". Now the properties of such
a spin chain are well known: it has a finite correlation
"time" ( which scales with large K, for M ) 1, as

In contrast, for M = 1 we have ln( K I sThis.
much shorter correlation time for continuous spins (M )
1) is responsible for the difference from the Ising case. So
for a typical site i in 'RI. we will have

(n, (7-) n;(0)) - exp( —c,L "~v-~)

for some constant c2. The above argument is equivalent
to the statement that the region 'RL, behaves like a single
quantum rotor with coupling g ~ L

We can now add up the contribution of all regions like
XL, and obtain a lower bound on the average, local, spin-
correlation function:

((cc;(e') cc;(0))) & ce f dI exp( —ccl ) exp( —ceI ~e~~)

~ c4 exp —2 cyc2 7

Our mean-field result (2.9) for the local susceptibility
in the paramagnetic phase has a gap at low frequencies.
As already noted, this feature is an artifact of the mean-
field theory and we expect random fluctuations in the
J;z to create local environments which will have excita-
tions within this "gap." A careful formulation of this

where the integral over L was performed by the saddle-
point method. By an inverse Laplace transform, it can
be shown that this leads to a low-&equency contribution
to y" (~) of sgn(~) exp( —cqc2/~~~). So the gap in (2.9)
is filled in by a weak absorption which has an essential
singularity at ~ = 0.
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