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Numerical calculations of the magnetic-field distribution p(B) in high-T superconductors have
been performed for diferent regimes of the B-T phase diagram to provide a basis for the interpre-
tation of results from muon spin rotation experiments, which measure p(B) directly. Using a Monte
Carlo approach, 8ux-lattice melting was simulated and the corresponding p(B) was obtained. Both
above and below the melting transition, we find excellent agreement with the line shapes measured in
a recent experiment in Bi2SrqCaCu 08 if in addition the shape of the sample is taken into account.

I. INTKODU CTION The authors defined a dimensionless parameter

Highly anisotropic or layered high-T superconductors
such as the Bi-based compounds may show a variety of
flux-line structures in a magnetic Beld applied along the
c axis. For example at low temperatures and small fields
we expect a nearly ideal Abrikosov flux-line lattice com-
posed of London vortices. At higher Belds or temper-
atures both pinning-caused static disorder and thermal
fluctuations of the highly flexible vortex cores become
possible. In these phases the vortex cores threading the
superconducting layers may be thought of as wiggly lines
that are more appropriately described by chains of vortex
dots or "pancakes. " In the past, computer simulations
of vortex lattice melting based on various models have
shed some light on the essentials of the problem. How-
ever, the exact nature of the phase diagram is still far
&om being understood.

The magnetic-field distribution p(B) in superconduc-
tors can be obtained directly from muon spin rotation
(pSR) experiments. Positive muons are stopped in the
sample at sites which are random with respect to the ideal
or distorted flux-line lattice. Their precession in the local
magnetic Beld is monitored via the decay positrons. The
resulting time-dependent muon polarization p„(t) is then
Fourier transformed to yield p(B).

It has been shown theoretically that the width 0 of
p(B) is highly sensitive to the type of disorder. 7 For ex-
ample randomly positioned stiff parallel flux lines tend to
increase 0, whereas vortex-dot fluctuations may decrease
o. However, until now a direct comparison between the-
ory and experiment was not possible since existing the-
ories usually do not give the full line shape explicitly.
The situation is made worse by the fact that a com-
parison of the measured and the theoretical width is of-
ten meaningless, e.g. , for highly asymmetric line shapes
where the experimental 0 is systematically underesti-
mated and in addition depends on statistics. The ab-
sence of theoretical line shapes is especially unfortunate
since in a recent pSR experiment on high-quality single-
crystal Bi2 isSri ssCaCu20s+~ (BSCCO) the B Tplane-
has been sampled extensively using p(B) as a probe.

ii3 i/2
cr = Ms /M2

to describe the asymmetry of the measured line shape,
where M2 and M3 are the second and third moments
of p(B), respectively. In a first experiment, o. was mea-
sured as a function of temperature at a fixed applied
field B „&

——45 mT. An abrupt change of the line shape
at about T = 57 K, i.e. , well below the critical tempera-
ture (T, = 84 K) where o. dropped sharply from positive
to negative values, was attributed to flux-lattice melting.
In a second experiment, o. was measured as a function of
applied field at a Gxed temperature of 5 K. The obser-
vation of a crossover Beld B2D near 60 mT, above which
n was reduced to about one-half of the low-field value,
was interpreted in terms of a transition from a three-
diinensional (3D) to a two-dimensional (2D) phase. i

This paper reports on results of numerical simulations
of the full magnetic-field distribution p(B) which was cal-
culated for clusters of pancakes arranged specifically to
represent the different regions of the B-T phase diagram.
The flux-lattice melting was modeled following Ryu et
al. The Monte Carlo simulations reproduced their re-
sults for the temperature and field dependence of the
hexatic order parameter and the mean-square deviation
of the pancakes &om their equilibrium sites. We deter-
mined the field distribution p(B) by a spatial average
of fields H(v ) resulting from averaging H(r, t) over the
thermal motion of the pancakes in equilibrium. In Sec.
II the Beld of an individual pancake is considered in the
London description. To check the cluster size dependence
the field distribution is Brst calculated for a cluster where
the pancakes in each 3D vortex line were aligned. Interac-
tions between the pancakes are then introduced following
Ref. 5. The resulting Beld distributions are discussed in
Sec. III. It is shown that in order to compare the @SR
data with the calculated p(B) it is necessary to take the
shape of the sample into account. The final Sec. IV is
devoted to the conclusions.
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II. MONTE CARLO SIMULATION
OF INTERACTING PANCAKE VORTICES V' TK

A b
(4)

It has been shown that 3D vortex lines can be built
up by superposing the contributions of stacks of 2D pan-
cake vortices. Since the magnetic field B() ) is the vector
sum of the contributions &om all pancakes in the cluster,
a given arrangement of pancakes completely determines
B() ) and, as a consequence, the probability distribution
p(B) in the superconductor. The field of an individual
pancake is cylindrically symmetric (with cylinder coor-
dinates p, z) about a z axis parallel to the c axis of the
crystal:

b, (p, z) = (4p/2)rAr) exp( —) /A b),
bp(p, z) = (4 p/2)rAp) [(z/iz[)

X exp( —~z[/A b) —(z/) ) exp( ) /A—b) ], (3)

where @p ——2.0679 x 10 Tm is the flux quantum,
A = 2A2b/s is the 2D thin-film screening length, A b is
the penetration depth in the ab planes, s is the stack-
ing distance between the superconducting layers, and
r = (p +z2) ~2. For the BSCCO sample used in the @SR
experiments, appropriate values for A b (at low temper-
atures) and s are A b 1800 A. , s 15 A.

In a first step, such a calculation was performed for
the case where the pancakes in each 3D vortex line were
aligned and the flux lines formed an Abrikosov lattice
with lattice constant ap ——(24'p/~3B) ~ . p(B) was ob-
tained as the histogram of the fields B = ~B() ) ~

at typ-
ically 70x70 evenly spaced grid points in a unit cell of
the magnetic lattice in a plane perpendicular to the z
axis and at the center of the cluster ("unit cell" ). The
results were then compared to those &om an exact nu-
merical calculation for difFerent cluster sizes. As an ex-
ample, an 8 x 8 x 160 cluster (consisting of 160 layers of
8x8 pancakes) yielded a p(B) where the second and third
moments M2 and M3 agreed with the exact calculation
to within 2%.

Two ideas led to the development of a Monte Carlo
(MC) program to simulate Aux-lattice melting: (1) The
use of pancake-pancake interactions would lead to real-
istic clusters in thermal equilibrium at a given tempera-
ture, and (2) p(B) could then be calculated &om fields
B()') resulting &om averaging B()', t) over the thermal
motion of the pancakes in equilibrium. The latter pro-
cedure would mimic the situation in a @SR experiment,
where the relevant time scales for the muon (10 7—10
s) are much greater than the typical correlation times for
thermal motion of the pancakes (10 iP s). As a starting
point, a Monte Carlo program (MC1) was written using
the approach described in Ref. 5. We employed the usual
Metropolis algorithm on an 8 x 8 x 16 cluster confined to
a 256 x 222 x 16 grid space. In a single MC step, each
pancake makes a trial movement by one grid unit in plane
z. Following Ryu et al. , the following interactions were
assumed to calculate the total cluster energy:

(A) Within plane z, all pancakes interact with each
other according to

where Tp ——4pd/2)r A b pp, d = 2.7 A is the thick-
ness of the superconducting layers, pp ——4' x 10
VsA m, Kp is the modified Bessel function of the
second kind, A~b(T) = A~b(0)[1 —(T/T, ) ] ~, and n =
3.3. Within the planes, we used periodic boundary con-
ditions, as did the authors of Ref. 5.

(B) Within line vorte~ i, a pancake interacts only with
its two immediate neighbors above and below according
to

IUp * —2
Pg

VZ)Z+ 1
if ~),'.

"+
~

) 2 rs,
(5)

z, z+1 )2
Up "4, —1 otherwise,

9

where )','. " = );, —);,,+1, )'s = (~b/~g, (~b is the
coherence length in the ab plane which has the
same temperature dependence as A b [( b(0) 15 A
for BSCCO], g is a dimensionless interlayer cou-
pling strength [g = 1/2500 for BSCCO (Ref. 5)],
Up ——(Tpa/7rd) [1 + ln(A b/a)], and a = s —d = 12.3 A. is
the interlayer spacing. These interactions are obtained
from the Lawrence-Doniach model of stacked super-
conducting layers by approximating the full three-
dimensional interaction with an efFective two-dimensional
interaction restricted to the same plane and the short-
ranged Josephson interlayer coupling.

First, we used MC1 to find the thermal equilibrium
of the cluster at T = 10, 20, ..., 80 K (starting with a tri-
angular lattice at the lowest temperature). The total
cluster energy was monitored as a function of the num-
ber of MC steps. Equilibrium was reached after typically
10 steps. In order to observe flux-lattice melting, we
then calculated the hexatic order parameter 46 as well
as the in-plane mean-square deviation u, , of each pan-
cake (i, z) &om its average position )';",' = ();,)ivig for
these temperatures according to Ref. 5

and

T/T,
(1 —T/T, )'&2 (8)

I'111S = +&,Z +X,Z

Z; is the coordination number for pancake (i, z), 0,~ is
the bond angle for neighbors i and j with respect to a
fixed direction, and the angular brackets indicate the av-
erage over all pancakes and over the MC steps. At low
temperatures (T & T ) and moderate fields (B & B2D)
where the pancakes form a nearly ideal Abrikosov lat-
tice, 4'6 is expected to assume a value close to 1, whereas
at temperatures above T, 46 should be close to zero.
u,~,(T) should approximately follow
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FIG. 1. The hexatic order paraineter 4s (triangles) and
the in-plane mean-square deviation u, , of the pancakes from
their average positions normalized by the magnetic lattice
constant ap (circles) as calculated by MC1, with B = 45 mT.
The solid curve is a fit of Eq. (8) to the calculated points in
the regime 10—50 K and is expected to describe u, .(T) beloip

T . Note that both parameters indicate Bux-lattice melting
just below 60 K.
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FIG. 2. (a) Measured magnetic-field distribution in
BSCCO at T = 6.6 K and B = 45 mT (Ref. 14). (b)
Dashed line: calculated curve using MC2 with T = 3.0 K
and B = 45 mT, where 46 j. indicates the 3D line vortex
phase. Solid line: calculated curve taking additionally into
account the rectangular sample cross section. (B) is the av-
erage Geld.

below T (see Houghton et a/. in Ref. 1) and exhibit
a sharp change of slope at T . Figure 1 shows @s(T)
and u, ,(T) as calculated by MC1 over 3 x 10 MC steps
at each temperature point in thermal equilibrium, with
B = 45 mT. The solid curve is a fit to Eq. (8) in the
regime 10—50 K, yielding c = 518(l) A. Note that both
curves show the behavior expected for flux-lattice melting
just below 60 K, in good agreement with the experimental
observation of an abrupt change of the line shape near
T =57K.

MC2 for B = 45 mT and T = 10 K, i.e., helot@ T . Note
the distinct shape characteristic of a 3D flux structure,
in particular the long tail at high fields arising &om re-
gions close to the vortex cores. The larger width of the
measured curve [Fig. 2(a)] can be explained by taking
into account the rectangular cross section of the flat, ap-
proximately circular crystals. In such samples the flux
density near the sample edges will be lower than at the
center following

III. MAC NETIC-FIELD DISTRIBUTIONS:
RESULTS AND DISC US SION

To calculate the magnetic-field distribution p(B) the
equilibrated clusters mentioned in Sec. II were used as
building blocks to compose "superclusters" of 8 x 8 x 160
pancakes in order to obtain meaningful field distribu-
tions. Test calculations showed that at least 100 planes
of pancakes are needed to get realistic field distributions.
A supercluster was obtained by first building an interme-
diate cluster with size 8 x 8 x 32 consisting of the origi-
nal cluster plus its mirror image (mirror plane s/2 above
plane 16), and. then stacking five such intermediate clus-
ters on top of each other.

Subsequently, these superclusters were brought into
thermal equilibrium using again MC1. The equilibrated
superclusters were then used by a second program, MC2,
to calculate the resulting field vectors at the grid points
in the unit cell after every 50 MC steps, with a total of
10 steps. The thermally averaged field vectors were ob-
tained as the average over all MC steps. Finally, p(B)
was calculated &om the averaged Geld vectors. Note that
if we associate the time interval between two consecutive
MC steps with the correlation time for thermal motion
of the pancakes (10 P s), the time interval over which
the field vectors are averaged is just on the order of the
muon lifetime (10 s s), as in a @SR experiment.

Figure 2(b) (dashed curve) shows p(B) calculated with

B(r) = B~xt —ppmeqH~i(1 —[1 —(r/rp) ] + dp/2rp),

where r = 0 corresponds to the center of the sample
with radius rp and thickness dp (for the BSCCO sam-
ple used in the experiment, ro 1.3 mm and do
0.5 mm), H i = @p ln(r)/47l ppA s is the lower critical
field, v = A s/( s, and @pm,,~H, i is the equilibrium mag-

I
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FIG. 3. (a) Measured magnetic-field distribution in
BSCCO at T = 64 K and B = 45 mT (Ref. 14). (b)
Dashed line: calculated curve using MC2 with T = 80 K
and B = 45 mT, where 46 0 indicates the liquid phase.
Solid line: calculated curve taking additionally into account
the rectangular sample cross section.
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FIG. 4. (a) Measured magnetic-field distribution in
BSCCO at T = 5 K and B = 90 mT (Ref. 14). (b)
Dashed line: calculated curve using PAN3 with B = 90 mT
with no correlation between the adjacent layers, but with an
Abrikosov lattice in the planes, corresponding to a 2D phase.
Solid line: calculated curve taking additionally into account
the rectangular sample cross section (Ref. 17).

including the sign and magnitude of o., can again be ex-
plained by taking into account the true sample geometry
[Fig. 3(b), solid curve].

To simulate 2D Aux structures, where disorder induced
by random pinning reduces the correlation between the
pancake positions in adjacent layers, a 10 x 10 x 200
cluster was taken where the individual planes were made
up of vortex dots arranged in an Abrikosov lattice, but
with the planes both shifted and rotated randomly with
respect to one another (program PAN3). p(B) was then
calculated for B = 90 mT as the average over 500 such
random clusters [Fig. 4(b), dashed curve]. Note the dis-
tinctly diferent shape of the field distribution, both with
respect to that in Fig. 2 and in Fig. 3. As in Figs. 2(b)
and 3(b), the final p(B), which is shown in Fig. 4(b)
(solid curve), was obtained by additionally accounting
for the geometry effect [Eq. (9)]. Again, the calculated
line shape agrees well with the measurement [Fig. 4(a)].

IV. CONCLUSIONS

netization. The dimensionless quantity m, ~ depends only
weakly on field and temperature in the parameter range
of relevance. It is given by

(10)

with P' = 0.231. In all calculations a value of 0.5 has
been assigned to meq.

This effect of the sample shape must not be neglected.
It can be simulated by randomly shooting virtual muons
onto a virtual sample. The hit position determines the
field shift from the external field according to Eq. (9).
The distribution p(B) resulting from MC2 [Fig. 2(b),
dashed curve] is then shifted by this amount. The pro-
cess is repeated about 1000 times and the final p(B)
[Fig. 2(b), solid curve] is obtained as the average of the in-
dividual distributions. The agreement of the line shape,
and consequently of the asymmetry n, with experiment
[Fig. 2(a)] is now excellent.

Figure 3(b) (dashed curve) shows p(B) calculated with
MC2 for B = 45 mT and T = 80 K, i.e., above T . Note
the complete disappearance of the high-field tail in the
melted cluster due to averaging over the now substan-
tial thermal motion of the pancakes. A comparison with
experiment [Fig. 3(a)] shows that while the calculated
curve is narrow and symmetric, the measured distribu-
tion is wider and exhibits a distinct low-field tail, giving
rise to a negative o.. All features of the measured curve,

In conclusion, we have performed numerical calcula-
tions of the magnetic-field distribution in the mixed state
of an anisotropic high-T superconductor in three differ-
ent regimes of the B-T phase diagram, i.e., in the 3D line
vortex phase (Fig. 2), in the liquid phase (Fig. 3), and
in the 2D phase (Fig. 4). We find that each phase gives
rise to a distinct shape of the field distribution. Our line
shapes, which have been calculated using the appropri-
ate parameters for BSCCO, but no adjustable parame-
ters, are in excellent agreement with those obtained in
a recent pSR experiment on this superconductor. The
measured curves in the 3D and the liquid phases can
be explained by averaging the field vectors in the model
sample over the thermal motion of the pancakes and by
taking into account the rectangular sample cross section.
Our calculations, which can easily be adapted to other
anisotropic high-T superconductors, thus provide a firm
basis for the interpretation of experimentally obtained
magnetic-field distributions in these materials.
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