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Ultrasonic study of the magnetic phase diagrams
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The phase diagrams of CsNis gsMp. p2Clg (M = Mg, Co, and Fe) have been determined by
ultrasonic velocity measurements. As expected, when comparing with pure CsNiC13, these systems
show, respectively, enhanced Heisenberg, Ising, and XY e8ective single-ion anisotropy. The 6rst
two systems display phase diagrams with the same general features as CsNiClz, while with M = Fe,
the system becomes an XY antiferromagnet like CsMnBr3. A qualitative mean-field theory model
for the paramagnetic phase boundary is also presented. This model has been used to understand
the peculiar behavior of CsNip. gsCop pgC13 at high magnetic 6eld.

I. INTRODUCTION

Over the last decade, extensive studies of the magnetic
properties of the hexagonal insulators belonging to the
ABX3 family have been conducted. In these systems,
the magnetic ions B are grouped in e-axis chains that are
relatively isolated &om each other by large A ions. This
structural anisotropy causes the magnetic properties to
have a strong quasi-one-dimensional (quasi-1D) behavior.
The Hamiltonian describing such systems is

8 = —2Jii ) S; S,+g —Ji ) S, Ss —D ) (9;. )
igj 2

—H. ) S, ,

II
+ 0 and J~ ( 0 are the antiferromagnetic

(AF) intra- and interchain nearest-neighbor exchange
interactions, respectively. Parameter D is the single-
ion anisotropy. If D ) 0, the system has an easy-
magnetization axis along c, while if D & 0, the mag-
netization is energically favored if it stays in the basal
plane, perpendicular to c. A quasi-1D system is defined
by

I J((/J~l ».
In many ABX3 systems, D and J~ have approxi-

mately the same magnitude and competition arises be-
tween these two interactions. The triangular arrange-
ment of the hexagonal lattice of these compounds also
adds to the complexity of the problem by introducing
&ustration in the case of AF coupling, J~ ( 0. In addi-
tion, D and J~ are usually not too large and reasonable
magnetic fields can alter the balance between these com-
peting interactions and induce transitions.

Several ABX3 systems with weak axial anisotropy ex-
hibit similar phase diagrams. An example is CsNiC13.
with parameters of the Hamiltonian (1), as reported by
Buyers et al. , given by J~~/k~ = —16.6 K, J~/ka

—0.29 K, and D/kt3 = 0.63 K. At low temperatures, the
competition between these interactions and a magnetic
field oriented along the c axis gives rise to four mag-
netic phases which share a common tetracritical point
located at T, = 4.48 K and H, = 2.1 T. Many other
systems, like CsNiBr3 and CsMnI3, have similar phase
diagrams and it can be shown that they superimpose rel-
atively well when the critical Belds and temperatures are
normalized; diBerences arise only &om the relative sizes
of D, Ji.

In CsNiC13, Takeuchi et al. have shown that it is
possible to efFectively alter the value of the single-ion
anisotropy D by substituting a certain amount of Ni +
by ions with diferent anisotropy. These local changes
in single-ion anisotropy are then spread through the
chains by the large intrachain interaction JII. In zero
field, their specific heat measurements have shown that
critical-temperature modifications can be explained by a
global variation of D. Since the overall value of D is
modified, changes in the rest of the phase diagram are
also expected. As an example, in an easy-axis system
like CsNiCl3, the spin-Qop field HSF is directly related to
D. So this left an open question: Will the whole phase
diagram be consistent with this simple scheme?

The present study addresses this problem and
we present an experimental determination, by
acoustic velocity, of the magnetic phase diagrams
of CsNi0. 98Mgo. 02Cl~, CsNi0. 98Co0.02C13, and
CSNio gsFeo 02 Cl3. According to the previous results of
Takeuchi et O,l. , it is expected that these susbstitutions
will produce systems with enhanced Heisenberg, Ising,
and XY behavior, respectively. These results will then
be compared with the phase diagram of the pure sys-
tem and, when possible, to other relevant ABX3 sys-
tems. Some particularities of the high-6. eld part of the
CsNio gsCOO 02C13 phase diagram have also led us to in-
clude results of a qualitative mean-field theory model
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based on the 1D transfer matrix method.
It is our experience ' ' that ultrasound is a very effec-

tive and economical way of studying the magnetic prop-
erties of such systems. The basics of this experimental
technique have already been presented by Trudeau et al.
in Ref. 5, and so no further description will be given here.
Before presenting, in Sec. II, the phase diagrams of the
mixed compounds as obtained by ultrasound, a brief re-
view of the phase diagram of the pure system is given in
order to provide a basis for comparison. Finally, results
of a qualitative mean-Geld tranfer-matrix model at high
field are presented in Sec. IV.
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II. B.ESULTS AND DISCUSSIGN

The procedure used to set critical fields and tempera-
tures from the anomalies on Av/v is similar to the one
found in Ref. 5 for pure CsNiC13. Following this proce-
dure, critical points are defined where the variation of
the acoustic velocity is the largest. This corresponds to
the large changes experienced by the magnetic part of
the system at a phase transition. The correctness of this
choice is confirmed by the good agreement of the criti-
cal points for both the temperature and magnetic field
sweeps. Some examples of acoustic velocity as a function
of temperature in zero field and the related choice of tran-
sition points are presented in Fig. 1 for CsNip g8Mgp p2C13
and CsNio. gsCoo. o2C13.

Before discussing the mixed compounds, it is instruc-
tive to review the magnetic phase diagrams of pure
CsNiC13. These are presented in Figs. 2 and 3, for
H

~~
c and H J c, respectively. In zero field, two mag-

netic phases can be observed. As the temperature is
lowered from the paramagnetic phase P, the easy-axis
anisotropy aligns the spins along the hexagonal c axis at
T~i 4.8 K. This gives a linear antiferromagnetic phase
L that partly &ustrates J~. A further reduction of tem-
perature will eventually cause a sharing of this frustration
between J~ and D. This happens at T~2 4.4 K where
additional basal-plane ordering occurs, causing an ellipti-
cal 120 phase E. In the E phase, the spins lie in a plane
which includes the hexagonal axis. The application of a
Beld along this axis adds another frustation to the sys-
tem. This time, the frustration is between the field and
D. At high enough field, it is more favorable for spins to
frustrate D and they adopt a helical 120 structure in a
plane which is now perpendicular to the hexagonal axis
(and H). This phase is the spin-fiop phase SF. These
magnetic phases are found to coexist at a multicritical
point which is located for this system at H, 2.1 T
and T, 4.48 K. The situation is much different when
the Geld is perpendicular to the chain axis since there is
no longer competition between the easy-axis anisotropy
D and the magnetic field. This causes, as it can be ob-
served in Fig. 3, the disappearence of the spin-Bop phase
and of the multicritical point.

Since the percentage of substituted magnetic ions
is rather small (2%), only small modifications to the
phase diagram are expected. This is exactly what has
been observed for two of the three mixed compounds,
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FIG. 1. Acoustic velocity data as a function of tem-
perature in zero magnetic Geld for CsNip. gsCop. p2C13 and
CsNip. gsMgp. pgC13. The arrows indicate where the transition
points are chosen.

CsNip gsMgo p2C13 and CsNip gsCop p2C13. These phase
diagrams are presented in Figs. 2 and 3 for H

~~
c and

H J c, respectively.
As mentioned above, the principal effect of the substi-

tution of ions at the Ni sites is to modify the value of the
efFective single-ion anisotropy D. In the case of a sub-
stitution with Mg ions, since CsMgC13 is nonmagnetic,
it is reasonable to expect a dilution of D and a more
Heisenberg-like system. As a result, since the magnitude
of HSF is linked to D, a smaller spin-Qop field is ex-
pected. The single-ion anisotropy is also responsible for
the onset of the linear phase, and so the T~i should be
smaller. These predictions are confirmed by the magnetic
phase diagrams of CsNip gsMgp p2C13 shown in Figs. 2
and 3. For this compound, the two observable magnetic
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FIG. 2. Magnetic phase diagrams of CsMp. p&Nip. gsC13 as
determined from acoustic velocity anomalies for H

~~
c. The

open circles, squares, and the solid circles represent M = Co,
Mg, and Ni (Ref. 5), respectively.
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FIG. 3. Magnetic phase diagrams of CsMp. p2Nip. gsC13 as
determined from acoustic velocity anomalies for H J c, la-
beled as in Fig. 2.

phase transitions in zero field are at T~~ 4.57 K and
T~2 4.13 K and the multicritical point for H

~~
c is

located at T, 4.16 K and H, 1.9 T. The zero-Geld
critical temperatures are in agreement with the results
reported by Takeuchi et a/. The overall shape of these
diagrams are the same as the ones of pure system but
the spin-flop field is approximately 10%%up smaller and T~i
more than 0.2 K lower. One can also observe the rela-
tive displacement, as a function of temperature, of the
multicritical point with respect to T~2. In the pure sys-
tem, T, —T~2 0.1 K, while with Mg doping, this
difFerence is reduced to 0.02 K. This is reasonable, since
a system with a smaller D has more &eedom and it re-
quires a lower temperature to induce order. As a result,
the whole transition line is displaced toward lower tem-
peratures. The behavior of T~2 is much less obvious.
If the easy-axis single-ion anisotropy was simply turned
oK in CsNiC13, it should present only one critical tem-
perature somewhere between the original two. This is
not happening in CsNip gsMgp p2Cl3, where T~2 is lower
than in CsNiC13. This behavior can only be explained
by a slight reduction of the eBective J~ caused by the
substitution of nonmagnetic Mg atoms.

In the CsNip gsCop p2C13 compound, the behavior is
the oPPosite &om CsNip gsMgp p2C13. This is due the
Ising single-ion anisotropy of the Co ions as is well
known &om the strong Ising behavior of CsCoCl3.
Following the same argument as the one used for
CSNlp 98Mgp p2C13, one can predict a higher spin-Bop
Geld and T~i. Since an enhanced Ising single-ion
anisotropy favors phase L, we can also expect a lower
TN2. This is observed in Figs. 2 and 3. For this system,
the zero-Geld transition temperatures are T~i 5.46 K
and T~2 3.88 K. Compared to the undoped compound,
it represents an increase for T~q of more than 0.8 K and a
decrease of T~2 of more than 0.5 K. The situation is sim-
ilar with IISF, instead of 2.1 T for CsNiC13, it now rises
up to 3.5 T. All these phenomena are consistent with an
increase of the efFective easy-axis single-ion anisotropy.
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FIG. 4. High-field
CsCo0.02 Nip. gsC13

anomalies for H
II

c.
ward curvature of the

part of the magnetic phase diagrams
as determined from acoustic velocity
The straight line emphasizes the up-

high-field transition line.

This increase of single-ion anisotropy, caused by the
substitution of Co ions at the Ni sites, also has an ef-
fect on the shapes of the E-I and SF-P phase bound-
aries. In the Grst case, this is manifest by the large
difference between T, and T~2, T being more than
0.3 K greater than T~2. Reversing the argument used for
CSNlp 98Mgp p2Cl3, one can conclude that the enhanced
Ising anisotropy helps to order the system by reducing
its degrees of freedom, and so the I phase can stabi-
lize at a higher temperature. For the SF-P line, the
field and the easy-axis single-ion anisotropy tend to de-
stroy the spin-Bop phase by their tendency to align the
spins along the chain axis. Evidence of this is found in
Fig. 4 where the phase diagram of CsNip g8Cop p2Cl3 for
H

~~
c is presented for fields up to 14 T. With the help

of the straight line, it is easy to observe the curvature
of the SF-P phase boundary, favoring the paramagnetic
phase to the detriment of the spin-Bop phase at high field.
From this curvature, it can be expected that for a field
larger than 25—30 T, the critical temperature T~ will de-
crease as a function of field. At such high magnetic Geld

(II/gp& JII), the transverse susceptibilty, reponsible
for the magnetic order, is reduced by the tilting of the
spins toward the field. Eventually, for a large enough
magnetic field, there will be no more SF phase. The
same experiment has been conducted for CsNiC13 and a
similar curvature, altough far less pronounced, has also
been observed. Further dicussions of this behavior will
be presented in the next section where an outline of the
high-field transfer-matrix results will be given.

The last compound investigated is CsNip 98Fep p2Cl3.
Inside an ABX3 matrix, the Fe ions are known to exhibit
a strong XY behavior, as in RbFeC13. In fact, since the
Ising-like behavior of CsNiC13 is weak, a total suppres-
sion of this type of anisotropy is possible. So, instead of
phase diagrams having the general features of CsNiC13,
they will present the characteristics of an AF chains sys-
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Cs Nip. g8Fep. 02CI3 H//c

tern with XY anisotropy and AF coupling on a triangular
lattice such as CsMnBrs (Refs. 12, 13) and RbMnBrs. ~4

This behavior can be observed in Figs. 5 and 6 where
the magnetic phase diagrams of CsNip 98Fep p2C13 for
H

~~
c and H J c are presented. As with other XY

systems, ' CsNip 98Fep p2Cl3 shows only two magnetic
phases for H

~~
c with T~ 4.58 K. At low temperature,

the XY confinement caused by the Fe ions generates a
planar 120 order whose symmetry is similar to the spin-
flop phase of CsNiCl3. As a function of field, this spin
confinement in the XY plane is enhanced by the AF cou-
pling along the chains, causing an increase of the critical
temperature. For H J c, the picture is somewhat difFer-
ent, as shown in Fig. 6. The phase diagram is now made
of at least three magnetic phases. In order to avoid con-
fusion in the labeling of these phases, the notation of
Plumer et a/. will be used. At low Geld and tempera-
ture there is a distorted XY planar 120 phase, labeled
as 7, while at higher field, a phase transition occurs. De-
pending on the magnitude of D/ J~ this phase is labeled
either 3 or 5. Of course, at high temperature the mag-
netic phase for both field orientations is paramagnetic
(phase 1).

If the value of D is large compared to J~, like in
CsMnBr3, the spins are confined to the basal plane and
one of the three magnetic sublattices will turn along one
of the other two directions at the phase transition. This
corresponds to the description of phase 5 of Plumer et al.
and it implies the kustration of J~. On the contrary, if
the ratio is small, like in RbMnBrq, the spins will flop
outside of the basal plane and D will be frustrated. This
phase is labeled as 3 and is similar to the elliptical phase
of CsNiC13. From its origin, it is reasonable to expect a
small D/J~ ratio for CsNiq gsFeo o2Cls, but this would
imply the presence of the fourth magnetic phase ' 3.
However, no evidence of a 3-5 phase boundary has been
found in CsNip 98Fep p2C13, although a discontinuity is
present at the boundary of phase 7, which could indicate

CsNip gaFep p2CI3 Hic
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the presence of a multicritical point. The arrow in Fig. 6
indicates this discountinuity.

At lower Fe concentration, it is reasonable to expect
the recovery of the easy-axis behavior. Takeuchi et al.
have recently found the critical concentration to be close
to 0.7%%uo.

III. HIGH-FIELD TRANSFER-MATRIX
RESULTS

An attempt is made here to explain the rather un-
usual behavior observed in the high-field transition line
of CsNip 98Cop p2C13. Although it is difficult to predict
theoretically the entire diagram of such systems, it is
simple to obtain at least a qualitative description of the
transition lines to the paramagnetic phase (P). This sim-
plification comes from the fact that linear response theory
in the P phase can be used. In addition, the quasi-1D
nature of these systems invites the use of 1D transfer-
matrix techniques with 3D mean-field coupling.

For a quasi-1D antiferromagnetic system, one can write
a general expression for the 3D susceptibility at q = m

as19

FIG. 6. Magnetic phase diagram of CsNip. g8Fep. pqC13 as
determined from acoustic velocity anomalies for H 4 c. The
squares are critical temperatures obtained at constant field
and the circles are critical fields obtained at constant temper-
ature. Phases are labeled as in Ref. 2.
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FIG. 5. Magnetic phase diagram of CsNip. gsFep. p2C13 as
determined from acoustic velocity anomalies for H

~~
c ob-

tained from constant field sweeps.

where n is a constant dependent on the underlying mag-
netic and crystalline structure of the system. In systems
like CsNiC13, the competition between J~ and D makes
the evaluation of this constant nontrivial.

The staggered susceptibility ysD(vr) diverges at the
paramagnetic phase boundary. In general, one must con-
sider the components of the susceptibility y l, where
n, P = x, y, z. As an example, at the border between the
linear AF phase L and the paramagnetic phase P, y" (m)
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will diverge since the ordering in phase I is along the z
axis (the hexagonal c axis). Similarily, at the transition
line separating the SF phase from the P phase, the spins
are in the plane perpendicular to z, and so the y (vr)
[or y""(vr)] component can be considered.

Since the ordering mechanisms in phases I and SF are
different, there is no reason why the constant n of Eq. (2)
should be the same for both. As the goal of the present
model is only to give a qualitative description of the lines
bordering the paramagnetic phase, this constant will be
set arbitrarily.

Results of transfer-matrix calculations for yiD as a
function of a magnetic Geld ' along the z axis are
presented in Fig. 7 for an S = 1 system with Jll ———1 and
D/1J~~~1 = 0.02. Prom top to bottom, these susceptibil-
ity plots were obtained for, respectively, T/12 J~~1

= 0.03,
0.035, 0.04, 0.045, and 0.05. At low field, the easy mag-
netization axis caused by the anisotropy term is clearly
evident &om the high value of the z component of the sus-
ceptibility, y . As the Geld is increased, this component
falls rather rapidily, especially when the spins flop to the
plane at H 0.5. This spin-flop Geld value, although
controlled by D, is extremely large in transfer-matrix
calculations. This comes &om the fact that in systems
like CsNiC13 the competition between J~ and D tends
to reduce the effective anisotropy. Since only a qualita-
tive description is attempted here, this discrepancy is not
relevant. Of course, as the spins flop to the plane, the
transverse component y increases drastically. Further
increase in the field helps confine the spins to the plane
and y continues to rise up to a point where Jll is no
longer able to compete against the field. At such high
Geld, the spins start to tilt toward the Geld direction and
their projections in the plane is reduced along with y

With all these elements in mind, one can start to look
at the behavior of the transition lines bordering the para-
magnetic phase, i.e., at the divergence of y3D. A straight
horizontal line has been plotted in the upper part of
Fig. 7. Since there is no easy way of calculating the

T = 0.03

constant n in Eq. (2), it will be supposed, in order to
give a qualitative argument, that this line corresponds to
the appropriate values of jn(1/n J~) for both transitions
lines. According to peculiar scales used for y and y
this implies that these constants are not the same.

Let us first consider the behavior of the I-P line. For
this transition, the critical points are given by the inter-
section of the y" plots (dotted lines) with the straight
line. As expected, at low temperature the critical-field
value is close to the spin-flop Geld, but as the temperature
increases, it moves toward zero. Things becomes more
interesting when one looks for the other phase bound-
ary, separating the SF and P phases, as determined by
the y plots. One can observe that these curves al-
ways intersect the horizontal line twice, once at low Geld
corresponding to the usual transition, labeled as H~ in
the literature, ' and again at very high field, when the
susceptibility is too much reduced to keep the system
ordered. Just to give an approximate order of mag-
nitude for this second critical Geld, in CsNiC13 where
J~~

= 16.6 K, this gives for H 61J~~1 a field value in
the neighborhood of 150 T. This estimate compares well
with the T = 0 Geld value of 200 T from the work of
Chubukov when it is kept in mind that at T = 0, the
susceptibility must be zero to prevent the ordering. This
occurs when there is no spin projection in the plane.

Finally, consider the larger curvature observed on the
high-field SF-P line of CsNio g8Coo 02C13. An element of
this behavior is found in Fig. 8 where the transverse sus-
ceptibility A (m) is plotted as a function of field for var-
ious values of single-ion anisotropy D at T = 0.03 12J
In terms of D, the largest anisotropy D = 0.11J~~1 gives
the highest spin-flop field and the largest zero-field y
Although it not very obvious at this temperature, the
maximum of z for D = 0.1 1J~~1 is slightly lower than for
the other anisotropies. This, coupled with rounding ef-
fect of temperature (see Pig. 7), causes a larger curvature
of the SF-P boundary for systems with enhanced Ising
anisotropy. Another phenomenon can also be observed.
At high Geld the Ising anisotropy helps the field in &us-
trating Jll so that the transverse component of the sus-
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FIG. 7. Magnetic susceptibility yqD as a function of field
for D =0.021 J~~1 arid T =0.0312J~~ I, 0.03512J~~1, 0.0412J~~1,
0.04512J~~1, and 0.0512J 1. The dotted and solids curves rep-
resent y* (s) and y (m), respectively.
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FIG. 8. Magnetic susceptibility xi& for T =0.0312J~~1 and
D =0.01[J~~1, 0.021J~~1, 0.051J~~1, and 0.11J~~1. The dotted and
solids curves represent g'*(7r) and y (vr), respectively.
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ceptibitliy decreases more rapidily when the anisotropy
is large. One can speculate that this will lower the second
critical Beld for a given temperature.

IV. CONCLUSIONS

The phase diagrams of mixed compounds
CSNip 98Mgp p2C13, CsNip 98Cop p2C13, and
CSNip psFep p2Cls for H

~~
c and H J c have been de-

termined &om acoustic velocity anomalies. The phase
diagrams of the first two systems have been found to
be very similar to that of pure CsNiCl~ when account-
ing for enhanced Heisenberg and Ising effective single-ion
anisotropies, respectively. The main efFects of the varia-
tions of single-ion anisotropy have been observed in T~q
and Hsp. When compared to pure CsNiCl3, these quan-
tities have been found to be lower for CsNip 98Mgp p2C13
and higher for CsNip 98Cop p2C13. Another important
feature of the phase diagram of CsNip 98Cop p2C13 for
H

~~
c is the curvature of the phase boundary between the

spin-Hop and the paramagnetic phases at high Beld. This
enhanced curvature is due to the stronger Ising single-ion
anisotropy of CsNip 98Cop p2C13. From this curvature, it
can be expected that for fields higher than 25—30 T, the
critical temperature will decrease as a function of Beld.
A mean-field model which uses one-dimensional suscep-
tibility results of a classical transfer matrix has also been
presented. Qualitatively, this model reproduces all the

observed features of the paramagnetic phase boundaries.
The phase diagrams of CsNip 98Fep p2C13 are diferent

from those of CsNiCl3. In this compound, the strong
XY character of the Fe ions completely changes the na-
ture of the magnetic anisotropy. Instead, the comparison
has been made with AF XY systems like CsMnBr3 and
RbMnBr3, and once again the general features of these
phase diagrams have been found to be very similar. At
lower Fe concentration, however, the easy-axis anisotropy
should be recovered.

This study clearly shows the effectiveness of the use
of mixed AB~ M X3 magnetic systems in the study of
magnetic. phase diagrams. It has been clearly established
that a small subsitution of magnetic ions can modify the
amplitude, or even the sign, of the e8'ective single-ion
anisotropy and provides a powerful basis for testing the-
oretical models dependent on single-ion anisotropy in a
large class of magnetic systems.
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