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The two-dimensional extended Hubbard model that includes a nearest-neighbor Heisenberg in-
teraction is studied using a mean-field theory where quasiparticles are defined by an U(8) group
of canonical transformations permitting both broken gauge, spin, and sublattice symmetry. The
theory is further extended to incorporate a possible twist in the spin-quantization axis, so that the
competition between superconductivity, charge-density waves, and Néel and spiral antiferromagnetic
order can be monitored within one single theory. Our results for positive Hubbard U and Heisen-
berg exchange J suggest that antiferromagnetic ordering dominates close to half-filling, while spiral
states and d-wave superconductivity compete when doping is introduced. For moderate values of
J, we find a phase diagram where a phase transition occurs from an antiferromagnet to a d-wave
superconductor as doping is increased. A narrow region of (s + id)-wave superconductor is found

for some values of J and U.

I. INTRODUCTION

For many years the two-dimensional (2D) Hubbard
and “extended” Hubbard model have served as simple
models of high-T,. materials and a paradigm of strongly
correlated electrons. However, despite many creative at-
tempts to develop approximations to attack the problem,
the 2D Hubbard model has defied a definitive analysis.

In contrast to many of those efforts, the goal in the
present paper is not to try to model the behavior of high-
T, superconductors or even to make particularly strong
statements about the 2D Hubbard model. Rather, we
wish to make a definitive analysis of the BCS mean-
field theory, an approximation method that has been re-
markably successful in gaining information about simpler
model systems with both broken spin and gauge symme-
try. It is clearly important that we know what this simple
approximation has to say about the Hubbard model be-
fore we can be confident in applying more sophisticated
techniques.

Although the program sounds straightforward, the
method becomes surprisingly complicated if one insists
on preserving the symmetries known to exist in the
Hubbard model at half-filling. The complication is
due to the exact SO(4) =~ SU(2) x SU(2) symmetry!
precisely at half-filling and that this symmetry mixes
many phases that are typically ignored in simpler cal-
culations. To do a proper job, we must therefore
include all the order parameters that have been dis-
cussed before for this system, among them spiral spin
waves,2 ® Néel antiferromagnetism,”™® d-wave and s-
wave superconductivity,”"19713 as well as all other phases
that are related to these via the symmetry group.'4®

A consequence is that a multitude of possible order
parameters must be retained to provide a self-consistent
theory. Our mean-field theory systematically enumerates
a very large set of representations of the possible bro-
ken symmetries and, among other phases, allows for the
possibility of all types of ordered phases that have been
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discussed in previous analyses, including antiferromag-
netism, spiral spin waves, and d-wave superconductivity.

The mean-field theory that we employ is based
on a U(8) set of canonical transformations yielding
a united treatment of superconductivity,'® 17 charge-
density waves, and spin-density waves!® as was first
demonstrated by Solomon and Birman!® in 1987. The
theory is analogous to the use of U(2) transforma-
tions in the analysis of broken gauge symmetry in BCS
theory.1%16

The organization of the rest of this paper is the follow-
ing: after providing a brief review of related results in
Sec. I, we analyze the symmetry of the Hubbard model
in Sec. ITI. The representations of the SU(2) xSU(2) sym-
metry group is made via an 8 x 8 Clifford algebra, which
provides a generalization of the Dirac and Pauli matrices
used previously in the Nambu formalism applied in the
study of BCS theory and ®He.2° In Sec. IV, we derive the
mean-field theory for the Hubbard model at half-filling
and introduce the point-group symmetry, while in Sec. V
we extend the analysis to include the possibility of spi-
ral antiferromagnetic states that have been proposed as
likely phases away from half-filling. We discuss the refor-
mulation of the self-consistent equations in Sec. VI, and
the numerical solution procedure in Sec. VII. Our results
are presented in the form of phase diagrams in Sec. VIII,
before the final discussion in Sec. IX. Appendixes provide
additional mathematical details.

II. BACKGROUND

The Hubbard model is given by the Hamiltonian

H = Ho — uN + Hyuwp , (1)
where
Hy = —t Z (CTR.,UCR',O‘ + H.c.), (2)
(R,R'),0
3662 ©1995 The American Physical Society
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N=) nggo, 3)
R,o
Huuwb =U Y _(nr1 — 3)(nr,1 — 3), (4)
R

and where ngr, = ckacn’a. The sums in the hopping
terms are summed over all pairs of nearest neighbors on
the 2D square lattice. The form of the Hubbard term
is chosen so as to make the Hamiltonian particle-hole
symmetric, and the system is half-filled (one electron per
site) when the chemical potential y is set to zero.
Several extensions to the Hubbard model have been
studied. To have the possibility of mimicking the be-
havior of higher-order terms which would be present
in a more sophisticated weak-coupling expansion,?! and
to physically incorporate the effect of spin-spin interac-
tions, we extend our Hamiltonian by adding the nearest-
neighbor Heisenberg interaction Hyeis given by

Hyeis=J > Sm-Swm, (5)
(R,R')

where Sg = %( cR’T ‘CL,L Jo(cg + CRy )T and o is the
vector of Pauli matrices. The Heisenberg term breaks
neither spin nor pseudospin symmetry, and thus fulfills
the most important constraints on effective higher-order
terms in a theory for the pure Hubbard model at half-
filling.

In principle, we should also investigate the nearest-
neighbor Coulomb interaction. Although it may be phys-
ically important, it violates pseudospin symmetry which
is already broken by the chemical potential term. Since
it adds nothing theoretically fundamental to the model,
we chose to not include it in our analysis. Another term
that we do not include, but nevertheless is interesting
since some rigorous results have been obtained,??2725 is
the correlated hopping term

X Y (choorio+chiolro) (MR, -0 + 1R, —5) . (6)
(R,R'),0

An appropriate starting point is the pure Hubbard
model at half-filling. Here, the model is symmetric under
the SU(2) xSU(2) group of global spin and “pseudospin”
rotations,»2673! and the phase diagram is rather well un-
derstood.

For positive values of U, the ground state is expected to
be a 2D antiferromagnetic (AF) (7, ), or Néel, state. For
large U/t, second-order perturbation theory in t/U yields
an effective theory equivalent to the spin-% Heisenberg
antiferromagnet. The order parameter is given by the
staggered magnetization, which is a vector which breaks
the global SU(2) spin and the discrete translational sym-
metry of the underlying model.

For negative U, the ground state is either an s-wave
superconductor (SC) or a (w,m) charge-density wave
(CDW). The real and complex part of the SC order pa-
rameter together with the CDW order parameter form a
triplet which transforms as a vector under SU(2) pseu-
dospin rotations. The ground state we call “mixed” SC-
CDW since each of these phases are degenerate and re-

lated to each other by a continuous symmetry.

The cases of positive and negative U are directly re-
lated via the “Shiba” transformation Z.32 This discrete
transformation has the effect of changing the sign of U in
the Hubbard model, and also mapping rotations in spin
space into rotations in pseudospin space and vice versa.
Furthermore, a state with broken pseudospin symmetry
for U < 0 (SC or CDW state), has a direct mapping to a
state with broken spin symmetry (an AF state), and since
SC already appears for an infinitesimal negative value of
U, AF order must appear for an infinitesimal positive
value. Hence there is no Mott transition as a function of
U/t, and the Néel order persists for all positive values of

Away from half-filling, we are less certain of what
phases may occur. The pseudospin symmetry is broken,
with only the U(1) gauge subgroup remaining. Spiral
spin waves, where the antiferromagnetic order parame-
ter twists with a pitch along a symmetry axis, has been
suggested as a likely candidate. This phase has been
seen in several theoretical calculations and has been sug-
gested to explain the incommensurate spin correlations
seen experimentally.2 ® We study this class of states by
imposing a twisted spin quantization axis in the gener-
alized Hubbard Hamiltonian before it is analyzed by the
Hartree-Fock-Bogoliubov method.*

III. GROUP-THEORETICAL FRAMEWORK

Our employment of the U(8) symmetry is, in princi-
ple, close to the one by Solomon and Birman.'® However,
since we here study an explicit model, we need to specify
our basis and its relation to the order parameters, and in
order to facilitate for the reader to understand our results
we discuss in the following our approach in some detail.

A. Using multispinors to represent symmetries
of the Hubbard model

Let us first consider the noninteracting theory H = H,
at 4 = 0 defined for a square system with N sites,
periodic boundary conditions, and lattice constant 1.
This is simply diagonalized as Hy = 3, ex CL oCk,0
where the k sum runs over N points in the first Bril-
louin zone (BZ). The single-particle dispersion relation is
€ = —2t(cos ky +cos ky). To make manifest the particle-
hole symmetry, we define the vector Q = (m,7) and the
operators
aL,o‘ = ci‘;,a’ ’
bLa = CI(+Q,0' , when exiq > 0.

when ¢ <0,

(7)

In terms of these operators, Hy is written as

n
H, = E 1 1
0= ek(ak,cra‘k,a' - bk,obk,a
k,o

_a’—k,aa‘r—k,a + b—k,a-bT—k,o)’ (8)
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FIG. 1. The first Brillouin zone of the square lattice with
lattice constant 1. The line ex = 0 is indicated as well as

the k points in the reduced zone that are used in a numerical
simulation with 32 k points (Sec. VII). The contributions
from the points on the k. axes are scaled down by a factor of
2 since they would otherwise be overcounted.

where the summation denoted by Z" runs over the four
times reduced Brillouin zone corresponding to ex < 0 and
ky > 0 (see Fig. 1). Note the special order of the opera-
tors in Eq. (8).

We next introduce the “Shiba” transformation Z which
acts on the position space creation and destruction oper-
ators cf through the canonical transformation cJr s

(=1)%c, ;s ch — ch, where the factor (—1)F = QT
induces a change of sign on one sublattice. The Shiba
transformation is hence a particle-hole transformation,
together with a local change of gauge, which only acts
on the spin-down operators.

In reciprocal space, spin rotations and Z act nat-
urally on the eight-component multispinor v, =
(ag,1s Qe 1o by 10 Oy ) al Lt al LR bT_k 4901y, ;) which car-
ries definite momentum k mod Q. In thls basis, Z is
represented by an idempotent matrix whose entries are
all zero except Zl,l = 23,3 = Z5,5 = Z7,7 = Zz,g = Z4‘6 =
Zg,s = Zg2 = 1, and which acts on ¥, by matrix-vector
multiplication, ¥, — ¥, Z. It is well known that Z is
an exact symmetry of Ho but changes the sign of the
Hubbard term U.29:31734 It is also simple to verify that
the nearest-neighbor Heisenberg term Hpyejs is invariant
under Z.

A pseudospin transformation R’ is defined as R' =
ZRZ where R is an ordinary global SU(2) spin rotation.
Since [H,Z] = 0 and [H,R] = 0, we have [H,R'] =
and since Z does not commute with R, we see that the
entire symmetry group of H is § = SU(2) x SU(2). It
follows further that because ¥, defines a representation
of both R and Z, it also determines a representation of

S.
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B. A basis spanning the space
of Hermitian 8 X 8 matrices

To represent the action of spin and pseudospin trans-
formations on the basis ¥, , we introduce a set of seven
Hermitian 8 x 8 matrices B4 constructed in blocks from
the ordinary Dirac matrices v, as shown in Table I. By
explicit computation, it can be verified that G4 form a
Clifford algebra,3® i.e., S48 + BBBas = 2gaB, Where
gaB = 0 except for goo = 1 and gpp, = —1,n=1,...,6.

The [Ba matrices have been constructed so that
(B1,B2,B3) transform as a vector under spin rotations
and (B4,0s,06) transform as a vector under pseudospin
rotations, while (84,8s,08¢) and (B1,082,03) transform
as a scalar under spin and pseudospin rotations, re-
spectively. Taking multiple products of the matrices
Ba, one can construct a complete basis for the vector
space of 8 x 8 Hermitian matrices (with real-valued co-
efficients). The Clifford algebra contains four indepen-
dent spin/pseudospin scalars, and it follows that there
are also four independent sets of spin and pseudospin
vectors and spin®pseudospin tensors, making a total of
4 x (1 + 3+ 3+ 9) = 64 basis elements which together
span the space of 8 x 8 Hermitian matrices.3°

Our goal is to construct a basis that has simple trans-
formation properties under spin and pseudospin rota-
tions, and with the above classification scheme in mind,
we label the 64 base matrices by By;,,, where 0 < p, v,k <
3. The upper index k enumerates each of the four in-
dependent sets of matrices associated with each of the
four scalars. Transformation properties under spin ro-
tations are indexed by p, where scalars carry the index
¢ = 0, while 4 = 1,2, 3 represents the components of a
spin vector. Similarly v identifies pseudospin scalars and
vectors. For example, BZ, transforms as a scalar under
spin rotations and as the first component of a pseudospin
vector. The matrices Bj;, are constructed so that they
are not only Hermitian, but also have natural transfor-
mation properties under parity, sublattice exchange, and
time reversal, and so that the indices ¢ and v are simply
interchanged under Z.

To explicitly construct the basis matrices we introduce
the four scalars. Three of them are the identity matrix 1,

Bo, and T = iB318:20s = (0 ,75) where 5 indicates the

TABLE I. Construction of the 8 x 8 34 matrices from the
4 x4 Dirac matrices expressed in terms of Pauli matrices. The
index j runs from 1 to 3. The notation v; denotes complex
conjugate (not adjoint).

_ 01 0 —i 1 0
Pauli (01,02,03)=[(1 o)a(i 0 )’(0 -1 )]
4 x4 (/1 0 0 oj
Dirac Y=\o -1 V= —o; 0
8 x8 _ (7 O (7 O
Ba ﬂ"‘(o -%) Pi (OJ%*)

Bj+s =1ZBoB;Z
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pseudoscalar Dirac gamma matrix v5 = ivyo7y1v273; the
fourth scalar matrix is defined as the product GyI". The
four scalars are denoted Y, with the following identifica-
tions: Yo = —1, T3 = By, T2 = —T, and Y3 = —il'G,.
To make subsequent formulas simple we also define o =
Qo =1, Q; = G5, and Q; = B3, where j = 1,2,3.
Finally, introducing 79 = 1 and 7; = /=1, the basis
matrices are defined by

B, =T.2,0,,

e N
Bu,u - T#TvrnQuQu )

fork =0o0r1,

for k =2 or 3, (9)

where 0 < p,v < 3. The phase factors 7, are chosen so
as to make By, Hermitian.

Letting the subscript m denote the collection of indices
K, p, v, we find that the matrices B,, are orthonormal in
the sense that

Tr(BmBm') = 86m,m ,
B,B,, =1.

(10a)
(10b)

It follows that an arbitrary Hermitian 8 x 8 matrix M
can be expanded as

M=> a™Bn, (11)
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where

o™ = 1Tr(B,,M). (12)

IV. WRITING THE MEAN-FIELD
HAMILTONIAN IN TERMS
OF 8 x 8 MATRICES

The interacting Hamiltonian contains not only one-
particle but also two-particle terms. We use Wick’s
factorization3® to express the expectation values of the
two-particle terms as sums of all products of one-particle
terms:

(01020304) = (0102){0304) + (0104){0203)
—(0103)(0204), (13)

where O; denotes any creation or destruction operator.
This expansion in pairs of operators forms the basis for
the standard BCS-like mean-field theory, which has also
been referred to as bosonic linearization.3”

After transforming H + Hpyeis in Egs. (1) and (5) to
reciprocal space and then applying the factorization we
find

1 = J
(H) = (e — m)cf ,0,0) + i > (ki —kz+ks — ki) (U5a,T5o',¢ — 7 (M- + 'Ykl—kz))

k,o0 ky ko, kg ky
o,o!
X ((cltl ,ackg,a><circ3,a'ck4,a') + (cit(l,ack4,a’>(ck2,acl1‘t3,o"> - <CI(1,UCI(3,0”)(ckz,dck4,6'>> ’ (14)

where N is the number of lattice sites, vic = cos(kz) +
cos(ky), and § indicate a §-function modulo the reciprocal
lattice.

Let us now consider the one-particle expectation val-
ues. In ordinary mean-field analysis, all one-particle ex-
pectation values that carry nonzero momentum are as-
sumed to be zero. Similarly, in our formalism the natural
set of expectation values are related to the elements of
the 8 x 8 matrix of operators

t t
%, 1%, Y%l

(wev)=|al a, o (1)

whose  expectation values are all of the
t

form (el 4, iz 00)7 (Chy 00 s 00)> 30D (Chey 0, €y )5
where k; = k; or k; — ko = +Q with Q = (7w, 7). Thus
we allow all possible expectation values of operators that
carry momentum (0,0) or (w,w), and those that carry
spin and/or charge to be nonzero. Expectation values
carrying momentum (m,w) correspond to staggered or-
der, net charge represent superconductors, and net spin
is associated with broken spin symmetry.

To make clear the relation between the 64 individual

operators in (\IJL ® ¥, ) and the irreducible representa-
tions (irreps) of SU(2) x SU(2) we define a set of 64 op-
erators by the following linear combinations:

o = %Tr[Bm(\Il}: ® T,)). (16)

We then use these operators to rewrite our mean-field
Hamiltonian.

We begin by rewriting the quadratic (one-particle)
part of the Hamiltonian in matrix form. From Eq. (8)
it is easily seen that Hy = ﬁek’I‘r[B&o(\IlL ® ¥ =
83 1 ex(ado)x, where the basis matrix BE, is diago-
nal and has diagonal elements (1,1,—1,—1,—1,—1,1,1).
The expectation value of the entire quadratic part of the
Hamiltonian then becomes

(Ho — ulN) = 83" e ((ado)ic) — {(ads)ic) . (17)
k S—— S——
hop fill

The interaction (two-particle) part of (H) may be evalu-
ated in a similar manner. To simplify the corresponding
expression, we introduce some shorthand notation. Let
(o Voo = (@, )i){(af,)i). With this notation, the
expectation value of the Hubbard interaction becomes3°
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16U "
TZ (a8 — (@d)iw + (@i ik
———— N N

kK Sc.CDW  AF sc’ fill

(Huubb) =

= {o)ik » (18)
———r
FM

where the index 7 is summed from 1 to 3. The terms rep-
resenting the mixed superconducting and charge-density
wave (SC-CDW), antiferromagnetic (AF), and ferromag-
netic (FM) ordering are underbraced. The third (z) com-
ponent of the SC’-fill term is recognized as the filling
while the z and y components represent the real and
imaginary part of a kind of staggered superconductor
(SC’). This term together with the first are the analogs
of the FM and AF states under the change of sign of U.
We find numerically that the order parameter for SC’ is
always zero for the interaction parameters that we con-
sider.

J
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To make a more systematic investigation of all order
parameters, we note that the Hubbard model on the 2D
square lattice has the point-group symmetry Cy,, which
has four 1D irreps (A;, Az, Bi, and B3) and one 2D
irrep (E) (see Appendix A). The total symmetry is hence
Csy x SU(2) x SU(2), and it is possible to perform a
complete classification of the order parameters.®

Since the Hubbard interaction is on-site, the interac-
tion coefficients are independent of k and all the prefac-
tors of the Hubbard term belong to the A; irrep. Another
basis function for this representation is v = cos(k,) +
cos(ky), which occurs in the hopping and Heisenberg
terms and in “extended s-wave” superconductivity. The
Heisenberg term has also components in the B; and the
E representations. The B; terms (odd under k, < k)
have the k-dependence m = cos(k;) — cos(ky) and the
two basis functions of the FE representation (odd under
parity, k — —k) are (s, = sin(k;) and (, = sin(ky).
The expectation value of the Heisenberg term reads, in
its whole glory,

16J "
(Hueis) = N E , 2 (o) —2 (o) e +3 (e + memme ) (=3 {ago) e —3 (@) + (k)i +(a}j>12ck’)
P —— N—— N — N————r’ N ——

FM AF

hop SC-CDW  spin nem.

+3 (Cr. Gt + Ckka;)(—3(ago>12ck' — 30 + (o) o + (a?j)lzck')- (19)
——

From this form we see that the Heisenberg term renor-
malizes the hopping and also affects the antiferromag-
netic and ferromagnetic ordering. Apart from these
terms, the most interesting term is the a2, term repre-
senting superconducting and CDW ordering. This term
is split into two irreps, A; and Bj, corresponding to -y
and nx. The A; part gives rise to “extended s-wave su-
perconductivity” in certain regions of parameter space.
The B; part introduces d-wave superconductivity, and
the z component of this part is recognized as an orbital
antiferromagnet. We also recognize the B; representa-
tion of the o) term, which represents a spin nematic
state with the order parameter (c}:’ «Ck,8) = MO ap - d,
where d is a real vector. Finally, there is a term rep-
resenting p-wave superconductivity and since it is odd
under parity it belongs to the two-dimensional E repre-
sentation. Some of the other terms may have been dis-
cussed in the literature but, since we have found them
not to be energetically favored, we do not discuss them
further.

In addition, the full Hamiltonian gives a term that
shifts the chemical potential, and the Hubbard and
chemical-potential terms produce constants that shift the
energy. These terms have no significance in our analysis
and they are neglected in the following.

In collecting all these terms, it is useful to write the
expectation value of the Hamiltonian in the following
generic form:

P wave

H = S ambllapy + 3 bimBLAL () (),

1,m,k 1,m kK’

(20)

where a;,, and b;,, are coeflicients of the linear and
quadratic terms, respectively, and ,6'11( = 1,7k, 7k, . . . are
trigonometric prefactors from various irreps of the point
group Cy,. The index [ labels the irreps of C,, while the
index m labels the irreps of SU(2) x SU(2).

V. INCORPORATING THE SPIRAL PHASES
IN THE HAMILTONIAN

The most important unanswered question is what hap-
pens when the electronic density deviates from half-
filling? A widely discussed scenario is that the antiferro-
magnetic state adjusts to incorporate the excess electrons
and changes into a spiral phase—an antiferromagnetic
phase whose order parameter shows a spiral spatial dis-
tribution. Given that the spiral antiferromagnet is the
energetically preferred phase in some other mean-field
calculations, we must clearly incorporate this scenario in
our analysis. Unfortunately, spiral states cannot be di-
rectly generated by the Bogoliubov transformations we
have used so far. We therefore generalize our method
by imposing a spiral twist of the quantization axis on
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the Hamiltonian before the mean-field approximation is
applied.

To describe any spiral we need a 2D vector q in the
plane, which controls the direction and pitch of the spi-
ral spin wave, and a 3D unit vector 2 which defines the
axis around which the spin is twisted. The spin-twisting
canonical transformation is then generated by the oper-
ator

(s cha)emsitan@-on (&), e

r,d

where o is the vector of Pauli matrices. This canonical
transformation is easily written as a unitary transforma-
tion of the creation/annihilation operators,

ct cf
( ot ) — [cos(q - 1)1 + isin(q - )N - o] ( b ) .

ey Cri

(22)
r

16J
(Hl?lels) = N
k,k/
n=,y

Since the Hamiltonian is invariant under global spin ro-
tations the direction of € can be arbitrarily set to be
along z.

When applying this spiral spin transformation to H,
the Hubbard interaction is invariant since it is spin-
rotation invariant and on site, but the hopping term
transforms into Hg = Y, ex(nk+q,+ + Nk—q,;), Which,
using our operator definitions, is written as

n
(H§) = —2t ) 8[cos(dn) cos(kn){(ao)i)
k,n=g,y
+sin(gn) sin(kn)((a30)x)] - (23)
The Heisenberg term transforms into Hy,, =
J 3 (rry SR - Smecos[2q - (R — R')] + 25 Sk, sin?[q -
(R — R’)], where S§ denotes the z component of the
local spin operator at site R. Using the same notation
as in Egs. (18) and (19) with the extension that ¢ is an

index that is summed over 1 and 2 only, the Heisenberg
expectation value is

7 1
(ool — (o3 conan (b = oBc] + §conth) (k)

x{ — [1+ 2 cos(2gm)][{ebo)ac + (0Be)2ae] + (00N + (eli)er + (2 c05(2m) — 1[(0Zo)aer + <a§,->ik,1}

+sin(ky) Sin(ki,){ — [1+ 2 cos(2n)][{eg0iex + (s )iaer] + {lo)iaer + (0% )ieae

lzcosCan) = oo + oo}

The large number of terms in this expression is due to
the broken spin-rotational and point-group symmetries.

VI. SOLVING FOR THE STATE
OF LOWEST FREE ENERGY

A. Self-consistent equations at finite temperature

In the spirit of standard BCS theory we intreduce the
reduced Hamiltonian

1 "
H=) ambioi + Y. bmBiBuoia, (25

I,m,k I,m,k,k’

which has the generic expectation value given in Eq. (20).
We also define the mean-field order parameters (gap func-
tions)

=SBty . (26)
k

Using the assumption that the fluctuations in the opera-
tors of* from their mean-field values are small, we substi-
tute ar = (aff* — (o)) + (o) into H in Eq. (25), drop
terms quadratlc in (o — (o)), and find the mean-field
Hamiltonian H,,

(24)

"

Hmf = Z (al m + 2bl mAl m ﬁkak
l,mk

Aside from a constant that is unimportant in this discus-
sion, H,¢ can be recast in the form

mf—8§

Tr[(k)(Tf ® T)], (28)

where

h(k) = Z(al,m + Zbl,mAl,m):Bll(Bm . (29)

I,m

Introducing the matrix of expectation values fix = ((\IIL®
U, )), it follows from Egs. (16) and (26) that

m= 13" BLTx (Bunfi) - (30)
k

To evaluate fix we note that the mean-field Hamilto-
nian is bilinear in \II;‘( and can be diagonalized, Hp,s =
Zg,k €a(k) (0 )* (X )*, by the canonical transformation
x;r( = Uk\Il;", where Uy is an U(8) matrix. Standard ar-

guments from statistical mechanics give in the diagonal
case
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((X;‘( ® Xk)a,'7> = (1 + eﬁea(k))—laa'r (31)

(B is the inverse temperature, 8 = 1/kgT) which, when
transformed back to the operators ¥y, results in

fie = (B @ ¥)) = (14 &)1, (32)

Equations (29), (30), and (32) constitute the self-
consistent equations to be solved for A, ,,,. The solutions
extremize the free energy F,

F=(H)y-TS, (33)

where (H) now includes the chemical potential, and
where S is the entropy. If more than one solution is
found, then the one with the minimal value of F is the
physical one. To calculate F, both terms in Eq. (33)
must be explicitly evaluated. The evaluation of (H) is
straightforward—using Eq. (20) we see that it is equal to

(H) = Z(a[’mAl,m + bl,mAlz,m) ° (34)

l,m

The entropy is in turn given by
"
S=—kpYy  Tr[fulnfi+ (- f)ln(l~ fi)], (35)
k

where fi is the matrix of expectation values defined in
Eq. (32).

B. Zero temperature

At zero temperature, the variational state gives an ap-
proximate ground state |G) and the thermal expecta-
tion values evolve into expectation values with respect
to this ground state, i.e., ((\IIIT‘ ® ¥, )) is replaced by
(G|\IIL ® ¥, |G). The zero-temperature self-consistent
equations are obtained from Eq. (30) in the limit 8 — oo.

Combining the facts that the ground state is the vac-
uum state for the quasiparticles and that the first (last)
four elements of x, are annihilation (creation) operators,
we can identify the diagonal matrix g = (G |(x}:®xk)|G).
Its diagonal entries are (0,0,0,0,1,1,1,1), and from
Eq. (31) with 8 — oo it follows that four of the eigenval-
ues of h(k) must be negative and the rest positive. We
then solve for the unitary matrices Uy that diagonalize
the h(k)’s defined in Eq. (29), in such a way that the
eigenvalues in the diagonal matrices Dy are in descend-
ing order. The self-consistent equations to be iterated
are then Eq. (29) and

n
Am = 3 3 B0 TH(BRULgU,) (362)
k
Dy = U h(k)Uy . (36b)

C. An alternative set of equations
for the ground state at half-filling

The self-consistent equations must be solved numeri-
cally. Although the equations are formally simple, it is

quite challenging to numerically carry out a search of
the solution space. We therefore present an alternative
method to find the ground state, and use it to derive a
theorem of stability of the superconducting and the an-
tiferromagnetic solutions at half-filling for some regimes
of U and J.

Naively, the expectation value of the Hamiltonian,
Eq. (20), is a simple quadratic form and one should just
find its minimum. However, since the expectation values
(o) are constrained by the fact that they represent ex-
pectation values of fermion operators, the terms cannot
be independently varied, and there are constraints on the
set of (af*). These restrictions were automatically sat-
isfied in the previous analysis, since of* was explicitly
computed through a canonical transformation. Another
way to proceed is to try to find a constrained quadratic
minimum directly without first calculating a canonical
transformation.

To express the fermionic constraints, we define the fol-
lowing matrix:

A= Y (o) ) {Bm,Bm'}, (37)
m#Em/!
m,m'#0

where {4, B} denotes the anticommutator {A4,B} =
AB + BA. The matrix By = BJ, = —1 that is excluded
from the sum is the only basis matrix with nonzero trace.
First we state the lemma that reformulates the problem
of minimizing the energy.

Lemma 1. The restrictions on the ezpectation values
(aj*) for the wvariational solutions of Eq. (20) are
Sl =1, ((ado)x) = —3%, and Ax =0V k.

This lemma is proved in Appendix B. The importance of
the lemma is that it shows that the minimization problem
of Eq. (20) is a quadratic minimum subject to quadratic
constraints. This enables us to search for minima of the
unconstrained problem, which, if they are found to satisfy
the constraints, must also be minima of the constrained
problem. A class of such solutions are introduced in the
following theorem (proved in Appendix B) and corollary.

Theorem 1. Consider the Hamiltonian in Eq. (20) with
fized coefficients a;m and b;,,. Define N' as the sub-
set of purely quadratic and irreducible terms, N =
{m : aim = OV by = bmbii(m)}, where I(m) is a
function which attaches one single I to each m. As-
sume there ezists an m € N, such that (bz < 0 and
bl B B | < b | B B | VK, K, V€ N\ {}).
If (o) = 0Vk, Vm € N\ 1) is a sufficient condition
for (Ax = 0V k), then the same {(a)’s will be zero also in
the minimizing solution of the constrained problem.

In the case of half-filling the following corollary now fol-
lows for the two important cases of antiferromagnetic and
s-wave superconducting ordering.3®
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FIG. 2. The low energy states of the extended Hubbard
model according to Corollary 1 is shown in grey. The white
areas are indeterminate from the corollary, and the phases
here must be computed numerically.

Corollary 1. The state of lowest energy at half-filling
(1 = 0) for the Hamiltonian (H = Ho+ Huubb+ HHeis ) in
Egs. (17), (18), and (19) is AF ((a%) #0) if 0 < J < U,
and s-wave SC-CDW ((a2,) #0) if U < J < =U/3.

The theorem follows by making two observations. First,
the possible low-energy states follow from Theorem 1 by
inspection of the prefactors of the quadratic terms in the
Hamiltonian, and by verifying that Ay = 0 if all (a)’s are
zero except the hopping (ad,) and either {(a2) or (aZ;).
Secondly, we observe that the problem that results by
setting all other order parameters to zero is analogous
to the ordinary s-wave SC case, where it is well known
that any attractive interaction results in a finite order
parameter.

We further note that there are two degenerate super-
conductivity solutions if the constraints are disregarded.
One is the ordinary s-wave superconductor, and the other
is the staggered superconductor. However, the latter is
ruled out by the fact that the constraint Ay = 0 is not
fulfilled. Apart from predicting these low energy states,
Theorem 1 also proves the stability of these phases with
respect to small perturbations to the Hamiltonian. Since
the ferromagnetic state has Ay # 0, ferromagnetic order-
ing and nonzero hopping cannot be present simultane-
ously, at least not at the same location in k space. The
predictions of the corollary are illustrated in Fig. 2.

It is interesting to compare our predictions with the
model extended by the correlated hopping term in Eq. (6)
with X = ¢ since there exists a rigorous criterion for
when the SC state is the ground state of that model.23
According to that criterion the system is superconducting
when —8|t| > U < J < —U/3, which for sufficiently small
U coincides exactly with our boundaries.

VII. NUMERICAL METHODS

To find the phase at a (U,J,u,T) point in a phase
diagram, we choose an initial value of the pitch vector
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q, solve the self-consistent equations Egs. (29), (30), and
(32) numerically, and calculate F'(q) using Egs. (34) and
(35).

The pitch vector q is then varied to find which q gives
the solution to the self-consistent equations with the low-
est value of F(q). The nonzero mean-field order param-
eters A, defines, together with q, the particular phase
for the (U, J, 1, T) point in parameter space.

Complete phase diagrams are obtained by the following
two steps.

The parameters (U, J, u, T, q) are swept, with an initial
set of A,,’s generated at random and the self-consistent
equations are iterated until a fixed point is reached. This
gives us a rough picture of the states that are present in
the phase diagram.

The accuracy of the boundaries between the phases in
the phase diagram is improved. Here the self-consistent
equations are solved using Broyden’s method,3® which is
often more efficient than the previous iterative method.

To find A;,,, for a particular value of q, we cover the
reduced Brillouin zone by a discrete lattice. Care has to
be taken not to break any of the symmetries of the prob-
lem. Figure 1 shows how a 32-point lattice is laid out.
The most time-consuming numerical step is to diagonal-
ize the 8 x 8 matrix in the argument of the exponential
function in Eq. (32) at every k point; this must be done
for each iteration.

Choosing random order parameters as initial condi-
tions for recursion is useful when there is no a priori infor-
mation about the expected solutions of the self-consistent
equations. A complication of this method, however, is
that the iteration tends to fall into cycles. We cured this
by including a tail of exponentially damped previous iter-
ates at each step. Sometimes, the procedure still did not
converge, and several initial points must be used before
a fixed point was found.

To obtain a complete p-T phase diagram for fixed U
and J, we cover the (u,T,q) space with roughly 1500
points, and repeat the iterative procedure 10 times. On
an ordinary workstation it takes of the order of a week
of CPU time to trace out the phase diagram using 98
points in the reduced Brillouin zone and solving the self-
consistent equations to an accuracy of 1%. Of course,
solutions could be missed by chance since we use random
initial guesses, and phases occurring in narrow regions
of the phase space could be missed since the parameter
space is not covered with a fine enough mesh.

After the different phases have been identified, we ob-
tain more accurate solutions of the self-consistent equa-
tions using Broyden’s method. This method cannot be
used from the beginning since the initial guess has to be
close to the final answer for the method to converge. The
method is also slow if the number of order parameters is
very large. Here, we therefore eliminate from the Hamil-
tonian all order parameters that are known to be zero in
the corresponding regions.

If the state of lowest free energy has q = 0 the min-
imizing solution can be obtained directly by Broyden’s
method, and in this case the phase boundaries are lo-
cated to high accuracy, generally by using 800 points in
the reduced Brillouin zone.
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If q is nonzero, there is the extra problem of minimizing
the free energy with respect to q. We do this by using
Broyden’s method for solving the self-consistent equa-
tions and extending it with a simple numerical algorithm
that also minimizes in q using Brent’s method.3° To ob-
tain results within reasonable computing time, most of
the spiral spin wave calculations have been performed
using a 392-point lattice in the reduced Brillouin zone.

In order to allow for the most general spiral solutions,
no restrictions should be imposed on the spiral spin wave
parameter q, but that would make the problem numer-
ically unmanageable. Instead we have focused on the
question of whether the low-energy state is a spiral spin
wave or not. Assuming the spiral spin wave not to break
the lattice symmetries completely, the quantization axis
q could be twisted either in the (1,1) or (1,0) direc-
tion. We further concentrated on the latter case case,
q = (g,0), since it turned out to give a slightly lower
free energy than the diagonal twist in some regions of
the phase diagram.

VIII. PHASE DIAGRAMS

In order to present a set of complete phase diagrams
for the extended Hubbard model, we would have to probe
all combinations of values of the four parameters U, J,
filling (or p), and T. This is an infeasible task, and we
restrict ourselves to certain cross sections that we hope
to capture generic behavior. Due to the particle-hole
symmetry as p — —pu, we restrict our phase diagrams to
hole doping (¢ < 0). We can further set ¢ = 1 without
loss of generality.

8 T
6l J
AF
4+ il
AF + d-wave SC-CDW
(s+id)-wave
J  2[sc-cow d-wave SC-CDW |
ol ]
s-wave Tt
SC-CDW
2tk )
, FM
-4 + 7
5 0 5 10

FIG. 3. Phase diagram at half-filling and zero temperature
as a function of J and U. Second-order phase boundaries
are drawn as full lines, while first-order phase boundaries are
drawn as dashed lines. The dotted lines are extrapolations of
the numerically derived full (dashed) line phase boundaries.
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A. Zero temperature and half-filling

The most fundamental cross section is (' = 0, x = 0)
corresponding to the ground state of the half-filled ex-
tended Hubbard model in Fig. 3. In this case, when U
and J are both positive, as well as for a region of negative
U, the antiferromagnetic state forms a numerically very
stable solution. This is consistent with Corollary 1. The
corollary further indicates a region (SC-CDW) of degen-
erate s-wave SC and charge-density-wave state, which is
confirmed by the numerical simulations for negative U
and intermediate J.

An interesting feature occurring in a region outside
the validity of the assumptions of Corollary 1, but
which is numerically very robust, is the tongue of d-
wave SC-CDW, (s+id)-wave SC-CDW, and (d-wave SC-
CDW)+AF between the AF and the s-wave states. The
d-wave order parameter is dominant along the center line
of the tongue while it vanishes at the boundaries. Numer-
ically we also see that the s- and d-wave order parame-
ters form parallel pseudospin vectors, and the explicit
form of the base matrices of these vectors indicate that
the mixed state breaks time reversal symmetry, i.e., it is
an s + i¢d state. This is consistent with the constraint
Ax = 0 in Lemma 1, since the constraint requires the
two pseudospin vectors to be parallel unless some other
order parameter is nonzero.

The ferromagnetic (FM) phase that is seen for nega-
tive J is just barely numerically stable close to the phase
boundaries. It is, however, quite stable deeper inside
the FM region where the ferromagnetic state gets satu-
rated. Our observations do not contradict rigorous cri-
teria for the saturated zone.%® The numerical difficulties
near the FM phase boundaries can be understood by the
constraint conditions discussed in Lemma 1. Since, in the
absence of a third order parameter, hopping and FM or-
der cannot exist simultaneously at the same point in the
Brillouin zone, there will be distinct regions in k space.
The FM ordering occurs close to the Fermi surface, while
the hopping expectation value is finite near the origin in
reciprocal space. The sharp boundary between the two
regions results in discontinuities in the numerical solu-
tion.

B. Finite temperature

We now turn to phase diagrams at nonzero temper-
ature and variable filling for some particular fixed val-
ues of U and J. Estimates using physical models for
the high-T, materials have suggested that U should be
of the order 5 with J much smaller. The relevance of
such estimates for the present calculation is questionable
since they were made for models of high-T, materials
that include other types of interactions such as nearest-
neighbor charge repulsion. Moreover, a large fraction of
our Heisenberg term could be considered as coming from
effective second-order corrections to the Hubbard inter-
action, which are otherwise neglected in our mean-field
approach. Therefore, we concentrate on parameter val-
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FIG. 4. Phase diagram for U = 0.5, J = 2. Second-order
phase transitions are drawn as full lines, while the boundaries
of regions with phase separation are drawn as dashed lines.
The regions of phase separation are denoted A/B where A
and B are the two coexisting phases. Regions of s-wave and
d-wave SC are indicated by s-w and d-w, respectively.

ues that give interesting phenomena.

There are two features that we are particularly inter-
ested in exploring. The first is d-wave superconductiv-
ity, and the second is spiral spin waves. To keep some
connection to high-7. materials, we require the model
to be antiferromagnetic at half-filling, and therefore U
and J should be positive. In order to study d-wave su-
perconductivity, U should not be too large. The spiral
spin-wave states, on the other hand, have been observed
for the pure Hubbard model with intermediate U, and in
this case J should be zero or at least small.

We start out by investigating the phase diagram for
U = 0.5 and J = 2 which contains a zone of d-wave
superconductivity (see Fig. 4). The system is antifer-
romagnetic close to half-filling. This state persists up
to the Néel temperature, where there is a second-order
phase transition to the normal state (NS) that has no
broken symmetry. At low temperatures and moderate
doping, we have a d-wave superconductor which is sep-
arated from the antiferromagnet by a first-order phase
transition. For temperatures higher than the SC critical
temperature, there is a first-order phase transition be-
tween the antiferromagnet and the normal state. This
first-order boundary terminates at higher temperatures
at a critical point, where the transition becomes second
order. No qualitative differences between this phase dia-
gram and that for U = 0 is observed.

Both antiferromagnetic phases and s- and d-
wave superconductors have been observed in other
calculations.!? Those studies did not consider the pos-
sibility that the phase transition could be first order, but
by carefully comparing the free energies we have observed
this type of transition between the AF and the d-wave SC
states at low temperature. If, as in our model, the total
electron number is fixed, the first-order phase transition
results in phase separation.

1.4 : . . :
0.1 : .
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FIG. 5. Phase diagram for U = 0 and J = 4. The
d-wave and s-wave superconducting regions are separated by
a first-order phase transition, with a very narrow coexistence
region. The inset shows a magnification of the coexistence
region.

By increasing J and U, the antiferromagnetic region is
enhanced. The d-wave zone grows with increasing J, but
is also shifted to larger doping as the antiferromagnetic
region expands at the same time. The overall size of
the SC region in the T-u phase diagram is insensitive to
a change in U. The s-wave superconducting zone is also
enhanced by larger J, while it diminishes if U is increased
too much. It should also be noted that the AF and the
s-wave SC regions gain more from an increase in J than
the d wave regions do. This is illustrated in Fig. 5, where
the phase diagram for U = 0 and J = 4 is exhibited. If
J is sufficiently large, we expect the d wave to disappear
in favor of the s-wave SC and the AF phases.

For large U and small J, spiral spin waves appear as
shown in Fig. 6 for J = 0. The phase diagram is shown in
Fig. 6, where SSW indicates the spiral spin wave with the
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FIG. 6. Phase diagram for U = 5 and J = 0. The spiral
spin wave with pitch (7 — g, 7) is denoted SSW.
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FIG. 7. Phase diagram for U = 5, J = 0.1. The SSW has
pitch (w — ¢, m).

pitch (m — g, m), which is obtained by applying the twist
q = (1,0)g to the AF (m,m) state. At low temperature,
the SSW state is separated from the AF state by a first-
order phase transition with a wide coexistence region as a
function of density. For more elevated temperatures, the
separation line becomes second-order and here the spiral
pitch parameter g goes to zero as the phase boundary is
approached. On the contrary, along the phase transition
from the SSW to the normal state the spiral magnetic
order parameter vanishes in magnitude while ¢ stays fi-
nite. No superconductivity is seen in Fig. 6. The s-wave
superconducting state is suppressed by the large value of
U, and the d-wave state is not seen either since J is zero.

The energy gain of the spiral spin waves is numerically
very small, of the order of a hundredth of the overall
condensation energy. The introduction of a Heisenberg
interaction could therefore have a large influence. To in-
vestigate this issue, we introduce a small J = 0.1 while
keeping U = 5, and compare Fig. 6 with Fig. 7. What was
a second order transition between the SSW and the nor-
mal state for J = 0 has now become first order. There is
also a temperature range at which the AF is “reentrant”
as a function of doping, and where the AF-SSW phase
boundary move toward lower temperatures and becomes
first order. When increasing J, this line of phase transi-
tions rapidly migrate towards lower doping and very soon
the whole spiral spin-wave region is gone. This explains
why no spiral spin wave is seen in the phase diagrams for
small U and large J.

For positive J and sufficiently low densities, the an-
tiferromagnet and the spiral spin wave must eventually
disappear, leaving room for the s-wave and d-wave su-
perconducting states which may persist the rest of the
way to zero filling. The critical temperature decreases
rapidly with decreasing J and we were unable to confirm
this scenario numerically.

IX. DISCUSSION

The Hubbard model serves as a simple model for high-
T. superconductors. Despite its simple appearance, the
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model is still poorly understood and many sophisticated
techniques for studying specific features of the model
have been proposed in the literature. As a guide to this
realm of possibilities, it is important to have a good un-
derstanding of all possibilities that a “simple” mean-field
analysis can provide. We have therefore used a gen-
eralized Hartree-Fock-Bogoliubov theory and numerical
simulations to compute phase diagrams for the extended
Hubbard model. All the conventional order parame-
ters, like s- and d-wave superconductivity, charge-density
waves, and Néel and spiral antiferromagnetic states, have
been included in one unifying framework, making no a
priori assumptions about the nature of the broken sym-
metries. We have further shown that, in mean-field the-
ory, no new mixed phases arise at finite doping and tem-
perature in the extended Hubbard model with positive
values of U and J. In our investigation, we have seen the
time-reversal symmetry-breaking superconducting phase
s + id only in a narrow region with negative U. Close
to this region there is also a region of mixed antiferro-
magnetism and d-wave superconductivity. To place our
approach in a still more general context, the mean-field
method has been referred to as bosonic linearization since
the Hamiltonian is expressed in terms of bosonic opera-
tors and is then linearized. Alternatively odd numbers of
electron operators can be used to form new operators; the
method is then called fermionic linearization.374! This
leads to a different dynamical group which has not yet
been studied for the model we study here.

Our method allow phase separation to occur, which it
also does in certain regions. The energy differences that
we find between Néel and spiral antiferromagnets is so
small, that we do not want to make any strong state-
ments about whether phase coexistence would survive a
more refined analysis or not. However, the energy differ-
ence between the AF and the normal state at the first
order phase boundary is substantial. A phase separa-
tion between these two states has also been suggested
both from theoretical and experimental grounds.*? An-
other thing to keep in mind is that we require the total
number of electrons to be fixed, while in the high-T, ma-
terials there are large charge reservoirs surrounding the
2D planes that are perhaps better modeled by a fixed
chemical potential. Under such circumstances, the phase
coexistence may well be suppressed.

There have been several earlier studies of spiral spin
waves for the Hubbard model exploiting slave-boson and
ordinary Hartree-Fock techniques. Most of these studies
have concentrated on zero temperature, and our corre-
sponding results are consistent with those. However, we
have also extended the analysis to finite temperature.

We have concentrated on a particular extension of the
Hubbard model which preserves the pseudo-spin sym-
metry, and we have explored the phase diagrams in
many parameter regimes. However, there are very few
cases where we can compare our results with the ones
obtained by other extensions of the Hubbard model,
like nearest-neighbor Coulomb interaction and density-
dependent hopping amplitudes. The application of our
method to these other cases would thus be of great inter-
est.
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Another phenomenon that we have studied is how
the spiral spin waves are affected by a nearest-neighbor
Heisenberg term in the Hamiltonian. We have observed
that the (1,0) spiral spin-wave phase is easily destroyed
upon the introduction of a positive-J Heisenberg inter-
action. We have mostly concentrated on spin waves in
the (1,0) direction since we found that the energy dif-
ferences are very insensitive to the pitch direction, at
least for the pure Hubbard model. To make the study
complete, other spin directions should also be studied.
However, it is likely that these small energy differences
are insignificant with respect to the overall crudeness of
our analysis, although one might argue that their relative
difference is to be taken seriously.
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APPENDIX A: THE POINT GROUP C,,

The point-group symmetry of the 2D square lattice
is Cyy, since the lattice is invariant under 90° rotations
around the z axes and under reflections in the lines v and
v’ in Fig. 8. The group elements of C4, are the identity
(I), 90° rotations (Cy), 180° rotations (C?), reflections in
v (o) and reflections in v’ (o,). This group has four 1D
irreps (A1, A2, B1, B2) and one 2D irrep E. The char-
acter table together with examples of basis functions for
the different irreps are given in Table II. Our main use
of the Cy, irreps is to distinguish between d- and s-wave
superconductivity order parameters. The s-wave order-
ing has the full symmetry of the lattice, i.e., it belongs
to the A; representation. The d-wave ordering, on the
other hand, is antisymmetric under reflections in v’, and
belongs to the B; representation. If we would see any
p-wave states, these would belong to the 2D E represen-
tation since these states are antisymmetric under parity

[(‘T’ y) - (—1:, _y)]

\YAd y AYAd

\%

FIG. 8. The symmetry axes v and v’ of the square lattice.
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TABLE II. The character table of the point group Cy, to-
gether with examples of basis functions for the different irre-
ducible representations.

| I C; Ci o, on

Examples of functions

Al 1 1 1 1 1 1, cosks + cosk,

Azl 1 1 1 -1 -1 sin2k;sinky — sin 2k, sink.
Bil 1 1 -1 1 —1 cosks —cosky

Byl 1 1 -1 -1 1 sink:sinky

E| 2 -2 0 0 0 {sink., sinky,}

APPENDIX B: PROOFS
OF THE ZERO-TEMPERATURE,
HALF-FILLING THEOREMS

In this appendix we give the proofs of the theorems
concerning the minimization of the ground-state energy.
A bunch of related theorems have also been derived by
Bach et al.*® First we prove the lemma for how the en-
ergy minimization problem can be recast into the prob-
lem of minimizing the expectation value of the Hamilto-
nian written in terms of (af*).

Lemma 1. The restrictions on the expectation values
(a*) for the variational solutions of FEgq. (20) are
Yomlai)? =3, ((afo)k) = =3, and Ak =0V k.

Proof. The space of all possible variational solutions
is defined by the constraint that the Hermitian ma-
trix (G’|\Il;rc ® ¥, |G) has the four-fold degenerate eigen-
values 0 and 1, since it has the same eigenvalues as
9 = (G|(x} ® x3)|G). Our aim is to find the correspond-
ing constraints on the coefficients (a}*) in the expansion

(G¥f ® T, |G) =Y (i) Bpm - (B1)
m
First of all, since By = B3, = —1 is the only basis matrix
with a nonzero trace, one has ((a3,)x) = —1. Let us next
define the traceless matrix X,
Xi = (G|¥] ® ¥,|G) — 11. (B2)

This matrix has the fourfold degenerate eigenvalues :I:%
and the expansion

Xe= Y (oi)Bm-

m#0

(B3)

Furthermore, {Xy,Xx} has the eightfold degenerate
eigenvalue 1, meaning that { Xy, Xx} = 11, so that using
Eq. (10) we have

11 = { X, Xi} = Z 2(a™)21 + Ay,
m#0

(B4)

where Ay is the nondiagonal part defined in Eq. (37).
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Since Ay is orthogonal to 1, it follows that Ax = 0 and
that

Z(ak )2 = (ag)? + Z(ain)z

m#0

(-3)?+1i=1. (B5)

Q. E. D.

For some specific solutions, this lemma leads to the fol-
lowing theorem which considerably simplifies the search
for solutions. Here we consider the larger space of so-
lutions that arises if we disregard all constraints except
the normalization Y, (of?)2 = 1. A solution of the new
problem that happens to fulﬁll all the constraints, must
then be a solution of the original problem as well.

Theorem 1. Consider the Hamiltonian in Eq. (20) with
fized coefficients aim and by.,. Define N as the sub-
set of purely quadratic and irreducible terms, N =
{m : a1m = OVI ,by;m = bmbyi(m)}, where I(m) is a
function which attaches one single | to each m. As-
sume there ezists an m € N, such that (bs < 0 and
bl B B < b BB | VR, K, Vi € N\ {712}).
If (&) = 0Vk, YVm € N\ ) is a sufficient condition
for (Ax = 0V k), then the same (a)’s will be zero also in
the minimizing solution of the constrained problem.

Proof. The lowest-energy solution should be minimal un-
der any variation of (a)’s that fulfills the normalization
constraint (B5). Since there is only one constraint per k
in the simplified problem, it is possible to keep all (a)’s
fixed except two and still fulfill the constraint. Suppose
that we vary only (") and (o), where m,n € N. A
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variation around a minimizing solution must then fulfill
n " "
> baBd BT (o) b o)

+ba B B (e )5 (o) = 0,

(o62)8(add') + (ait)d{agz) = 0. (BS6)
From our assumptions, we have b,; < 0, and to consider
competing solutions one must also have b, < 0. Since

there are no constraints imposed on the signs of (o)
and (of), it is obvious that a minimizing solution is ob-

tained by choosing sgn({af?)) = sgn(ﬂ::('h)) and similarly
for (o). Taking these sign considerations into account
and eliminating §(af*) and 6{af) yields

S bl ™o (o)

Lk'
bul B B | o Y (g ]) = 0. (BT)

Summing this equation over k gives

Z (Bin B Bl z(m)l

kk’

I(n n on
bal BV B oot = 0, (BS)

and since from our assumption, ,;1|,8L(m) '(’")| <

bn|ﬂll‘(")ﬂ]l‘(,n){‘v'k, k', the solution must be either of* =
0Vk or af = 0Vk. Of these two, af = 0 is obviously
the solution of lowest energy. This argument is then ap-

plied to all purely quadratic terms n € N \ 7.
Q. E. D.

* Present address: Nordita, Blegdamsvej 17, DK-2100
Kgbenhavn @, Denmark.
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FIG. 2. The low energy states of the extended Hubbard
model according to Corollary 1 is shown in grey. The white
areas are indeterminate from the corollary, and the phases
here must be computed numerically.



