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The cavity-fields approach recently proposed and used in spin-glass theory is extended to study
the infinite-range quadrupolar-glass model and the three-state Potts spin-glass model. This ap-
proach, which avoids the replica method, relies on well-known mathematical grounds and deals with
obvious physical quantities; the Thouless-Anderson-Palmer equations are obtained for both models.
The results are in agreement with the previous calculations based on the replica method.

I. INTRODUCTION

The term quadrupolar glass (QG) was introduced by
Sullivan et al. for the low-temperature phase of ran-
domly diluted mixed crystals. If the concentration of
molecules bearing quadrupole moments is high enough,
the system exhibits an order-disorder phase transition
&om a high temperature &eely rotated quadrupole phase
into a long-range orientationally ordered phase. The sit-
uation is changed when the concentration of molecules
without quadrupole moments is increased. Such a di-
lution leads to the appearance of a new phase with
quadrupole moments frozen in random directions at low
temperature. Well-known examples of such systems are
o-p-H2 and o-p-D2 crystals with low concentrations of
o-H2 or p-D2 molecules with rotation moment J = 1,
Ar diluted with N2 molecules, and a series of (KBr) q

(KCN) -type mixed crystals (see, e.g. , Refs. 2, 3). The
presence of randomness and &ustration makes these sys-
tems similar to spin glasses. However, the absence of
re8ection symmetry gives rise to a number of peculiari-
ties in the behavior of quadrupolar glasses and puts them
nearer to real glasses. Recently this subject was consid-
ered &om a field. theoretical and geometrical point of view
by G. Parisi. 4

The development of an analytic approach to quadrupo-
lar glass theory was started in 1984 in Ref. 5. We have
proposed a simple "solvable" model for the quadrupolar
glass in o-p-H2 in the spirit of the well-known and widely
used model of Sherrington and Kirkpatrick (SK). Using
a SK-like replica-symmetric (RS) approach we have con-
sidered a kind of model effective random Hamiltonian for
electrostatic quadrupole-quadrupole (EQQ) interactions
between axial quadrupoles, and we have obtained an
expression for the free energy and the equations for the
order parameters. Even in the &arne of this simple model
some of the peculiarities mentioned above could be seen.
The algebra of quadrupole moment operators and sym-
metry properties diBerent &om the SK case have man-
ifested themselves in nonzero spontaneous quadrupolar-
ization even at high temperature and zero external Beld.
The main result obtained in Ref. 5 was the absence of
QG transitions in the simple SK sense: The equations
for the order parameters have no trivial solution even at

high temperature; the long-range orientational order pa-
rameter and the QG order parameter increase smoothly
with decreasing temperature. This fact, which &om the
naive point of view contradicts the physical intuition, cor-
relates, however, with the experimental data on o-p-H2
and N2-Ar systems (see, e.g. , Ref. 7).

Another model for a uniaxial quadrupole glass has
been considered by Goldbart and Sherrington. s They
have studied. quadrupoles with biquadratic exchange
interactions and quenched &ustrated exchange con-
stants distributed by Gauss' law. In their model a
paraquadrupolar phase exists at high temperature and
for low temperature the QG phase was assumed. Some
attempts were made to go beyond the simple models and
to consider realistic Hamiltonians (see, e.g. , Refs. 11, 12).
Unfortunately, these Hamiltonians were too complicated,
so that no useful results were obtained. The interesting
treatment of axial QG's through the Thouless-Anderson-
Palmer (TAP) approach has been given in Ref. 10.

Later we used the ideas of the work in Refs. 13—19.
We have considered QG models with axial and nonaxial
interactions between quadrupoles. From equations for
four order parameters it follows that in the general case
the system does not exhibit a phase transition to a QG
phase; long-range orientational along with QG orders ex-
ist in the system in the whole range of temperatures. The
exception is the "isotropic" case when axial and nonaxial
constants are distributed with the same parameters and
the system is isomorphic to the three-state Potts spin
glass. We will discuss these results in detail in Sec. II.

Recently interest in QG's was renewed (see, e.g. ,
Refs. 20—25). However, the results of the treatment of
these papers based mainly on the equations obtained in
our earlier works ' ' ' do not go beyond the RS ap-
proach and lead only to progress in numerical solutions,
and a number of problems beyond the RS approxima-
tion remains unsolved and we do not know what really
the above-mentioned glasses do have in common with
the well-known Sherrington-Kirkpatrick (SK) spin glass.
Particularly, the answer to one of the main questions
whether the familiar picture of metastable states known
from the results of Parisi, Tanaka and Edwards,
Thouless, Anderson, and Palmer, and Bray and Moore
on SK spin glass remains unchanged in some other more
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Performing a high-temperature expansion of Eqs. (9)—
(12) it is easy to see that there is no trivial solution for the
parameters m and qi even at high temperature. The ex-
ception is the case of the isotropic model when G = J .
In this case the system was shown 4' 6 to exhibit a phase
transition from the disordered paraquadrupolar phase
(m = n = 0, ql ——q2

——0) to the quadrupolar glass phase
(rn = n = 0, ql

——q2 g 0). The critical temperature is
kT = 2J. Such a situation is to be expected on a cubic
lattice when the operators Q and V belong to the same ir-
reducible representation of.the rotation group subgroup.
In this case the model describes the transition to the QG
phase in mixed crystals of (KBr) (KCN)l type, where
the glass phase is observed on a cubic lattice. ' This
is in contrast to the case J g G without a phase transi-
tion, which describes the situation on a hexagonal lattice
(o-p-H2) .

The isotropic model was shown to be equivalent to the
three-state Potts spin glass (considered, e.g. , in Ref. 38),
this equivalence following from the identity

q, ) J;,q, +V;) J,,V, . (15)

The number of the metastable states can be written as

(N)=(Tr 8~ Q ) JQ+V) JV
~

The obtained number of such states is macroscopically
large:

Ref. 18, where we have exploited the equivalence of the
three-state Potts model to the isotropic glass model. 4

In what follows we shall put Jo ——Go ——0.
Following Ref. 27 we have defined the number of

metastable states as the number of states with positive
local one-particle excitation. The condition of positiv-
ity of local one-particle excitation through the properties
of the operators Q and V in the subspace J = 1 can
be brought up to the condition of the positivity of the
quantity (see Ref. 18)

1
b(o. , P) = —(Q Qp+ V Vp+ 2).

The low-temperature behavior of q was found to be

(N, ) = exp [
—NOs],

with Os ———(z*/2) —ln C'(z") —ln 3. Here

exp [
—t2/2]

27l

(16)

q = 2 — t-'+O(t —'), t = J/kT, (14)
z* = 0.5061, 4(z*) = 0.6936, so that

0, = 0, —ln(3/2) = —0.6047,

and the entropy at T = 0, S = —27Nk/32vr.
The obtained RS solution was shown to be unstable at

low temperature. If we make an attempt to break up
the replica symmetry, we must obtain the free energy in
the vicinity of T in the general case. This efFective free
energy diII'ers from that of the SK case in two respects.
First, it contains an extra cubic term P(q ) )s due to
the absence of reHection symmetry and nonzero values of
the averages of (Q )

s and Q (V ) . Second, the pres-
ence of the negative term —8 P(q ~) q ~q~~ makes the
"effective" sign of the fourth-order term negative. [The
change of sign does not cause stability of the RS solu-
tion, because in our case it is unstable already at Grst
order in (T —T,).] These terms were shown to make the
RBS scheme of Parisi fail. A solution of the step function
type was obtained, which was stable in the vicinity of
the transition point (see also Refs. 29—31).

One of the main characteristic features of spin glasses
is the existence of many minima of the free energy sep-
arated by very-high-energy barriers. It is interesting
to study those configurations which are local minima
of the Hamiltonian in the sense that the energy in-
creases when we Hip a spin. These local minima are
very important in the dynamics outside equilibrium be-
cause at low temperatures the system may be trapped
for a very long time in these minima. The number of
such metastable states at zero temperature is well known
for the SK model. ' ' As to non-Ising systems the
low-temperature local minima structure has not been
analyzed (see, however, Ref. 10). We have used the
method of Tanaka and Edwards to count the number
of metastable states in the Potts model with p = 3 in

with 02 ———0.19923 being the well-known quantity for
the SK model (Potts spin glass with p = 2). This means
that the "relative" number of rnetastable states (the part
of all possible p states) is the same in both models:

exp [
—NOs] exp [

—NQ2]
3N 2N

In an analogous manner one can obtain the distribu-
tion function of the local-minima energies:

P(E) = (Trb ~

E ——) J&, (Q,Q, + V, V, ) ~

x 8~ Q;) J;,Q, +V, ) J;,V, . .

(18)

The obtained normalized distribution is N(c) n(e)~
for the dimensionless energy per particle s = E/N J with

n(s) = 3C (7*)exp{[T.* —s/(2~2)] —-'r*2 —0.6047)

[compare with Eq. (5.13) of Ref. 27]. Here w* = T*(e') is
the solution of the equation

= ~/~2.
@'(~*)

The energies of the local minima are distributed simi-
larly to those of the SK model. It is possible, however,
that the states considered here present only a part of all
metastable states. The other part connected with false
vacua can be large, too.
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III. CAVITY-FIELDS APPROACH
TO THE QG MODEL

hence obeying the two-dimensional Gaussian probability
distribution with the means (compare with Refs. 40, 41)

Now we shall formulate the cavity-fields method for
the infinite-range QG model and then (in Sec. IV) we
shall use it to describe the three-state Potts spin-glass
model. Thouless-Anderson-Palmer- (TAP-) like equa-
tions will be obtained.

The basic idea of the cavity-fields approach is to
compare the behavior of the model moving from N to
N + 1 particles. The system reacts to the inclusion of
the newcomer by reshufHing the various levels in the ul-
trametric topology of states. The connected correlation
functions for di8'erent states inside a pure state are ne-
glected in the therznodynamic limit (N m oo).

Following the idea of the cavity-fields approach we add
one quadrupole with moment components Q and V at
site 0. Now we discuss the problem on the level of pure
states, so that the reaction of the system will be a
reshuRing of the configurations inside a pure state. We
consider a model of N quadrupoles with Hamiltonian (1)
in a pure state denoted by n(N). The number of configu-
rations belonging to this state with energy in the interval
(EN, EN + dEN) is (the definition of the entropy)

1V N

h2 = (h2}cx(N) ) Goi(+i}n(N) = ) Gp'n, (N), (24)

and variances

N
= P —) (A,"A," }~(N) —q"" (25)

where

Q, , k=1,
V;, k=2,

N

(I = ) (+ ) (N)(+ } (N)
i=1

N N

h, = (hi) (N) = ).Jo, (Q,} (N) = ) Jo,m; (N), (23)

dN(E„) = '( ")dE

dN(EN) = e ~+~(~)e~@~dE (2o)

where F (N) = E (N)
—P S(E (N)) is the free energy

of the N-quadrupole system in the state o.(N).
Now we define the cavity fields as the fields

(hk) (k=1,2) produced by a given configuration of N
quadrupoles and acting on the new site 0 once the corre-
sponding quadrupole has been removed:

At a fixed temperature the relevant configurations in-
side the state o.(N) have energies near its internal energy
E (N). Therefore, assuming ~EN —E (N) ~/~E (N) ~

to be
small, we can write

2

(X )kk" Xk"k' ~kk' )I

P ((hi, h2)) = det
2~

'
Jk Ja

pexp —— )
, JI Jk

)

x (X ) kk (hk —hk) (hk —hk ) (26)

where (. .} (N) denotes the averages over the configura-
tions inside the state a(N) of the N-quadrupole system.

Thus, the probability distribution for (hk) has the
form

1V

hi ——) J();Q;,

N

h2 ——) Gp;V; .

(21)

(22)

Here Jl ——J and J2 ——G.
The probability distribution (26) for cavity fields is

statistically independent of the energy value, since hI,
are functions of the new couplings Jpi, Gpi, whereas the
energy is a function of the old J,~, G;z. Therefore, the
number of configurations of N quadrupoles with energy
in the interval (E,E+ dE) and cavity fields in (hk, hk +
dhk) is given by

By construction, the random couplings Jp and Gpi
are uncorrelated with variables Q, and V; (i = 1, ..., N),
which are in equilibrium among themselves but not with
the newcomer. Therefore, considering the ensemble of
relevant configurations inside the N-quadrupole system
equilibrium state, the fields hl and h2 are random vari-
ables controllable through the central limit theorem and

I

dN(EN, hi, h2) = e ~ -( ) e~

x+ ((hl h2)) dENdhldh2 (27)

EN+i = EN —(hiQo+ h2VO), (2S)

To each one of them there correspond three configura-
tions of the (N + 1)-quadrupole system with energy

where Qo and Vp are quadrupole variables referred to the new site 0.
Now the joint distribution is

dN(EN+1 hl h2 QO Vo) e e +((hl h2))exp[P(hlQO + h2VO)]dEN+idhidh2. (29)
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Integrating over hi and h2 and tracing over Qp and Vp, we obtain an exponential distribution of the energy EN+1,

dN(E )
—e ) a(Nyh) e 0 N+1 dE

The change of the normalization in (30) determines the kee energy I" (N+1) of the (N + 1)-quadrupole system. It is
not diKcult to see that

P (ooo.o)
—P (pr) = () ')o—o To f[hoQo + hoVo)P ((hobo)) ,dhodho

Thus, Eq. (29) can be rewritten as

dN(EN+1, hi, h2, Q(), V()) = e ~ (N) e~ N'+7 ((hi, h2, Q(), V()})dEN+idhidh2,

(31)

where

'P ((h h Q V }) —geP( a(N 1+) a(N))P ((h h })
x exp[p(hiQp + h2Vp)]

N
~(N+1)

(h2}n(N+1) ) (Toi (Vh}n(N+1)

N
~(N+1)

OiA.

is the probability distribution that in the (N + 1)-
quadrupole system the variables Qp, Vp and the fields
61, 62 have certain values at a Axed value of EN+1. gC is
the normalization constant.

From Eq. (33) it is easy to see that the probability
distribution for the fields hI, in the presence of a new
quadrupole is no longer Gaussian and is correlated with
the values of Qp Vp.

Using Eq. (33) and Eqs. (21)—(24) one can obtain the
average values (Qp}~(N+1) and (Vp) (N+1) and the av-
e»ge fields (hi) (N+1) and (h2) (N+1) in the (N+ 1)—
quadrupole system:

Qo, &o

((hi, h2, Qo, Vo}), (37)

with ( .) (N+1) denoting the average over configurations
inside the state a(N + 1) of the (N + 1)-quadrupole sys-
tem.

Using the features of the operators Q and V it is not
difficult to obtain the variances (25) entering the distri-
bution (26):

yii ——(2 —m —qi) p,

y22 ——(2+ m —q2) p,

X12 X21 —P()i q12) )

Qo, Vo

dhidh2Qp P((hi, 'h2, Qp, Vp}), (34)

1 2+m —q2

1. 2 —m —q1
(X )22 =—

(35) where

ooo—:(Vo) (~o.,) ) f dhodhoVo P'
Qo, vo

x ((hi, h2, Q(), V()}),

(X )i2 =(X ')2i =—

N
11 I i

n(N+1)
oi foal

Qo, Vo

dhidh2hiP ((hi) h2) Qo) Vo}), (36)

N
~(N+1) —= (hi) (N+1) = ).Jo, (Q') (N+i)

N—) m„

Now we can write

n — n'i '
N .i=1

A = (2 —m —qi)(2+ m —q2) —(n —q12),

p(() „h„q„V,)) =); o(" o) +o ~) ~h —ho~j2 2+ m—
2J2P

2(h, —h', )(ho —h', ) qoo —
n)2JaP

(h2 —h,')' 2 —m —q,
2(."2P

(38)
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After calculating the constant K from the normalization
condition

IV. ISOTROPIC CASE (J = G):
POTTS SPIN GLASS

) J ~hldh2P Hhl h2 Qo, Vo))
Qo, vo

—2 + 2 cosh pq exp p2
mp 1+2coshyq exp@2

2~3 sinh rpq exp &p2
np

1 + 2 cosh p~ exp y2
'

(39)

(40)

and performing an integration in the Eqs. (34)—(37) we
obtain

As we have already mentioned above our system in
the general case cannot exhibit a phase transition to a
glasslike state with the order parameters mq ——0, m2 ——

0, qq g 0, qq g 0. This can be seen ' from the high-
temperature expansion of Eqs. (9)—(12): There are no
trivial solutions for m and n if G g J. If G = J, we have
the three-state Potts spin glass, and for this case we can
assume that, in the resulting equations of the previous
section, m = 0, n = 0, q~2

——0, q~
——q2 ——q. Now the

TAP-like equations for the three-state Potts glass can be
written in the following form:

h, + = h~+ pJ mp(2 —m —q~) —pno JG(q12 n))

(41)

h ~ + l = h2 + pG n (2 + m —q2) —pmo JG(qz2 —n)

where

&, = AP[ho, PJG(q»-- n)l

~, = 3p[h', ,'pJ'(2 ——m —q, ) + -', pG'(2+ m —q2)j.

where

—2 + 2e ~" cosh ~3Phz
1 + 2es~"~ cosh ~3Ph

2~3e ~"~ sinh ~3ph2
1+ 2e ~"~ cosh ~3phz

h, ', = h, ' +' —p oJ'(2 —q)

hP hn(hT+1) P J2 (2 )

(43)

(44)

(45)

(46)
If we write hz and hz in terms of the quantities aver-

aged over the o.(N+ I) state using Eqs. (41),(42) and sub-
stitute the result in Eqs. (39),(40), then Eqs. (39),(40)
become just what one can call TAP-like equations for a
quadrupolar glass.

To make the difFerence between the two cases clearer
let us consider the high-temperature expansion of the
TAP-like equations (39)—(42) for a quadrupole system in
general case. They can be written as follows:

mp = 2P ) Jp~m~ —2P J mp(2 —m —qq) —2P JGnp(qq2 —n)

PJ (2 —m ——qq) + P G (2+ m —q2) —P ) Jp~m~

)
—P ) Go~ n,

)
(47)

np ——2P) Gp~n~ —2P G np(2+ m —q2) —2P JGmo(qi2 —n) + 2P ) Jp~m~ ) Gp~n~ . (48)

Replacing the sums P. Jo~m~ = 2Jmp and g. Gp~n~ = 2Gnp we can obtain from Eqs. (47) and (48) the following
equations for m and n, respectively:

m = 4PJm —2P J m(2 —m —qq) —2P JGn(qq2 —n)

2P (J —G ) +—mP (J + G ) + P (J qq + G q2) —4P G qq —4P J q2,

n = 4pGn —2p G n(2 + m —q2) —2p JGm(qq2 —n) + 8p JGq» (50)

qy = m q2 = n q]2 = mn)( 2 2

After multiplying Eqs. (47) and (48) by mp and np, respectively, and taking the sums over sites we obtain

q&
—4P Jq& —2P J q~ (2 —m —q&) —2P JGq»(q» —n)

—p J m(2 —m —qz) + p G m(2+ m —q2) —4p J m —4p G mn,



372 E. A. LUTCHINSKAIA AND E. E. TAREYEVA 52

q2 ——4PGq2 —2P G q2(2+ m —q2) —2P JGq~2(q~2n) + 8P JGmn (52)

q12 4p Jq12 2p J q12(2 m ql) 2p JGq2(q12 n)
—P J n(2 —m —qq) + P G n(2+ m —q2) —4P J nm —4P G n (53)

Now

) J~M~ = 2JM;, ) J~N~ = 2JN;.
j 2

1 (2 + mp) 2 —3no

6P 4(1 —m, )
2

V&, 2+mo+no&3
h2 = ln

6P 2+ mo —no~3

(54)

(56)

With the use of these equations we can obtain Rom
(45),(46), respectively,

It is easy to see that Eqs. (49), (50) have no trivial
solution m = 0, n = 0 if the coefficient (J —G ) is
nonzero. In the case of nonzero m and n, Eqs. (51) and
(52) also have no trivial solution for q. This means that
there is no traditional phase transition to the spin-glass-
like state in the case Jz g G2 (compare with Refs. 5, 7,
13, 42). It is interesting of course to look for a crossover
to spin-glass-like behavior in the next stage of the cavity-
fields approach.

In the case of the Potts model (that is, the isotropic
quadrupole glass model with J2 = G2) there exists a kind
of traditional phase transition to the spin-glasslike state
with m = n = 0 and nonzero spin-glass order parameter.
The temperature of the transition can be found from the
Eqs. (43)—(46) in a manner used in Ref. 9.

In this case for T near T we expect mo and no to be
small. The same can be said about the eigenvectors M;
and N, belonging to the largest eigenvalue (Jp) „=2J
of the matrix J;z.'

Keeping in mind Eq. (54) and taking the scalar product
of Eqs. (55) and (56) with M, and N, , respectively, we
obtain the linearized equation

q[4(PJ) —4PJ+ 1] = 0, (59)

so that the phase transition temperature is kT = 2J, in
accordance with previous results.

V. CONCLUSIONS

To summarize, a first stage description of the
quadrupolar glass model (and Potts spin-glass model
with p = 3) in the frame of the cavity-fields approach
is obtained. The rearrangement of the configurations of
quadrupole moments inside a pure state is discussed. The
TAP-like equations are derived.

The obtained results are in agreement with previous
calculations based on the replica method and this fact
can be regarded as an additional support for the replica
method predictions.

We believe that the cavity-fields approach may be very
useful in putting spin-glass theory on firmer mathemat-
ical and physical grounds. The next step in exploring
the potentialities of the cavity approach includes consid-
eration of the rearrangement of the quadrupolar moment
configurations inside a cluster. These results will be pub-
lished elsewhere.

) Jp~ m~ = PJ (2 —q)mo+ —mo
2

+—(mo —no) + —mo(mp + no)
1 2 2 1 2 2 (57)
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