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The cavity-fields approach recently proposed and used in spin-glass theory is extended to study
the infinite-range quadrupolar-glass model and the three-state Potts spin-glass model. This ap-
proach, which avoids the replica method, relies on well-known mathematical grounds and deals with
obvious physical quantities; the Thouless-Anderson-Palmer equations are obtained for both models.
The results are in agreement with the previous calculations based on the replica method.

I. INTRODUCTION

The term quadrupolar glass (QG) was introduced by
Sullivan et al.! for the low-temperature phase of ran-
domly diluted mixed crystals. If the concentration of
molecules bearing quadrupole moments is high enough,
the system exhibits an order-disorder phase transition
from a high temperature freely rotated quadrupole phase
into a long-range orientationally ordered phase. The sit-
uation is changed when the concentration of molecules
without quadrupole moments is increased. Such a di-
lution leads to the appearance of a new phase with
quadrupole moments frozen in random directions at low
temperature. Well-known examples of such systems are
o-p-H, and o-p-D2 crystals with low concentrations of
o-H; or p-D; molecules with rotation moment J = 1,
Ar diluted with N, molecules, and a series of (KBr);_,
(KCN),-type mixed crystals (see, e.g., Refs. 2, 3). The
presence of randomness and frustration makes these sys-
tems similar to spin glasses. However, the absence of
reflection symmetry gives rise to a number of peculiari-
ties in the behavior of quadrupolar glasses and puts them
nearer to real glasses. Recently this subject was consid-
ered from a field theoretical and geometrical point of view
by G. Parisi.*

The development of an analytic approach to quadrupo-
lar glass theory was started in 1984 in Ref. 5. We have
proposed a simple “solvable” model for the quadrupolar
glass in o-p-Hj; in the spirit of the well-known and widely
used model of Sherrington and Kirkpatrick® (SK). Using
a SK-like replica-symmetric (RS) approach we have con-
sidered a kind of model effective random Hamiltonian for
electrostatic quadrupole-quadrupole (EQQ) interactions
between axial quadrupoles, and we have obtained® an
expression for the free energy and the equations for the
order parameters. Even in the frame of this simple model
some of the peculiarities mentioned above could be seen.
The algebra of quadrupole moment operators and sym-
metry properties different from the SK case have man-
ifested themselves in nonzero spontaneous quadrupolar-
ization even at high temperature and zero external field.
The main result obtained in Ref. 5 was the absence of
QG transitions in the simple SK sense: The equations
for the order parameters have no trivial solution even at
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high temperature; the long-range orientational order pa-
rameter and the QG order parameter increase smoothly
with decreasing temperature. This fact, which from the
naive point of view contradicts the physical intuition, cor-
relates, however, with the experimental data on o-p-H,
and Ny-Ar systems (see, e.g., Ref. 7).

Another model for a uniaxial quadrupole glass has
been considered by Goldbart and Sherrington.® They
have studied quadrupoles with biquadratic exchange
interactions and quenched frustrated exchange con-
stants distributed by Gauss’ law. In their model a
paraquadrupolar phase exists at high temperature and
for low temperature the QG phase was assumed. Some
attempts were made to go beyond the simple models and
to consider realistic Hamiltonians (see, e.g., Refs. 11, 12).
Unfortunately, these Hamiltonians were too complicated,
so that no useful results were obtained. The interesting
treatment of axial QG’s through the Thouless-Anderson-
Palmer® (TAP) approach has been given in Ref. 10.

Later we used the ideas of the work® in Refs. 13-19.
We have considered QG models with axial and nonaxial
interactions between quadrupoles. From equations for
four order parameters it follows that in the general case
the system does not exhibit a phase transition to a QG
phase; long-range orientational along with QG orders ex-
ist in the system in the whole range of temperatures. The
exception is the “isotropic” case when axial and nonaxial
constants are distributed with the same parameters and
the system is isomorphic to the three-state Potts spin
glass. We will discuss these results in detail in Sec. II.

Recently interest in QG’s was renewed (see, e.g.,
Refs. 20-25). However, the results of the treatment of
these papers based mainly on the equations obtained in
our earlier works®'31416 do not go beyond the RS ap-
proach and lead only to progress in numerical solutions,
and a number of problems beyond the RS approxima-
tion remains unsolved and we do not know what really
the above-mentioned glasses do have in common with
the well-known Sherrington-Kirkpatrick (SK) spin glass.
Particularly, the answer to one of the main questions—
whether the familiar picture of metastable states known
from the results of Parisi,?® Tanaka and Edwards,?”
Thouless, Anderson, and Palmer,® and Bray and Moore?2®
on SK spin glass remains unchanged in some other more
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complicated cases—is far from being complete, although
some steps in this direction have been done (see, e.g.,
Refs. 10, 17-19, 29-31) and the problem of the possibil-
ity of using the replica-symmetry-breaking (RBS) scheme
of Parisi?® in the case of the absence of reflection sym-
metry has been discussed since the beginning of 1985.32

Recently a method named the “cavity-fields
approach”3373% has been proposed for the SK model.
This approach avoids the replica trick, relies on well-
known mathematics, and deals with obvious physical
quantities, such as magnetizations and random magnetic
fields. It seems to us that the extension of the method
and the study of quadrupolar glasses in the frame of the
cavity-fields approach may be useful for progress in the
understanding of the physics of non-Ising spin glasses.
This program is partially realized in the present paper.

The paper is organized as follows. In Sec. II, we dis-
cuss some of the main results of our previous study of
QG and Potts glasses. These results form a logical basis
for the use of the cavity-fields approach. In Sec. III, the
cavity-fields approach is used to study the quadrupolar
glass model with an effective EQQ Hamiltonian contain-
ing axial and non-axial quadrupole interactions. TAP-
like equations are obtained and discussed. In Sec. IV,
the case of “isotropic” QG’s, which is equivalent to the
three-state Potts spin glass, is considered in the frame
of the cavity-fields approach. TAP-like equations are ob-
tained and the transition temperature to the spin-glass
phase is calculated.

II. MODEL HAMILTONIAN
AND PREVIOUS STUDIES

In recent years there has been a significant growth
of interest in non-Ising spin glasses.20725:30:31 In this
connection we recall the main of results we obtained
earlier.513719 These results form a logical basis for the
further investigations presented in Sec. III and Sec. IV.
J

Some of these results were reproduced (or rederived?) in
Refs. 22-24 nearly a decade later.

In Refs. 14, 16 we investigated in the replica-symmetric
approximation the system of quadrupoles with the re-
duced Hamiltonian

H = H, + H,, (1)

where H,; and H, represent axial and nonaxial parts,
respectively:

1
H, = —5 Z Ji;Q:Qj, (2)
i#£]
1
H, = _Egaijv,-vj. (3)
i#j

Here Q = 3J2-2,V = /3(J2-J2),J =1, J, =1,0,-1.
The molecular quadrupolar moment is a second-rank ten-
sorial operator with five independent components. In the
principal axis frame only two of them remain: Q and V.
The coupling constants J;; and G;; are quenched random
interactions of infinite range, independently distributed
with Gaussian probabilities

P(J;;) = (Vard) texp[—(Ji; — Jo)*/20%),  (4)
P(Gi;) = (V2rG) ™" exp [~(Gij — Go)?/2G?].  (5)

The scaling Jo = Jo/N, Go = Go/N, J = J/NV? G =
G/N'/2 ensures a sensible thermodynamic limit.

Using the replica method it is easy to obtain the
free energy of the system and the equations for the or-
der parameters m = {Q)r)se, n = (V)r)sc, @1 =
(@)% 56, 92 = (V)2)s,c. In the RS approximation the
free energy has the form

F = —'(2—;:;")3(111 +m — 2)((]1 —-m — 2) + (j0/2kT)m2'(—é—kq—j_,)—2(Q2 +m — 2)(q2 - m — 2) + (éo/2kT)n2
— // %e—(zf+z§)/2 In[eol (892 + e——Gz) + 6—201], (6)
with
61 = (1/2)(J/kT)*(m + g1 — 2) + (1/2)(G/kT)*(m — g2 + 2) + (J/kT)21v/3, + (Jo/KT)m, (7)
02 = (G/kT)22,/q, + (Go/kT)n, (8)

where m, n, q1, and g» are solutions of the equations

m = dzi1dzo e—(=f+:§)/z ef1 (692 + e—9z) — 2e~ 261
27 e%1(ef2 + e=02) 4 e—261

b

(9)

= // d21d22e_(zf+z§)/2\/§ ef1 (392 _3—92)

2 ef1(ef2  e—02) + —261”’

(10)

[
_ dzidza _(,21.2)2- e (e% + e7%2) — 27201 2
= o C ef1(ef2 + e=02) + e—261 |’

(11)

0 = dz1dzo e_(zf+z§)/23 et (eaz — e‘ez)
27 ef1(ef2 + e=02) 4 =261 |~

(12)
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Performing a high-temperature expansion of Eqgs. (9)—
(12) it is easy to see that there is no trivial solution for the
parameters m and g¢; even at high temperature. The ex-
ception is the case of the isotropic model when G? = J2.
In this case the system was shown'%€ to exhibit a phase
transition from the disordered paraquadrupolar phase
(m =n =0, g1 = g2 = 0) to the quadrupolar glass phase
(m =n =0, g1 = g2 # 0). The critical temperature is
kT. = 2J. Such a situation is to be expected on a cubic
lattice when the operators @Q and V belong to the same ir-
reducible representation of the rotation group subgroup.
In this case the model describes the transition to the QG
phase in mixed crystals of (KBr),, (KCN);_, type, where
the glass phase is observed on a cubic lattice.36:37 This
is in contrast to the case J # G without a phase transi-
tion, which describes the situation on a hexagonal lattice
(0-p-Ha).

The isotropic model was shown to be equivalent to the
three-state Potts spin glass (considered, e.g., in Ref. 38),
this equivalence following from the identity

¥(a,B) = %(QaQa + VoV +2). (13)

The low-temperature behavior of ¢ was found!® to be

g=2- §—frt—1 FO(d), t=J/kT,  (14)

and the entropy at T =0, S = —27Nk/32x.

The obtained RS solution was shown to be unstable at
low temperature.!® If we make an attempt to break up
the replica symmetry, we must obtain the free energy in
the vicinity of T, in the general case. This effective free
energy'” differs from that of the SK case in two respects.
First, it contains an extra cubic term 3 (¢*?)% due to
the absence of reflection symmetry and nonzero values of
the averages of (Q%)% and Q*(V*)2. Second, the pres-
ence of the negative term —8 3 (¢*%)2¢®Y¢g?Y makes the
“effective” sign of the fourth-order term negative. [The
change of sign does not cause stability of the RS solu-
tion, because in our case it is unstable already at first
order in (T' — T.).] These terms were shown to make the
RBS scheme of Parisi fail. A solution of the step function
type was obtained,” which was stable in the vicinity of
the transition point (see also Refs. 29-31).

One of the main characteristic features of spin glasses
is the existence of many minima of the free energy sep-
arated by very-high-energy barriers. It is interesting
to study those configurations which are local minima
of the Hamiltonian in the sense that the energy in-
creases when we flip a spin. These local minima are
very important in the dynamics outside equilibrium be-
cause at low temperatures the system may be trapped
for a very long time in these minima. The number of
such metastable states at zero temperature is well known
for the SK model.27:28:39 As to non-Ising systems the
low-temperature local minima structure has not been
analyzed (see, however, Ref. 10). We have used the
method of Tanaka and Edwards?” to count the number
of metastable states in the Potts model with p = 3 in

Ref. 18, where we have exploited the equivalence of the
three-state Potts model to the isotropic glass model.1416

In what follows we shall put Jo = Go = 0.

Following Ref. 27 we have defined the number of
metastable states as the number of states with positive
local one-particle excitation. The condition of positiv-
ity of local one-particle excitation through the properties
of the operators @ and V in the subspace J = 1 can
be brought up to the condition of the positivity of the
quantity (see Ref. 18)

Qiniij +VinijVj . (15)
J J

The number of the metastable states can be written as
(Ns) = <’I‘rH © (Qi D JQ5 + Vi > Jz’jVj> > .
i j j J

The obtained number of such states is macroscopically
large:

(Ns) = exp [-NQ3], (16)
with Q3 = —(2*/2) — In ®(2*) — In3. Here
exp [—t2/2]

o(z) = B 2
@=[ ==
z* = 0.5061,%7 &(2*) = 0.6936, so that

Qs = Q, —In(3/2) = —0.6047,

with Q3 = —0.199 23 being the well-known?” quantity for
the SK model (Potts spin glass with p = 2). This means
that the “relative” number of metastable states (the part
of all possible p? states) is the same in both models:

exp [-NQs]  exp[-NQ]
3N B 2y

(17)

In an analogous manner one can obtain the distribu-
tion function of the local-minima energies:°

P(E) = (06 (B~ 3 30 75(Qi; + WV)))
x HG(QiZJiij +ViZJijVj)>J :

(18)

The obtained normalized distribution is N(e) ~ n(e)V
for the dimensionless energy per particle e = E/NJ with

n(e) = 3®(r*) exp{[t* — /(2v/2)]® — 17*2 — 0.6047}
[compare with Eq. (5.13) of Ref. 27]. Here 7* = 7*(e) is
the solution of the equation

®'(%) .
d(7*) /ﬂ

The energies of the local minima are distributed simi-
larly to those of the SK model. It is possible, however,
that the states considered here present only a part of all
metastable states. The other part connected with false
vacua can be large, too.

T +



III. CAVITY-FIELDS APPROACH
TO THE QG MODEL

Now we shall formulate the cavity-fields method for
the infinite-range QG model and then (in Sec. IV) we
shall use it to describe the three-state Potts spin-glass
model. Thouless-Anderson-Palmer- (TAP-) like equa-
tions will be obtained.

The basic idea of the cavity-fields approac is to
compare the behavior of the model moving from N to
N + 1 particles. The system reacts to the inclusion of
the newcomer by reshuffling the various levels in the ul-
trametric topology of states. The connected correlation
functions for different states inside a pure state are ne-
glected in the thermodynamic limit (N — o).

Following the idea of the cavity-fields approach we add
one quadrupole with moment components Q and V at
site 0. Now we discuss the problem on the level of pure
states,3* so that the reaction of the system will be a
reshuffling of the configurations inside a pure state. We
consider a model of N quadrupoles with Hamiltonian (1)
in a pure state denoted by a(N). The number of configu-
rations belonging to this state with energy in the interval
(En, En + dEp) is (the definition of the entropy)

h33—35

dN(Ey) = eSENJEY . (19)

At a fixed temperature the relevant configurations in-
side the state a(/V) have energies near its internal energy
Eo(n)- Therefore, assuming |Enx — Eq(n)|/|Eav)| to be
small, we can write

dN(Ey) = e PFa ePENGE N, (20)

where Fo(ny = Eqv) — B71S(Eq(n)) is the free energy
of the N-quadrupole system in the state a(N).

Now we define the cavity fields®* as the fields
{hr} (k=1,2) produced by a given configuration of N
quadrupoles and acting on the new site 0 once the corre-
sponding quadrupole has been removed:

N

hy =Y JoiQi (21)
=1
N

h2 = Z GOzVL . (22)
i=1

By construction, the random couplings Jp; and Go;
are uncorrelated with variables Q; and V; (i = 1,...,N),
which are in equilibrium among themselves but not with
the newcomer. Therefore, considering the ensemble of
relevant configurations inside the NN-quadrupole system
equilibrium state, the fields h; and h, are random vari-
ables controllable through the central limit theorem and

J
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hence obeying the two-dimensional Gaussian probability
distribution with the means (compare with Refs. 40, 41)

N N
K = (1)) = D Joi(Qi)any = 3 Joimiawy » (23)
i=1

=1

N N
hy = (h2)a(n) = ZGOi(Vi)a(N) = ZGOinia(N) , (24)
im1

=1

and variances

N
1 ' '
Xer =0 ['N D _(AFA o) — 4 ] . (29
=1
where
k __ Qia k= 1,
4= {V k=2,
L XN
¢ = N > (AR o) (AF )@y,
i=1
and

2
§ : -1
(X )kk”xk”k’ = 5kkl,
k=1

where (---)o(n) denotes the averages over the configura-
tions inside the state a(IN) of the N-quadrupole system.

Thus, the probability distribution for {hs} has the
form

B

el Xkk!
27

d t—1/2
€ Tedw

P ({h1,h2}) =

B 1
exp [-5 Z: Tuder
X (XY wke (R — hg) (haer — hol)] - (26)

Here J; = J and Jy = G.

The probability distribution (26) for cavity fields is
statistically independent of the energy value, since hj
are functions of the new couplings Jo;, Go;, whereas the
energy is a function of the old J;;, G;j. Therefore, the
number of configurations of N quadrupoles with energy
in the interval (E, E + dF) and cavity fields in (hg, hr +
dhy) is given by

dN(EnN,hy,hy) = e PFa) BPEN
XP({hl,hz}) dENdhldhz . (27)

To each one of them there correspond three configura-
tions of the (IV + 1)-quadrupole system with energy

Eni1 = En — (h1Qo + h2Vb), (28)

where Qo and V are quadrupole variables referred to the new site 0.

Now the joint distribution is

dN(En41, h1, b2, Qo, Vo) = e PFat) ePEN+1 P({hy, hy})exp[B(h1Qo + h2Vo)|dEN 1 1dRydhs. (29)
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Integrating over h; and hs and tracing over Qg and Vp, we obtain an exponential distribution of the energy En 1,

AN (En 1) = e PFawin e BENgRy . (30)

The change of the normalization in (30) determines the free energy Fi(y41) of the (N 4 1)-quadrupole system. It is

not difficult to see that

Fa(N+1) - Fa(N) = —ﬁ——lhl Tr/[h1Q0 + tho]P ({hl,hz}) dhldhz (31)
Thus, Eq. (29) can be rewritten as
AN(EN+1,hi,ha, Qo, Vo) = e PF=ePEN11P ({hy, hg, Qo, Vo}) dENt1dhidha, (32)
[
where (A1) N
by = (h2)av+n) = O Goi(Vidaw+1)
P ({h1,h2, Qo, Vo}) = Ke?Fatvs)=Fx) P ({hs, hz}) N -
— (N +1)
x exp[B(h1Qo + haVo)]  (33) =" Goin;

is the probability distribution that in the (IV + 1)-
quadrupole system the variables Qg,Vy and the fields
hi, h2 have certain values at a fixed value of En41. K is
the normalization constant.

From Eq. (33) it is easy to see that the probability
distribution for the fields hx in the presence of a new
quadrupole is no longer Gaussian and is correlated with
the values of Qo, Vp.

Using Eq. (33) and Egs. (21)—(24) one can obtain the
average values (Qo)a(n+1) and (Vo)o(n+1) and the av-
erage fields (h1)a(v+1) and (h2)a(n+1) in the (V +1) -
quadrupole system:

ma’(N“) = <Q0>a(N+1)

Z /dhldthOP ({h17h27 QOaVO}) ’ (34)

Qo,Vo

ng(N+1) = (VO)a(N+1) Z /dhldhz‘/op

Qo,Vo
X ({hlrh%QO» VO}), (35)
N N
h?( +1) = <hl>a(N+1) - ZJ0i<Qi>a(N+1)
i=1
N
— Z JOim?(N+1)
i=1
= Z /dhlthhlp ({1, h2,Q0,Vo}), (36)
Qo,Vo

P ({h1, h2, Qo, Vo}) = KePh1Qo+hao) exp{

_(h1~h(1))22+7h——q2

=1
=3 /dhldhzth({hl,hz,Qo,%}) , (37)
Qo,Vo

with (- - -)o(wv+1) denoting the average over configurations
inside the state a(IN + 1) of the (N + 1)-quadrupole sys-
tem.

Using the features of the operators @ and V it is not
difficult to obtain the variances (25) entering the distri-
bution (26):

x11 = (2 —m —q1)p,
X22 = (2 4+ ™ — q2)0,

X12 = X21 = B(A — q12),

_ 124 m—
(X l)uzﬁqu’
12—m—
(X Y22 = 3 A ql,

where

A=(2—m—q1)(2+ﬁz—q2)—(ﬁ—qlg)z,

1 N
e k3w,
N‘i:l

1 N
n -jv—-;ni.

Now we can write

_(h2=h)P2-m—q

2J2p3 A

2G23 A

_2(h1 — h9)(h2 — h3) 12 — 7

2JGB

—} (39
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After calculating the constant K from the normalization
condition

Z /dhldth ({hl, ha, Qo, VO}) =1
Qo,Vo

and performing an integration in the Egs. (34)-(37) we
obtain

mo = —2 + 2 cosh ¢y exp p»

3
1+ 2cosh p; exp sy ’ (39)

o = 2+/3 sinh ¢ exp @2 , (40)
1 4 2 cosh ¢, exp @2

h?(NH) = h{ 4 BJ%mo(2 — m — q1) — BroJG(q12 — 1),
(41)

hg(N+1) = hg + ﬂé2n0(2 + M —q2) — ,Bmojé(qu — 7),
(42)
where

p1 = V3B[RY — BIG(q12 — 7)),

02 = 30[hY — LBJ*(2 — m — q1) + LBG*(2 + ™ — q2)].

If we write h? and A in terms of the quantities aver-
aged over the a(IN+1) state using Egs. (41),(42) and sub-
stitute the result in Eqgs. (39),(40), then Egs. (39),(40)
become just what one can call TAP-like equations for a
quadrupolar glass.

IV. ISOTROPIC CASE (J = G):
POTTS SPIN GLASS

As we have already mentioned above our system in
the general case cannot exhibit a phase transition to a
glasslike state with the order parameters m; =0, my =
0, g1 # 0, g2 # 0. This can be seen'*'¢ from the high-
temperature expansion of Egs. (9)—(12): There are no
trivial solutions for m and n if G # J. If G = J, we have
the three-state Potts spin glass,3® and for this case we can
assume that, in the resulting equations of the previous
section, m = 0, i = 0, ¢12 = 0, ¢ = g2 = q. Now the
TAP-like equations for the three-state Potts glass can be
written in the following form:

—2 4 2¢38M1 cosh V/33h9

mo = , 43
0 1 + 2e3Ph1 cosh v/38h3 (43)

2/3¢3Ph1 sinh v/33h2
nNg = 5 3 (44)

1 + 2e3Ph? cosh \/gﬁhg

where

hY = i ™*Y — BmoJ?(2 - g), (45)
hY = RV _ Bno J2(2 — ). (46)

To make the difference between the two cases clearer
let us consider the high-temperature expansion of the
TAP-like equations (39)—(42) for a quadrupole system in
general case. They can be written as follows:

mo =28 Jojm; — 262J%mo(2 — m — q1) — 2% Gno(q12 — 1)

J

2 2
B2 -m—q) +BG*2+m—q) - B D Joym; | =B D Goini | (47)
J J
ng = 20 Z G’Ojnj — 2ﬂ2é2n0(2 +m — q2) - 2,32jémo((hz — ﬁ) + 2,82 Z Joij Z ngnj . (48)
J J J

Replacing the sums 3 Jojm; = 2Jmg and > Gojnj = 2Gny we can obtain from Egs. (47) and (48) the following

equations for 7 and 7, respectively:

m = 48Jm — 282 J%m(2 — m — q1) — 282 JGA(q12 — 7)

—2B%(J% — G?) + mB(J? + G?) + B*(J2q1 + G?q2) — 4B°G?qy — 4B T%q2 (49)
i = 48Gh — 282°G*A(2 + m — g2) — 28%TGm(q12 — 1) + 88%TGq1z (50)
((11=m, ¢12=7, q12 = MnN) .

After multiplying Eqs. (47) and (48) by mo and ng, respectively, and taking the sums over sites we obtain

a1 = 48Jq1 — 28%J%q1(2 — ™ — q1) — 282 T Gq12(q12 — 1)
—B2T?m(2 —m — q1) + B2G*m(2 + m — g2) — 482J%m3 — 482G mn?, (51)



372 E. A. LUTCHINSKAIA AND E. E. TAREYEVA 52

a2 = 48Gqz — 282G?q>(2 + M — ¢2) — 22T Gq12(q127) + 882 TGmn? , (52)

@12 = 4BJq12 — 28%J%q12(2 — ™ — q1) — 28%T Gga(q12 — 7)
—B2J%7(2 —m — q1) + B2G*(2 + m — q2) — 482 T%nm? — 452G*n3 . (53)

It is easy to see that Eqs. (49), (50) have no trivial
solution m = 0, & = 0 if the coefficient (J2 — G?) is
nonzero. In the case of nonzero m and 7, Egs. (51) and
(52) also have no trivial solution for q. This means that
there is no traditional phase transition to the spin-glass-
like state in the case J2 # G? (compare with Refs. 5, 7,
13, 42). It is interesting of course to look for a crossover
to spin-glass-like behavior in the next stage of the cavity-
fields approach.

In the case of the Potts model (that is, the isotropic
quadrupole glass model with J2 = éz) there exists a kind
of traditional phase transition to the spin-glasslike state
with m = 7o = 0 and nonzero spin-glass order parameter.
The temperature of the transition can be found from the
Eqgs. (43)—(46) in a manner used in Ref. 9.

In this case for T near T, we expect mg and ng to be
small. The same can be said about the eigenvectors M;
and N; belonging to the largest eigenvalue (J)max = 2J
of the matrix J;;:

Y ]
Now
1. (2+mp)?— 3n2
o__ - \eT o) ™ 9T
hl - 6ﬂ ln 4(1 _ m0)2 ’ (55)
By = Y31, 2t mo+nov3 (56)

2_@ 2+m0—’no\/§‘

With the use of these equations we can obtain from
(45),(46), respectively,

=~ 1
E Jojmj = ,BJ2(2 — q)'rn() + ﬁ l:mo
J
1 1
4 md =) + gmamd +nd)| L (57)

Z Jojnj = ﬂj2(2 — q)no
J

1 1 1
+2—ﬂ— [no — 3Mono + Zno(mg + nﬁ)] . (58)

r

Keeping in mind Eq. (54) and taking the scalar product
of Egs. (55) and (56) with M; and NV;, respectively, we
obtain the linearized equation

ql4(8J)* —4BT +1] =0, (59)

so that the phase transition temperature is kT, = 2J, in
accordance with previous results.38:16

V. CONCLUSIONS

To summarize, a first stage description of the
quadrupolar glass model (and Potts spin-glass model
with p = 3) in the frame of the cavity-fields approach
is obtained. The rearrangement of the configurations of
quadrupole moments inside a pure state is discussed. The
TAP-like equations are derived.

The obtained results are in agreement with previous
calculations based on the replica method and this fact
can be regarded as an additional support for the replica
method predictions.

We believe that the cavity-fields approach may be very
useful in putting spin-glass theory on firmer mathemat-
ical and physical grounds. The next step in exploring
the potentialities of the cavity approach includes consid-
eration of the rearrangement of the quadrupolar moment
configurations inside a cluster. These results will be pub-
lished elsewhere.
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