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Unbiased estimators in quantum Monte Carlo methods: Application to liquid 4He
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A Monte Carlo algorithm for computing quantum-mechanical expectation values of coordinate
operators in many-body problems is presented. The algorithm, which relies on the forward walking
method, fits naturally in a Green s function Monte Carlo calculation, i.e., it does not require side
walks or a bilinear sampling method. Our method evidences stability regions large enough to
accurately sample unbiased pure expectation values. The proposed algorithm yields accurate results
when it is applied to test problems such as the hydrogen atom and the hydrogen molecule. An
excellent description of several properties of a fully many-body problem such as liquid He at zero
temperature is achieved.

I. INTB.ODUCTION

Quantum Monte Carlo (QMC) methods have become
an invaluable tool in the study of many-body systems
over recent decades. Among them, the Green's function
Monte Carlo (GFMC) methodi has been extensively
applied to the calculation of ground-state properties of
small molecules and quantum liquids and solids at zero
temperature. Within the GFMC techniques one can dis-
tinguish between the domain GFMC, which stochasti-
cally constructs the Green's function, and the difFusion
Monte Carlo (DMC) method based on a short-time ap-
proximation for the Green's function. We will focus our
discussion on the DMC method but the algorithm we
present here for the evaluation of pure estimators can
also easily be incorporated in a domain GFMC program.

The DMC method solves the Schrodinger equation in
imaginary time for the function f (R, t) = g(R)ill(R, t),

f (R.', t + dt) = jda G ja', K, d t) f tat), ,(2)

= ——V'a f (R, t) + —V'R [F(R)f (R, t)]
t9f(R t) 1 2 1

+[EL,(R) —E] f(R, t), (1)

iII(R, t) being the wave function of the system and g(R)
a trial function used for importance sampling. In Eq. (1),
which is written in atomic units, El, = @(R) Hg(R) is
the local energy and F(R) = 2$(R) iV'a@(R) is the so-
called quantum force; K stands for a 3N-coordinate vec-
tor and E is an arbitrary energy shift. The Schrodinger
equation for f (R, t) (1) presents in the right-hand side
three terms that are associated, by analogy to classical
equations, with difFusion, drift, and branching processes,
respectively. The asymptotic solution of Eq. (1), for any
value E close to the energy of the ground state and for
long times (t -+ oo), gives the ground-state wave function
Op(R) provided that there is a nonzero overlap between
tIt'(R, t = 0) and 4'p(R). The formal solution of Eq. (1)
1s

W(R) I
A(R)

I
@p(R))

(&(R) l@p(R))

It gives an exact result only when A is the Hamiltonian
H or commutes with H. Among the difFerent meth-
ods to calculate expectation values for operators that do
not commute with H, the extrapolation method ' is the
most widely used. Following this method, which has been
extensively applied in QMC calculations, one has an ap-
proximation to the "pure" (exact) value,

(ep(R) I A(R) I
C p(R))

(@p(R)
I
@p(R))

(4)

by means of a linear extrapolation

(A(R)). = 2 (A(R))- —(A(R))-

where

(&(R) I
A(R)

I &(R))
8 (R) I &(R))

is the variational estimator of A(R).
The accuracy of the extrapolation method is closely re-

lated to the trial wave function used for importance sam-
pling. Furthermore, in spite of using accurate trial wave
functions, the extrapolated estimator is always biased by
a quantity difFicult to assess. In order to overcome these
important restrictions, several algorithms have been pro-
posed in recent years. In the approach of Zhang and

where the Green's function G(R', R, b, t) gives the prob-
ability of transition from K to R' in a time interval Lt.
The DMC method solves Eq. (2) stochastically assuming
reasonable approximations for the Green's function when
Lt —+ 0. ' After an iterative process, the asymptotic so-
lution f(R, t -+ oo) = g(R)Cp(R) is finally obtained.

The direct calculation of the expectation value of an
operator A(R) from the asymptotic function f (R, t ~
oo) corresponds to the mixed estimator
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Kalos a bilinear sampling method is used. In this
scheme, the system is doubled and the random walks
take place in an enlarged configuration space. Other
approaches are based on the estimation of the quotient
(Co/@) &om the asymptotic offspring coming &om the
branching term. In this line, Barnett et al. ' and
Runge and Runge have constructed tagging algorithms
to properly account for the asymptotic number of descen-
dants. Although the latter scheme has provided satisfac-
tory results in some specific cases, the large fluctuations
observed in the asymptotic ofFspring, and therefore in
the corresponding weights (@e/@), have precluded the
consideration of forward walking as a stable and reliable
method. In contrast with these considerations, we find
that these statistical fluctuations (of unphysical origin)
show a highly depressed effect over integrated quantities,
and that in order to accurately sample pure estimators
stable regions can be reached. The method we present
is related to the one of Ref. 9 but with the advantage
of not requiring a tagging algorithm. As we shall show
in Sec. II, the averages are basically taken as mixed ex-

pectation values, and therefore the pure estimators can
be readily incorporated in the original Monte Carlo algo-
rithms.

The layout of this paper is as follows. In Sec. II the
algorithm for the evaluation of pure estimators of co-
ordinate operators is described. In order to check the
correctness of our implementation in a diffusion Monte
Carlo code, as well as the capability and resolution of the
method, results for several moments of H and H2, where
exact results are available, are presented in Sec. III. Pure
results for the partial energies and structure properties
of liquid He are reported in Sec. IV. The application
of the method to a real many-body problem is a com-
pelling test for its reliability and stability. Finally, the
main conclusions are discussed in Sec. V.

II. PURE EXPECTATION VALUES

The pure estimator of an operator A(R) (4) may be
written as

(A(R))~ = (@0(R) A(R) 4 (R))

Following Liu et al. ,
s Co(R)/@(R) can be obtained from

the asymptotic o8'spring of the R walker. In fact, assign-
ing to each walker R,; a weight W(R;) proportional to
its number of descendants

of walkers at a given time (R,) and the values that the
operator A takes on them (A;) evolve, after a time step,
to

W(R) = n(R, t m oo),

Eq. (7) becomes

Q A(R, ) W(R;)
(A(R)) = '

Q W(R;)

(8)

(9)

(io)
(ii)

In the same time interval, the number of walkers N
changes to N'. In order to sample the pure estimator
of A, we introduce an auxiliary variable (P,), associated
with each walker, with an evolution law given by

where the summation P,. runs over all walkers and all
times in the asymptotic regime. As is clear from its
proper definition, the weight of a walker existing at time
t, given by Eq. (8), is not known until a future time
t' & t + T, T being a time interval long enough so that
Eq. (8) could be replaced by W(R(t)) = n(R(t')).

In order to proceed to the evaluation of Eq. (9) two
difFerent approaches are possible. In the first one, a tag-
ging algorithm capable of identifying, at any time, which
walker of any preceding configuration originated an ac-
tual walker could be used. Then, one could determine
the number of descendants of the former Ri, and accu-
mulate its contribution to Eq. (9) "from the distance. "
Such a tagging algorithm has been devised in Refs. 9—11.
On the other hand, one can work out an algorithm that
operates with only the actual values of A(R;), in such a
way that a weight proportional to its future progeny is
automatically introduced. This second approach is the
one we have followed in the present work.

The schedule of the algorithm is the following. The set

(P'L ~ (P'f = (A') + (P' ) (i2)

Ny

(A(R))„=) (P;)/(M x Nf) .

The contributions to the (P;) entering in Eq. (i3)
coming &om the set of walkers at a past time t, (R;(t)),
can be determined by following the evolution of the se-
ries. The population as a whole has been evolving with
branching &om a starting time t = 0, giving as a result
at time t a population of walkers (R;(t)) with a distri-
bution probability given by the trial function times the

where (P~) is the old set (P,) "transported" to the new
one, in the sense that each element P,. is replicated as
many times as the R, walker, without any other changes.
(P;) is initialized to zero when the run starts.

With this procedure, after M addition steps (i2) we
end up with a set of Ny values (P,). A pure estimator
of A is given by
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exact one. Now, the values A(R;) existing at time t en-
ter in the pure estimator with weight 1 (although they
contribute together with other values corresponding to
previous times which have already been weighted). From
now on, if any of the descendants of R(t) disappears or
replicates, the former contribution does so. As a result,
A(R(t)) appears in as many rows of (P) as descendants
of R(t) exist, and therefore its contribution to Eq. (13)
is proportional to the weight W(R(t)) (8). Notice that
no overlap exists between the time interval where the
branching was used to obtain the trial function times the
exact one and the interval where the branching has pro-
vided the additional weight to sample the exact ground
state.

A final regard concerning the implementation of the
algorithm has to be made. In Eq. (12), the "transport"
operation accounts for the replication of the A(R) con-
tribution. In order to ensure the asymptotic condition
(8), the series are continued for a while only with the
reweighting law

are given in Ref. 12. Chin has extensively discussed the
relation between a quadratic time-step dependence of the
eigenvalue and the violation of the cusp condition in elec-
tronic systems. However, the achievement of a quadratic
dependence in Lt, which has also been discussed by Um-
rigar et al. , is not the main objective of the present
work. Our aim is to check the eFiciency of the algorithm
for the extraction of pure expectation values in simple
systems, such as H and H2, where exact results are avail-
able.

We have tested the reliability of our method. by includ-
ing it in two versions of the original code, corresponding
to the use or not of the weights p(R, ) (15) and (16). In
both cases, satisfactory results are obtained, the variance
of the mixed and pure estimators being slightly reduced
when the weights p(R, ) are considered in the branching
process.

A. Hydrogen atom

(14)

Since a calculation is usually divided into several blocks,
one can collect data during a block and allow for a further
reweighting in the following one. In this second block,
new information can be accumulated to be reweighted in
the next block. This mechanism can be incorporated in
the algorithm in a rather simple way. The final result
is that, after a first initialization block, each new block
gives a value for the pure expectation value of A.

An alternative to the simple branching algorithm, im-
plicitly assumed in the above method, is the use of
weights p(R;) related to the branching factor. In fact, it
has been proved ' that the branching algorithms with
weighting allow for some red. uction in the variance of the
expectation values. Our method for computing pure es-
timators is easily extended to these algorithms. In par-
ticular, the evolution laws (12) and (14) become

R'
}P;}m }P}= }p(R.';} x A,'}+ ' x P ), (15}

p R,

(16)

whereas the expression of the pure expectation value (13)
is only modified by a normalization factor.

III. APPLICATION TO SIMPLE SYSTEMS:
H AND Hg

As a test of the algorithm developed in the preceding
section, we present results for the lowest coordinate mo-
ments of the hydrogen atom H and the hydrogen molecule
H2. In both systems the nuclei are kept fixed and rela-
tivistic corrections are neglected. Atomic units have been
used throughout the section.

The DMC program used in the calculations is exact up
to order (At)2 in the short-time approximation for the
Green's function. More specific details of the algorithm

Two diferent guiding functions are used for impor-
tance sampling in the H calculation. The erst one corre-
sponds to a 18 Slater orbital

gi = exp( —nr)

with a slightly modified exponent (n = 0.9). The second
one is taken as the product of the 18 Slater orbital with
a Gaussian

with n = 1.0 and P = 0.06. The analytic variational
energies are E„=—0.495 for gi and E„=—0.4853 for
@ii, to be compared with the exact result E = —0.5. A
difFerence between @i and gii, which could be relevant in
the time-step dependence of the energy, is that whereas
vPii satisfies the cusp condition Qi does not. As far as the
DMC calculation is concerned, we have used At = 0.05
in both cases with no significant difIerences when At is
reduced by a factor of 2. The number of walkers was
maintained at a value of 700 with an unnoticeable bias
with respect to larger populations. The samplings were
performed over approximately 4 x 10 configurations.

In Table I variational (6), mixed (3), and extrapolated
(5) estimators of the potential energy V, the radial dis-
tance r, the squared radial distance r, and z are re-
ported in comparison with the exact results. The ex-
trapolated expectation values improve the mixed results,
lying near the exact ones. However, some differences
which depend on the trial function used for import, ance
sampling remain, showing that the extrapolation method
sufFers &om a systematic bias related to g.

The pure expectation values of the same coordinate
moments are reported in Table II. Neither the gi nor the
vPii results are biased with respect to the exact values.
In fact, as happens in the exact mixed estimator for the
Hamiltonian, the quality of the trial function is only re-
flected in the magnitude of the variance. This influence



52 UNBIASED ESTIMATORS IN QUANTUM MONTE CARLO. . . 3657

I
Variational
Mixed
Extrapolated

II
Variational
Mixed
Extrapolated
Exact

-0.9000
-0.9500
-1.0000

-1.1507
-1.0818
-1.0129
-1.0

1.6667
1.5789
1.4912

1.2560
1.3623
1.4686
1.5

3.7037
3.3241
2.9445

2.0333
2.3072
2.5811
3.0

1.2346
1.1080
0.9815

0.67?8
0.7690
0.8602
1.0

TABLE II. Pure expectation values for H, using Qi and vjii,
in comparison with the exact results. The statistical errors
are indicated in parentheses.

gii
Exact

(&) (")
-0.9987(10) 1.4999(10)
-0.9975(14) 1.4993(28)
-1.0 1.5

(" ) (~ )
3.0002(36) 1.0004(17)
2.995(14) 0.9964(61)
3.0 1.0

TABLE I. Variational, mixed, and extrapolated expecta-
tion values for H using g& and Qi&. All the results are analytic.

(" ) (~ )

may be observed in the larger errors of the pure estima-
tors for @ii with respect to the ones for @i.

The DMC calculation is divided into blocks of a num-
ber of iterations LI. According to the algorithm devel-
oped in Sec. II the block length has to be long enough
to ensure the pure estimation in the asymptotic regime.
En Figs. 1 and 2, the AI dependence of the pure ex-
pectation value for r is plotted for @i and Qii, respec-
tively. Also shown are the exact result (solid line) and
the extrapolated estimator (dashed line) corresponding
to the trial function used in the calculation. The bias
coming Rom the wave function components other than
the ground state is rapidly suppressed, as expected from
the evolution law exp( —Ht). The asymptotic condition
is satisfied in both cases for values AI & 500. Beyond
a transient regime, the prediction of the pure estimator
is stable for a wide range of LI values with a negligible
systematic bias. The statistical error in the vPii case is
larger than in the gi one but, in both cases, the central
value reproduces accurately the exact results. On the
other hand, the extrapolated predictions are biased with
respect to the exact and pure values, significantly for gii
as expected from its poorer variational quality.

3.4 B. Hydrogen molecule

3.2

3.0

2.8

The trial wave function we have used in the study of
the hydrogen molecule is of the form

C = P(r1 A riH) P(rqz, rza) exp[ariz/(I + brio)] (19)

with the molecular orbital

2.6 P(r;~, r;~) = exp( —(r;~) + exp( —(r;~) . (20)

2.4
500 1 000 1500 2000

h, L

FIG. 1. Pure expectation value of r for H as a function
of the block length AL using Qi. The solid and dashed lines
correspond to the exact and extrapolated results, respectively.

The distances r;~ and r;I3 correspond to the electron-
nucleus separation, and r ~~ stands for the electron-
electron distance. The internuclear separation is kept
fixed at the equilibrium distance r~~ ——1.401. In or-
der to test the accuracy of the pure algorithm, we have
used the trial function (19)—(20) with two difFerent sets
of parameters,

gi = 4(( = 1.189, a = 0.50, b = 0.40)

3.4 and

@ii = 4 (( = 1.189, a = 0.0, b = 0.0) . (22)

3.0

2.6

500 1000 1500

h, L

FIG. 2. Same as in Fig. 1 but for vji~.

2000

The value of ( is obtained from the cusp condition be-
tween an electron and a nucleus (( = 1 + exp[ —(r&a)].
The Jastrow factor between the electrons appearing in
the general form (20) is suppressed in vPii whereas it
is considered in Qi with a value for the parameter a
which guarantees the electronic cusp condition. The
variational energies are E„= —1.1471(9) for vtri and
E„= —1.1288(8) for Qii, to be compared with the ex-
act result E = —1.17447. . . .

The DMC calculations have been carried out with
0.05 and an average population of 500 walkers.

The sampling has been made over 2 x 10 configurations.
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2.6

2.5

2.4
0 500 1000 1500 2000

h, L

2.6

FIG. 3. Pure expectation value of r for Hq as a function
of the block length AL using @q. The solid and dashed lines
correspond to the exact and extrapolated results, respectively.

We have checked that the biases due to the time step
and the finite population are smaller than the statistical
error.

The H2 results closely follow the trends observed in
the H calculation. The LL dependence in the pure esti-
mator of r is shown in Fig. 3 for g1 and in Fig. 4 for

Similar behaviors have been obtained for the other
operators. One can see that the asymptotic region is al-
ready reached at relatively small values of LL. In the
asymptotic regime, the pure values fiuctuate around the
exact value~s (solid line) with a statistical noise related to
the quality of the trial function used for importance sam-
pling. The growth of the error bars due to the death of
walkers in the forward walking process is only significant
for the largest LL values. The extrapolated prediction
(dashed line) is manifestly biased.

In Table III, we report results for variational, mixed,
and extrapolated estimators of V, r, and z using v(1

(21) and $11 (22) as trial functions. As one can see, the
variational results of the coordinate moments for @q1 are
closer to the exact values than for v/r~, although gr is
energetically preferred to ggy. Nevertheless, the simple
extrapolated expectation values are in neither case sta-
tistically compatible with the exact values. In Table IV
the pure expectation values for the same moments are re-
ported in comparison with the exact results. In spite of
the shortcomings of these trial functions in reproducing
the properties of H2, the pure estimator does reproduce
the exact values independently of the trial wave function.

2.4
0 500 1000 1500 2000

IV. LIQUID He

h, L

FIG. 4. Same as in Fig. 3 but for vPqq.

TABLE III. Variational, mixed, and extrapolated expecta-
tion values for Hq using @y and grr.

I

Variational
Mixed
Extrapolated

II
Variational
Mixed
Extrapolated
Exact

(V)

-2.1034(9)
-2.2415(7)
-2.3796(17)

-2.2254(19)
-2.3012(13)
-2.3770(32)
-2.3489

3.0740(1)
2.7530(14)
2.4320(28)

2.6155(23)
2.5416(42)
2.4677(87)
2.5464

(z )

1.2813(38)
1.1281(12)
0.9749(45)

1.0942 (22)
1.0409 (19)
0.9876(44)
1.0230

TABLE IV. Pure expectation values for Hs, using gq and
Qqq, in comparison with the exact results.

Domain GFMC and DMC methods have been exten-
sively applied to the study of the ground-state properties
of liquid He for the last 15 years. The exactness of
these methods joined with the accuracy in the knowledge
of the He interatomic potential has made feasible an ex-
cellent agreement between theoretical results and experi-
mental data. In order to sample expectation values other
than the Hamiltonian, e.g. , partial energies or the ra-
dial distribution function g(r), the extrapolation method
has been commonly used. In spite of the success in de-
scribing properties such as g(r) a small bias is present in
integrated quantities such as the potential energy. Fur-
thermore, the extrapolated estimator has evidenced its
shortcomings in the calculation of density profiles of He
clusters by producing unphysical negative values for p(r)
in the cluster surface. We have applied the algorithm
developed in Sec. II to bulk liquid He in order to show
both its applicability to a fully many-body problem and
its capacity of removing the uncertainties introduced by
the extrapolation method.

The Schrodinger equation is solved by means of a
quadratic diffusion Monte Carlo method considering the
N-particle Hamiltonian

Exact

(V)
-2.3448(24)
-2.3454(39)
-2.3489

(~')
2.5424(46)
2.5412(74)
2.5464

(z )
1.0244(23)
1.0210(44)
1.0230

h2
H = — V'n + V(R),

where R = (rq, . . . , r~) and V(R) is the interatomic po-
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4zx = 1 (b)'
exp

0"*i) (24)

with b = 1.200 (cr = 2.556 A). The second one is an
improved version of (24) proposed by Reatto22

1 (bl L (r;
exp ——

/ /

——exp
2 qr;, ) 2 q A

(25)

with 6 = 120o, L = 02, A = 20o, and A = 06o.
Finally, we have also used a trial wave function which
contains three-body correlations,

1
/AT = @gg exp ——A) Cg Gg+ —A) ( (r;~) r,

where
(26)

CI = ).((rA:~)r~~
leak

(27)

((r) = exp (28)

tential. The results presented below have been obtained
considering the HFD-B(HE) potential proposed by Aziz
et a/. In a previous paper ' we have shown that this
renewed version of the well-known Aziz potential ap-
preciably improves the equation of state of liquid He
with respect to the Aziz results.

In order to establish the inhuence of the trial wave
function used. for importance sampling several options
have been considered. The first one is the simple McMil-
lan two-body function

extrapolated results (V/N), appears, pointing to a bias
related to the quality of the trial wave function. The
bias is completely removed when the pure estimator is
calculated, as one can see in the last row of Table V. The
three values for (V/N)„are indistinguishable and, what
is more important, they evidence a systematic error of
the extrapolation approximation. In fact, none of the
extrapolated values is statistically compatible with the
common pure value, the closest estimation being the one
obtained with @gT, which actually is the best variational
choice. Considering the result for the energy per parti-
cle E/N = —7.267 6 0.013 K, the pure result for the
kinetic energy is T/N = 14.32 + 0.05 K. Experimental
determinations &om analysis of deep inelastic scattering
data predict a slightly lower value (T/N) " = 13.3+1.3
K, the di8'erence being mainly due to the significant er-
rors in the experimental measurement of the tail of the
response function.

As far as the stability of the method is concerned,
the dependence of the pure expectation value of V/N
on the length of the forward walking is plotted in Fig. 5.
The results obtained (points with error bars) follow the
trends observed in Sec. III (Figs. 1—4). After a transi-
tion regime, and already for relatively small LL values
(AL ) 250), an asymptotic limit is reached where the
systematic error is practically negligible. Notice that in
the simple algorithm we have presented in Sec. II a for-
ward walking of length LL is constructed &om data rang-
ing from LI to 2LI, and hence the length of the forward
walking is not the same for all the walkers. This efFect
is not relevant provided that a region of stability exists.
On the other hand, one can determine the asymptotic
value within a single run by collecting data for difFerent
block lengths. The statistical errors associated with each
individual AI value can be lowered in the same way as
mixed estimators, i.e. , by continuing the evolution of the
series. The biases associated with the extrapolated ex-
pectation values are also shown in Fig. 5, where (V/N),
using gg2 and gJT are represented by a long-dashed and
a short-dashed line, respectively.

The values for the triplet parameters are A = —1.08o
rq ——0.80o., and r = 0.41o. In the three trial functions,
the values of the parameters are those which optimize
the variational energy at the experimental equilibrium
density pp": 0 365o . All the results presented below
correspond to the density po that coincides with the
theoretical equilibrium density.

Results for the potential energy per particle using vP~q,
and /AT as importance sampling are reported in

Table V. A small but significant difFerence between the

—21.2

—21.6

—21,8

TABLE V. Variational, mixed, extrapolated, and pure ex-
pectation values of V/N (in K) for liquid He at ps"P' using
different trial wave functions g.

—22.0
0 500 1000 1500

(V/N) „
(V/N)-
&V/N).
(V/&) p

@zz
-21.054(26)
-21.459(8)
-21.864(80)
-21.56(5)

As
-21.311(18)
-21.600(8)
-21.889(24)
-21.59(5)

ger
-21.348(20)
-21.541(8)
-21.734(25)
-21.58(5)

h, L

FIG. 5. Pure expectation value of V/N for liquid He at
p~" as a function of the block length AL. The long-dashed
and short-dashed lines stand for the extrapolated estimations
using @ps and Qzr, respectively.
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lem is also quite straightforward and the results obtained
follow the same trends analyzed in the simple systems
(H and H2). The method is stable and generates re-
sults which are not biased by the importance sampling
as happens with the extrapolated estimations. In order
to reduce the error bars of the pure values to the level
of those associated with the total energy, the series have
to be a bit longer. However, one does not have to per-
form the auxiliary variational Monte Carlo calculation

required by the extrapolation method and, more impor-
tantly, the guarantee of an exact result is fulfilled.
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