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The self-energy of the hole-doped two-dimensinal 2D Hubbard model is calculated to second
order in the interaction U and the ensuing renormalization of the spectral properties and of the
Fermi surface is discussed. In uncorrelated systems the square-shaped Fermi surface separates the
Fermi surface closed around the I' point (with more holes than particles) from the Fermi surface
closed around the Z point (with more particles than holes). In a correlated system a topological
change from a Fermi surface centered around the I' point to a Fermi surface closed around a Z
point is induced, either by increasing the interaction or by diminishing the concentration of holes.
The shape of the renormalized spectral function Ap(w) is momentum dependent. Using Ap(w)
we evaluate dispersion of single-particle excitations. At low energies the band of quasiparticles
with reduced bandwidth is clearly seen. At high energies and far away from the Fermi surface the
spectra acquire an additional peak that describes excitations in the Hubbard band. The dispersion
in Hubbard bands is weaker along the I'-Z, than I''X or X-Z direction. The density of states of
a correlated system, as given by the perturbation theory, remains logarithmically singular but the
singular weight is reduced with respect to the uncorrelated one. In addition, the correlations transfer
the spectral weight out of the low-energy region, where only a narrow Kondo-like structure seems to
remain. The spectral properties of the 2D Hubbard model obtained by the truncated perturbation
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expansion resemble in many ways the recent experimental data on metallic cuprates.

I. INTRODUCTION

The unusual properties of the CuO,-derived electronic
states in hole-doped cuprates are believed to be due to
the renormalization effects caused by on-site Coulomb
correlations. It is also believed that the essential fea-
tures of renormalization of the low-energy excitations are
captured by the two-dimensional (2D) Hubbard model.!
Studying the 2D Hubbard model for the almost half-
filled case we show that the single-particle properties are
changed significantly by self-energy corrections, even for
rather small values of the coupling strength.

The single-particle self-energy is evaluated by pertur-
bation theory with the strength of the local Coulomb
interaction U as the expansion parameter. The expan-
sion is truncated in lowest nontrivial order, i.e., second
order, studied in, Refs. 2, 3, and the self-energy is evalu-
ated numerically using the fast Fourier transform (FFT)
algorithm.* The weak coupling analysis has been ap-
plied recently to the 2D Hubbard model by a number of
authors,®® but the momentum dependence of the spec-
tral functions and the ensuing anisotropy of the Fermi
surface we want to study have to our knowledge not been
discussed yet.

The validity of the weak coupling treatment of the
Hubbard model is, at present, difficult to assess. Sur-
prisingly, the analysis of the exact results for the 1D
model® shows that the asymptotic behavior of the ground
state energy is described correctly by perturbation theory

0163-1829/95/52(5)/3639(8)/$06.00 52

for any concentration of holes,'® despite the nonanalytic
terms, which are present in the Bethe ansatz solution.!
However, in the case when the number of particles and
holes is not equal the nonanalytic corrections are numer-
ically not significant in the weak coupling limit. At half
filling the 1D Hubbard model has a gap for charge ex-
citations, even for small U, which means that nonana-
lytic contributions for the spectral functions cannot be
neglected.

With regards to the 2D model, there are no exact
results that could provide a test for the weak cou-
pling approximation but the second-order results for the
ground state energy,w"' compare well with small cluster
calculations.5!? For the half-filled case one expects also
a gap for the charge excitations and the same difficulties
with the perturbation approach as in the 1D case.

However, truncated perturbation expansions have been
successfully applied to various problems dominated by
on-site correlations. The metal-insulator transition in
infinite dimensions has been discussed by mapping the
Hubbard model on the Anderson model*3 and solving
the latter in the weak coupling approximation. The re-
sults for the model with electron-hole symmetry compare
well with Monte Carlo simulations.!'* An analysis of the
infinite-dimensional hole-doped Hubbard model with at-
tractive interaction!® also shows that the self-energy cal-
culated by perturbation theory agrees with Monte Carlo
simulations’ up to moderate couplings. Second-order
perturbation theory for the periodic Anderson Hamilto-
nian compares also well with Monte Carlo simulations®
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and explains the qualitative features of quasiparticles in
heavy fermion systems.718

Are weak coupling results, obtained by a perturba-
tive method, representitive also for the strong coupling
limit? For the Kondo problem this question could be an-
swered affirmatively. Starting from Anderson’s or Wolff’s
Hamiltonians, an expansion in U given in explicit form
as integrals over larger and larger determinants has been
constructed®2® which agrees with exact renormalization
group?! and Bethe ansatz solutions.?? It turned out that
the strong coupling behavior appears at rather low values
of U described by the first few terms in the expansion.
Explicitly, the analysis has been carried out to fourth
order in U.23

Other explicit calculations of the fourth-order terms for
the ground state energy of the 1D Hubbard model'® and
for the self-energy of the Anderson model and infinite-
dimensional Hubbard model with attractive interaction*
have shown that even though each individual diagram is
large, the total fourth-order contribution is small with
respect to the second-order correction. In the same weak
coupling limit a bosonization technique seems to be pos-
sible also in the 2D case,?® providing a means to sort out
various interaction processes close to the Fermi level, as
in the 1D case.

We mention also that the x-ray photoemission spec-
troscopy (XPS) spectra of 3d metals (Fe, Co, and Ni)
and the effective mass of UXj; intermetallics (X =
Pt, Ir, Au) could be quantitatively explained by second-
order perturbation theory, where local density functional
states as the orthogonal one-electron basis had been
used.?%27 The present treatment of the 2D Hubbard
model follows the same strategy.

The paper is organized as follows. First the self-energy
Y p(w) is calculated for a given concentration of holes as a
function of energy for various points in the Brillouin zone.
These results are used to discuss the Fermi surface, the
spectral function, the renormalized dispersion, and the
density of states. Finally, the results are summarized
and their relevance for the experimental data discussed.

II. CALCULATIONS

To calculate the spectral properties of the 2D Hub-
bard model we use the perturbation expansion for the
self-energy. This approach is not as well founded as the
determinantal expansion of Yosida and Yamada'® for the
local self-energy of the Anderson impurity model.?3:28
However, it allows us to study the momentum depen-
dence of the spectral properties.

To start with, the Hubbard Hamiltonian is written as

H = Hur + Hy;, (1)

where Hyp describes the nonmagnetic, metallic mean-
field state with a one-electron dispersion given by nearest
neighbor hopping and H{; describes the repulsive inter-
action between two particles of the opposite spin at the
same site. With the mean-field value subtracted it is

Hy = UZ(nn = )iy — @50), (2)

where ( - ) is the grand-ensemble average with respect to
Hyp. The site label is j and the summation is over all
sites of the 2D lattice.

For the numerical calculation relying on the FFT
method we have to choose the number of lattice sites
Ny finite and a power of 4. Therefore the momenta
in the quadratic Brillouin zone are discrete and de-
fined as p = (ps,py), Where pp, = Ap(ly, — 1) with
Ap = Zﬂ/m and I,,l, = 1,...,\/ﬁg. We use the
convention that the I" point is at p = (0,0), the X point
at p = (m, 0), the M point at p = (7/2, 7/2), and the Z
point at p = (m, m).

The retarded self-energy as a function of the coordinate
R and time ¢ in second order in U is given? by the simple
expression

P (t) = U? [ak(t) b_r(~t) + a_r(~t) bR()] . (3)

Here, agr (t) and bgr(t) are defined as

an(t) = 3 S expi (P R—ep, t) flep = 1) (4)

9 pi

and

br(t) = 3 D expi (b1 R — e, 1) [1 - f(ep, — 1)

(5)

where €, — p defines the unrenormalized excitations with
the tight-binding dispersion, e, = —(cos p,+cosp,). The
Fourier summation is over N, discrete points of the 2D
Brillouin zone and f(ep, ) is the Fermi function. The func-
tions agr (t) and bgr(t) can be understood as the electron
and hole parts of the unrenormalized Green’s function
depending on coordinate R and time ¢. For finite sys-
tems with periodic boundary conditions ag (t) and bg(t)
can be calculated quickly by a FFT.

The self-energy in energy-momentum representation is
given by

1 had . .
Shw) = < /0 dt @ity =R 5B ) (6)
R

which can be calculated by two additional FFT’s. The
calculations are performed for fixed chemical potential
1, which can be adjusted to give the required number of
particles.

The retarded single-particle Green’s function is calcu-
lated from the self-energy using Dyson’s equation®®

1

Grlw) = w+in— (ep — p) — Tp(w +1in)

(7

The energy variable w is measured relative to u. The
spectral properties are defined by the analytic structure
of Gp(w) and in the region where Im¥4(w) ~ 0; i.e.,
around the Fermi level, the properties of renormalized
low-energy excitations follow from the secular equation
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w— (ep —p) —ReXf(w) =0. (8)

The renormalized excitations around the Fermi level are
defined as Ep — p = wy, where wy satisfies Eq. (8) for
a given p, u, and U. That is, E is obtained by solving

the equation
Ep = ep + ReX{(Ep — 1) (9)

with ReXk(w) defined by (3)—(6).

To find the Fermi surface of interacting systems we
notice that Im¥%£(0) vanishes at the Fermi level Er for
all the points of the Brillouin zone. Thus, for a given
value of p and U, the renormalized Fermi surface can be
constructed by finding all momenta such that

E, . =p. (10)

The single-particle spectral function is calculated from
the imaginary part of the retarded Green’s function as

Ay (w) = —%ImG’p(w). (11)

In the region where Im¥£(w) is small, the spectral func-
tion is sharply peaked at E, — p and the renormalized
dispersion is given by the momentum dependence of E,.
In the region where Im¥A(w) is large, the renormalized
dispersion is defined by the momentum dependence of
the peaks of Ap(w).

The density of states p(w) is calculated for a given
value of p and U as

o) = 3 3 4p(@) (12)

and the number of particles in the system is obtained by
integrating p(w) up to the Fermi level.

The advantage of the FFT method is that the self-
energy can be evaluated for lattices which are large
enough to be representative for infinite systems. Here,
the results for a lattice with 256 x 256 sites are pre-
sented. The results do not depend on the lattice size,
which was tested by performing runs with 512 x 512 sites.
That is, the self-energy obtained by sampling £ (t) at
N, or 4N, lattice points is the same. The FFT from
time to energy variable was performed on 2048 points
and the stability of the results was checked with 4096
points. The disadvantage of the FFT method is that for
finite systems the self-energy is (quasi)periodic in time,
so that the lowest-energy scale cannot be smaller than
the inverse of the period in the time domain. Expressed
differently, to avoid aliasing one has to put a lower bound
on the energy resolution.? Thus, the lower the energy of
excitations one wants to study, the larger the lattice has
to be.

All of the numerical results are calculated for zero tem-
perature and most of them for U = 2 and p = —0.045;
i.e., the correlation is set to half of the unperturbed
bandwidth and there are n. = 0.97 electrons per site.
The results for other values of parameters and finite-
temperature effects will be discussed elsewhere.
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III. RESULTS

A. Self-energy and Fermi surface

The energy dependence of the self-energy for several
momenta is shown in Fig. 1. The momenta are chosen
along the high-symmetry lines of the Brillouin zone. We
recall that the Fermi energy is at w = 0. The feature
to notice is the marked anisotropy in the Brillouin zone,
indicating that the momentum dependence of the self-
energy ¥4 (w) should not be neglected.

The intersection of w — (ep — p) with ReXf(w) gives
the solution wy, of the secular equation (8). It can be
negative or positive; respectively, a given point in the
Brillouin zone is inside or outside the Fermi area, de-
fined in Eq. (10). Figure 1(a) shows that w} = 0 and
wps > 0. It follows that (m,0) is at the Fermi surface,
while (7/2, m/2) is somewhat above it. Actually we have
chosen p such that w% = 0 and that, apart from the end
points, the line connecting (7, 0) and (0, ) is outside the
Fermi area. Thus, the Fermi surface of the system de-
fined by the parameters U = 2 and n. = 0.97 is closed
around (7, w). This way one can construct Fermi sur-
faces closed around (7, 7) for any n., choosing U large
enough. In the case considered U must be larger than 2.
If the electron density is changed for a fixed value of U,
our numerical results show that, close to half filling, the
shifts of the Fermi surfaces along I'-X and I'-M lines are
oposite in sign. This unusual behavior follows from the
anisotropy of ¥4 (w) in momentum space.

One might question the validity of perturbation the-
ory, since this topological transition was obtained for a
U that was not small. However, for small enough doping,
the transition between the I'-centered and Z-centered
Fermi surfaces takes place even in the weak coupling
limit. In comparing the interacting and noninteracting
systems with the same number of holes, we find gener-
ally that the correlated Fermi surface expands along the
I'-X line and shrinks along the I'-M line, with respect
to the uncorrelated Fermi surface. This is also a conse-
quence of Luttinger’s theorem since the Fermi area for
both systems must be the same.

As can also be seen in Fig. 1, InX4(w) ~ w? for small
enough w. This is true, within numerical accuracy, for all
points in the Brillouin zone. The solution of the secular
equation for p close enough to pr is found in this re-
gion. The spectral weight corresponding to that solution
is reduced, because the slope of ReXf(w) at wy is large.
However, the Fermi liquid behavior is not modified by
this renormalization.

This differs from the behavior of the 1D Hubbard
model, where ImX4(w) ~ |w| at pr. So perturbation
theory in the 2D case gives Fermi liquid behavior, ex-
cept for p = 0 or half filling, where it is not valid since
the gap structure is missing. Nevertheless, a linear be-
havior of Im¥4(w) can be detected for larger w’s even in
our case, where u # 0. It is especially pronounced for
p = (7/2, m/2).

As p moves away from pr the quasiparticle solution of
Eq. (8) is in the region where Im¥./ (w) is large so that the
single-particle excitations are strongly damped. The self-
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FIG. 1. Zero-temperature single-particle self-energy T§(w) versus frequency w for various momenta p for U = 2 (equal to
half of the bandwidth) and n. = 0.97 calculated on a 256 x 256 lattice. The functions gp(w) = w — (ep — u), ReXh(w), and
ImY¥4(w) are represented by a dotted line, a solid line, and a dash-dotted line, respectively. The intersection of gp(w) and
ReX4(w) gives the solution of Eq. (8) and panel (a) shows that wk = 0 and wj; > 0. Panels (b) and (c) show the variation of
Y6(w) along I' — Z and X — Z cuts through the Brillouin zone, respectively.
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energy is a smooth function at low energies but develops
rather sharp peaks at high energies. For p sufficiently
far away from pr, the sharp structure of ReXk(w) gives
rise to additional solutions of Eq. (8), reminiscent of the
Hubbard splitting which will be discussed in the next

sections.

B. Spectral function

The variation of the spectral function along I'-Z, X-
Z, and I'- X cuts of the Brillouin zone is shown in Fig. 2.
Notice that the shape of Ap(w) is momentum dependent
and that two types of behavior are clearly visible, de-
pending on the proximity of p to pg.

Close to pr, the spectral function can be represented
by a singular part, A} (w), and an incoherent background,
AP (w) (see curves in Fig. 2 corresponding to X and M
points). The singular part describes the propagation of
renormalized excitation with momentum p and energy
Ep — u,

A;(‘”) =Zp 6(w — (Ep — 1)) ,

where Ej, is given by Eq. (9) and Z, is the wave func-
tion renormalization, which describes the reduction of
the quasiparticle weight due to self-energy corrections,
1
Ze = 1 3RexE(w)/d |
eZp(w)/0w| g, _,

As soon as p shifts away from pr the quasiparticle peak
broadens and becomes asymmetric. Of course, for all the
momenta off the Fermi surface we have A, (0) = 0, since
Im¥y(w = 0) = 0. At higher energies, where Im¥4(w) ~
|w|, we find that Ap(w) decays very slowly [see curve
(w, ®/2) or (w/2, 0) in Fig. 2], which is reminiscent of
the power law or non-Fermi-liquid behavior of the 1D
Tomonaga-Luttinger model.2%3°

As p moves sufficiently away from pr the solution of
the secular equation jumps to the high-energy branch [see
curve (0,0), (w, 7), or (m, 7x/8) in Fig. 1]. In addition
to an overdamped quasiparticle peak, which is resolved
for all p, we find now an additional high-energy peak,
which should correspond to the high-energy solution of
the secular equation. The splitting of Ap(w) close to
I" and Z points has been seen recently in Monte Carlo
simulations3!:32 for the Hubbard model in the large-U
limit.

C. Renormalized dispersion

Instead of using the secular equation (8) it is more
reliable to utilize the momentum dependence of the peak
positions of A, (w) for the definition of the renormalized
dispersion of single-particle excitations. Figure 3 shows
such dispersions plotted as a function of p along the I'- X,
X-Z and I'-Z lines through the Brillouin zone.

Open circles in Fig. 3 show the dispersion of the quasi-
particle peak position and open squares give the disper-
sion of the additional spectral peak where it exists. For

comparison, the solution of the secular E, — u equation
is given by crosses, and the solid line indicates the un-
renormalized excitations e, — . The dispersion of the
quasiparticle peak agrees with the solution of the secular
equation for small energies. Figure 3 illustrates that the
width of the quasiparticle band is reduced compared to
the unrenormalized band.

Close to I"' point and Z point we find an additional
branch with anisotropic dispersion, which corresponds
to the lower or upper Hubbard band. Along the I'-X
and X-Z directions dispersion of these high-energy exci-
tations is nearly linear and can be followed over a large
momentum range. Along the I'-Z cut dispersion is weak
and the excitations merge rapidly with the quasiparticle
band. The merging of the high-energy excitations with
the quasiparticle band is consistent with our assumption
that the system is below the Mott limit, which can be
expected to occur for U of the order of the bandwidth.

From the structure of the self-energy, shown in Fig. 1,
it is clear that the correlation shifts the low-energy and
high-energy solutions of the secular equation in opposite
directions. This level repulsion mechanism reducing the
overall dispersion of the quasiparticle band is clearly vis-
ible in Fig. 3.

D. Density of states

The renormalized density of states p(w), evaluated for
U = 2, is shown in Fig. 4 for n. = 0.97 and n. = 0.83.
The main effect of correlation is the transfer of spectral
weight from low to high energies. The logarithmic sin-
gularity, which characterizes the unperturbed system, is
shifted towards Er and its weight is reduced. At the
same time a new structure can be seen near Er [see in-
sets in Fig. 4], which is better resolved for a higher con-
centration of holes.

If we would increase U in our calculations, which sim-
ply means scaling up the self-energy curves in Fig. 1, the
transfer of spectral weight from the low-energy region is
enhanced. Thus, the width of the singularity at the Fermi
level becomes greatly reduced and the well-resolved res-
onances (upper and lower Hubbard bands) build up at
high energies.

As noted by Bulut et al.,33 these features of p(w) are
somewhat similar to the results obtained for the infinite-
dimensional Hubbard model. In that limit, the Hubbard
model is equivalent to an effective Anderson model and
the resonant structure at Er could be identified as a
Kondo resonance. If the same analogy holds for the 2D
Hubbard model, the appearance of the Kondo resonance
and the transfer of spectral weight out of the low-energy
region could be understood as an indication of freezing of
local spin degrees of freedom. The transition from “free
spin” behavior at high temperatures to “Fermi liquid” be-
havior at low temperatures is always accompanied by a
drastic change in the single-particle excitation spectrum.
It would be interesting to test this interpretation by cal-
culating, within the present scheme, the spectral prop-
erties for each spin configuration at finite temperatures
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FIG. 2. Single-particle spectral function Aj(w) versus w for various momenta p and for the parameters used for the self-energy
calculations. The variation of Afj(w) along ' — Z, X — Z, and ' — X cuts is shown in panels (a), (b), and (c), respectively.
The inset in each panel shows the location of the momentum cuts through the Brillouin zone.
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in a small magnetic field and evaluating the temperature
dependence of the local magnetization.3*

E. Summary

Using second-order perturbation theory we have cal-
culated the momentum depence of the self-energy and
studied the influence of correlation on the shape of the
Fermi surface. We have shown that correlated Fermi sur-
face of a doped system will resume a square shape at
some critical doping. This is very different from the usual
mean-field behavior in which the square Fermi surface is
rapidly rounded off by the addition of holes. In addition
we find that a topological transition from a I'-closed to
Z-closed Fermi surface can be induced in a correlated
system, which is doped away from the electron-hole sym-
metry, either by increasing correlations or by reducing
the concentration of holes. One could interpret such a
change as due to a small next nearest neighbor hopping
matrix element generated by the real part of the self-
energy.

The self-energy corrections lead to two types of solu-
tion of the secular equation: The low-energy solution de-
fines quasiparticle excitations and the high-energy solu-
tion defines the excitations in the Hubbard bands. Even
at the Fermi surface a substantial part of the quasipar-
ticle spectral weight is transferred into an incoherent
background. Therefore the logarithmic singularity which
dominates the density of states of noninteracting system
is substantially reduced. The quasiparticle peak decays
very slowly towards higher energies, which is similar for
the 1D Fermi gas.*3° However, the 1D systems behave
as Luttinger liquids at low energies,3®> while our treat-
ment of the 2D model at T' = 0 leads to a Fermi liquid.
The similarity to the 1D case is found only at elevated
temperatures and energies

In the region which is far away from ppr the spectral
function acquires an additional atomiclike high-energy
peak, which describes excitations in the Hubbard band.
The attenuation of Hubbard excitations diminishes and
their asymmetry becomes more pronounced with the in-
crease of correlations. We expect that for large values
of U the low-energy spectral weight will be almost com-
pletely suppressed and the spectral shape will be domi-
nated by the high-energy peaks everywhere in the Bril-
louin zone.

The Fermi surface anomalies, the transfer of spectral
weight from low to high energies, and a well-defined
Kondo peak in the density of states have been seen re-
cently in small cluster calculations for the 2D Hubbard
model.3173% These calculations can deal with large cor-
relations but are restricted to small lattices, rather large
doping, and relatively high temperature. The similar-
ity of our small-U perturbative approach to the large-
U Monte Carlo results tempts us to conjecture that in
the vicinity of the electron-hole symmetry the strong
coupling behavior of the 2D Hubbard model extends to
rather low values of U.

The spectral properties discussed above mimic some
of the key features of the Fermi surface and near-
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Er electronic structure of hole-doped metallic cuprates,
found recently by angle-resolved photoemission exper-
iments.36738 The data show that large sections of the
Fermi surface appear to be nested, having the shape of a
square. The states close to the Van Hove point of the
Brillouin zone seem to be nearly degenerate with the
Er. Also, an anomalously high background is found to-
wards higher binding energies. At the same time, the
Pauli susceptibility3® and the specific heat® of cuprates
do not show any appreciable enhancement and give no in-
dication of singular density of states around Ep. These
properties of high-T, compounds are difficult to explain
within the conventional band structure theory. The prop-
erties of the 2D correlated electron system extrapolated
from the results of our weak coupling approach explain
some of these features.

Finally, we remark that truncated perturbation expan-
sion, combined with the FFT method on finite lattices,
allows straightforward generalizations that might provide
further insight into the properties of 2D models. For ex-
ample, it should be easy to study the nesting tendencies
for correlated systems with anisotropic hopping or sev-
eral bands or evaluate the effects of finite temperatures
on spectral properties.
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