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The nonequilibrium spin imbalance created when electrons tunnel from a ferromagnet to a super-
conductor is calculated. Since the charge current in a superconductor is carried by the condensate
within a penetration length of the surface and the spin current, which is carried by quasiparti-
cles, can exist in the bulk, one may be able to directly demonstrate spin-charge separation in a
superconductor using spin injection techniques. After estimating the spin-relaxation rates due to
magnetic impurity and spin-orbit scattering, an explicit experimental geometry for demonstration
of spin-charge separation is discussed.

I. INTRODUCTION

Spin-polarized electrons have been a subject of both
experimental and theoretical investigation for many
years. A common way to generate spin-polarized elec-
trons in a metal or superconductor is to inject them
from a ferromagnet. The earliest tunneling experiment
in this context was done by Tedrow and Meservey, who
injected current &om a ferromagnetic film to a super-
conductor. A static field was used to Zeeman split
the quasiparticle density of states in the superconduc-
tor, and the asymmetry in the tunneling conductance
showed the polarization of tunneling electrons. An al-
ternative method is to use a normal metal-magnetic
semiconductor-superconductor tunnel junction, where
electrons with different spins see different tunneling bar-
riers in the magnetic semicond. uctor. Nonequilibrium
spins injected into a superconductor or a metal have also
been shown to have interesting effects on the nuclei which
would be observable through electron spin resonance.

Recently, in a series of papers, Johnson and Silsbee
have developed a spin injection and detection technique
in which a dc current is driven through a ferromagnetic
film into a bulk metal sample. The nonequilibrium spins
created in the metal were detected by another ferromag-
netic Blm. By Gipping the direction of magnetization
of the second ferromagnetic Glm, a small voltage sig-
nal proportional to the spin density can be measured
between the second ferromagnetic film and the para-
magnetic metal. Johnson and Silsbee attributed such a
voltage signal to the different chemical potentials of the
thoro spin species in the metal (paramagnet) caused by the
injected current.

Although the junctions used in Ref. 3 were not tunnel
junctions, this experiment can in principle also be done
with tunnel junctions provided the voltage bias is large
enough. In the case of superconductor —normal-metal
(nonferromagnetic) tunneling junctions, this is the so-
called charge imbalance in superconductors and has been
extensively investigated. For spin-polarized quasipar-
ticle tunneling into superconductors, one can discuss

charge imbalance and spin imbalance in a united manner
as we do in this paper.

In the following, we 6rst present the calculation of the
tunneling currents and the spin imbalance created by a
ferromagnetic-superconductor (FS) tunnel junction un-
der nonequilibrium conditions. The calculation closely
follows those of Refs. 5 and 6. In Sec. II, we discuss the
quasiparticle spin-relaxation processes. Finally in Sec.
III, we formulate the quasiparticle charge and. spin trans-
port equations and discuss the concept of spin and charge
separation in superconductors as well as a possible means
for its verification.

II. TUNNELING RESULTS FOR
SPIN-POLARIZED PARTICLES

We start with the tunneling Hamiltonian

EI = ) Tag use~ +ovaS' P a ) ca +H.c.
k, k', cr

where k, k' label electrons in the superconductor and the
ferromagnet, respectively, 0 = +1 is the spin variable, St
is the creation operator of a Cooper pair, and uk and vk
are the usual BCS coherence factors

&( 6l 2 &( k~
241+E ~~

(2)

%'e have assumed that the tunneling matrix element Tkk
is independent of spin. The spin dependence will be ac-
counted for by the spin depend. ent density of states at the
Fermi surface of the ferromagnet. In Eq. (1), vre have re-
placed the electron creation operator in the superconduc-
tor by quasiparticle operators through the Bogoliubov-
Valatin transformation
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= ukck —0 vkS ct

There are four possible processes in the tunneling
Hamiltonian of Eq. (1). For each of these processes we
now use Fermi's golden rule to compute the spin and
charge currents across the interface. Table I lists the
contributions from each of these processes in the order:

pk ck, p k ck, ck, pk, ck, p k . The first columnt, t t t

is their contribution to tunneling probability computed
from Fermi's golden rule. The Fermi function f (E) de-
scribes the electron distribution in the metal, while fI,
describes the quasiparticle distribution in the supercon-
ductor. When injecting electrons into the superconduc-
tor, a negative voltage —V is applied on the ferromag-
net. Consequently, the energy conservation conditions
are ek + eV = Ek for the pk ck~ and ck, pk processes,
and ek + eV = —Ek for the p k ck and ck, p
processes.

Since a quasiparticle has probability uk to be an elec-
tron and probability vk to be a hole, the quasiparticle
charge is given by

dI, = —(bSg —bSg)dt

= —IT I'
I

(N~ —N~) ) [f(E~ —«) —f (E~ + «)1

(N—g + Ng) {bSg —8')

The quasiparticle charge current is

I~ = —(bQt+ bQg)

'I (N„+N„))q„'[f
h

f(Ei,—+ eV)] —(Nt + Ng)(hQg + bQg)

(Ng ——Ng) ) q„(hf1,g —
hfdf, g) ~.

The total charge current including the charge carried by
the condensate is

qy = XLQ
—vg —(y/Eg.2 2— (4) I = —

~T~ ~ (Nt + Ng) ) [f(Ei, —eV) —f{Ei,+ eV)]
h

The part of charge carried by the condensate is 2vk ——

1 —qk. The quasiparticle spin, on the other hand, is
unity because uk + vk ——1.

Following Table I, the spin injection current is

I, = —~T~ ) tran (
—[f (Eg —eV) —f (Eg + eV)]

k, o

2 2u, fa +v, f a— ). .

(Nt —Ng—) (hSg —hSg) —(Ng + Ng) (bQg + bQg)
~

.

(10)

As in charge imbalance experiments, we expect the in-
jection voltage to be much larger than the detection volt-
age, which is related to the nonequilibrium terms with
bQ and bS . Thus in Eqs. (8)—(10), the first term dom-
inates and the fraction of the total charge current which
is injected as quasiparticle spin and charge is

where N is the spin dependent density of states at the
Fermi surface of the injecting ferromagnet. If we write
the quasiparticle distribution fi, in terms of its local
equilibrium distribution f (Ei, ) plus the deviation, i.e. ,

I, Ng —Ng
I Ng+ Ng'

E.q'[f(E — V) —f(E + V)]
I g& [f(Ei, —eV) —f(Ei, + eV)]

(12)

fi = f(Ei, ) + ~fi. ,

and define the quasiparticle spin and charge density as

hS = ) hfdf, , hQ = ) qi, nfl, ,
k k

we can write the spin injection current as

For a large injection voltage, eV &) L, the quasiparticle
charge is approximately one, qk = 1, because most of the
injected quasiparticles have energies larger than the gap.
Thus, rli in Eq. (12) is approximately one, i.e. , all the
charge is injected as quasiparticle charge. '

To detect the nonequilibrium spin, one can use another
ferromagnetic film to form. a FSF tunnel junction. This

TABLE I. The contribution to tunneling probability from the four processes in Eq. (1). The
terms appear in the order p& cA,i, p I, c~~, c&, pI, , c&, p & from top to bottom.

Probability
(1 —f,.)f.(E, —eV)

~:f . -[& f-(& +«)-1-—
u„fg [1 —f (EI —eV)]
:(& —f . -)f-(&~+ V)--

Electrons
added

1
1

—1
—1

Excitations
added

1
—1
—1
1

Quasiparticle
charge added

qa
—qa
—qx
qa

Condensate
charge added

1 —qg
1+ q&

—1+ qa
—1 —qa

Spins
added
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(Nt+—Kz)(bQt+ hQ&) = 0, (13)

where Npg„, = P&[ Of(E)—/OE] with Np being the nor-
mal density of states of one spin species in the supercon-
ductor and g„,being a function of b, /T, which is the tun-
nel conductance divided by its normal state value. N' is
the density of states in the detecting ferromagnetic 61m.
When the magnetization direction of the detecting 6.lm
is flipped, a different voltage V2 is needed to nullify the
total current. This voltage is given by an equation iden-
tical to Eq. (13) except that N& and N& are interchanged.
Combining the two equations, we have

Ng —Ng bSg —be
Vj —V2 ——

N& + N& eNogns
(14)

is illustrated in I"ig. 1 where the tunneling current is in-
jected from the ferromagnetic 61m El and drained from
the superconductor. A voltage signal is measured at the
detecting ferromagnetic film E2. Equations (8)—(10) are
also valid for the detecting junction. In charge imbal-
ance and spin injection experiments, the voltage applied
at the detecting junction is used to nullify the total cur-
rent Eq. (10), i.e. , the detecting junction is a voltage
probe (see the illustration in Fig. 1). As we have men-
tioned, such voltages (typically of order of nanovolts),
are much smaller than the injection voltage (typically of
order of millivolts) and k~T/e. Therefore we can expand
the Fermi functions in Eq. (10),

2(Nt + N~)Npg„,eVg —(N~ —N~)(SSg —bSg)

Therefore the difkrence between the two voltages is a
measure of the nonequilibrium spin density, while the
sum is a measure of the nonequilibrium quasiparticle
charge density in the superconductor. At a steady state,
the nonequilibrium charge and spin are determined by
the balance between injection rate and relaxation rate.
Using Eqs. (11) and (12), we have

" = q.I, (16)
7

&«r;.; («r..ii 7q
=q, I, (17)

where w» wq are the spin and charge relaxation time,
respectively. Thus, the voltage signals can also be written
as

N~ —N~
1 2—

v+v= ~q'
&NO gas

This shows that both the spin- and the charge-relaxation
time can be measured in such an experiment, since all
other quantities in Eqs. (18) and (19) are directly acces-
sible to measurement.

In Eq. (16) we have neglected the spin current through
the detecting junction. This current is small but 6.nite in
general. Using Eqs. (8), (10), and (14), when I = 0, we
have

hQt + bQtVi+ V
&Nogns

N'Nz
I,'=, , eNpg„,(Vj —V2). (2o)

Tunneling Current Current Drain

This current is due to a spin-up and a spin-down current,
equal in magnitude but flowing in opposite directions so
that the total charge current across the detection junc-
tion is zero.

F1
III. QUASIPARTICLE CHARGE AND SPIN

RELAXATION

Ei S

Voltage Probe (I=0)

FIG. 1. A schematic setup for the tunneling spin injec-
tion and detection experiment. I"1 is the current-injecting
ferromagnetic 61m with the arrow inside representing the di-
rection of magnetization. S is a superconductor. I'2 is
the detecting ferromagnetic film. When switching the di-
rection of magnetization in I'2, the voltage difference mea-
sured is proportional to the spin density at the junction.
To check the idea of charge-spin separation in the supercon-
ductor, the penetration length (shaded region) should satisfy
AL, (( d spin diffusion length A, .

1 vr b, 1 ( 27.E )1+
7s 4 k~T~ 7~ ( 78

(21)

where ~E is the energy relaxation time and v; is the spin-
relaxation time. The charge-relaxation time, wq, diverges
as one approaches T . This is because in the normal
state all the charge is carried by quasiparticles, and there

As we discussed above, the measured charge and spin
signals are directly related to the charge- and spin-
relaxation time. Therefore it is necessary to study these
relaxation processes. The charge relaxation can be due to
inelastic electron-phonon scattering or to impurity elas-
tic scattering in the presence of gap anisotropy. Such
relaxation processes have been studied in detail by many
authors. ' ' In the presence of spin-flip scattering close
to T„the charge-relaxation rate is
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A. Relaxation by magnetic impurity scattering

For relaxation by magnetic impurity scattering the
Hamiltonian describing spin-Rip scattering is

II' = Vk„k,ck ck
k1,k2, a.

(22)

where Vk, k, is roughly a constant, representing a short-
range scattering potential. In the superconducting phase,
the quasiparticle spin relaxation involves only the follow-
ing part of the Hamiltonian:

is no cross-branch scattering or quasiparticle recombina-
tion to convert the quasiparticle charge to the conden-
sate charge. The factor A/k~T, appears because the
quasiparticles which are effective in relaxing the charge
are those with qk differing from unity, i.e., those with
I(I & 4, whereas the thermally excited quasiparticles
have I(I & k~T, Th. us, the fraction of processes that
changes the quasiparticle charge significantly is of order
6/k~T

A more complete picture of quasiparticle relaxation
in charge imbalance experiments also involves the initial
quasiparticle cooling process. When quasiparticles are
injected into a superconductor, they distribute roughly
uniformly between L and eV;„j.Inelastic scattering cools
down the quasiparticle distribution towards its equilib-
rium form with the characteristic time w~ 10 sec.
Since the cooling does not involve branch crossing scat-
tering (between Q ) 0 and (A, & 0), it has little effect on
the charge relaxation.

The situation is quite different for spin relaxation.
Spins can relax without branch crossing scattering and
quasiparticle recombination. And as we will show, in
some cases the initial cooling process may have a signif-
icant effect on spin relaxation because of the extremely
nonequilibrium quasiparticle distribution. We now dis-
cuss two major processes: relaxation through magnetic
impurity scattering and through spin-orbit scattering.
For simplicity, we restrict our discussions to elastic pro-
cesses.

ing the corresponding quantity for down spins yields

(dbS I
E dt ).ou

2 F——)
kl

xb(Eg —Eg)
2x w 2—
~ ).I4, a I

kI

xb(Eg —Eg),

(a6 + &'&
bS1+ k)

(
I
1+ IbSA,,

EA, E j
(26)

bS =-C f( ")
OE, (27)

The ratio of the normal to superconducting relaxation
times is

78

E +A2 f Bf(E))
+, E' —A' k BE

= »(&) 1+
l.
1 —f(&)llnI

f2A1
kgb T

where b is a measure of gap anisotropy, which eliminates
the logarithmic divergence of the integral at E = L. For
real superconductors b is small. Equation (28) is very
similar to that for nuclear spin lattice relaxation. The
spin-relaxation rate first increases below T and then de-
creases exponentially at even lower temperatures.

(2) When the spin relaxes faster than the cooling pro-
cess, i.e. , w, (( w@, the nonequilibrium spin distribution
ls

C' for 4 ( Ek ( eV;„;,
0 otherwise.

The ratio of the normal to superconducting relaxation
times is

where the term (y(I, i drops out because the summation is
over both ( ) 0 and ( & 0. To proceed further, we have
to know the distribution bSk. We consider the following
two cases.

(1) When the spin relaxes slower than the cooling pro-
cess, i.e., 7, )) 7.~, the nonequilibrium spin distribution
1S

H" = ) VI„g,(ug„uA,, + vt„vg,)p„pg, , (23)
k1,k2, cr

where we have expressed the electron operators in terms
of quasiparticle operators using a Bogoliubov transfor-
mation. The relaxation due to spin-Hip scattering is

' '"'E +L 4 074'
2 2dE=1+ ln

~+, E' —~ ~V,
„

In this case the spin-relaxation rate below T will increase
and then saturate as the temperature is lowered.

kg 2x 2 2

dt
= ——) I&a,~ I

(uA:uI +vavt )
k'

x (fg —fI )b(Eg —Eg). (24)
B. Relaxation by spin-orbit scattering

If we define the spin-density distribution and the spin
density as

For relaxation by spin-orbit scattering the Hamiltonian
describing the spin-Hip scattering is

bSg = bfIt —bfI g, bS = ) bSg, H' = ) iA(k x k') s c~t cg
k, k', cr, cr'

then summing Eq. (24) over k for up spins and subtract- where A is a short-range potential and s is the electron
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spin operator. The part of the Hamiltonian which flips
the quasiparticle spin in the superconducting phase is

Ov8
m ' = —V'(p, +e4).

Ot

II" = ) iA(k x k') s (ukuk —vkvk )pkt pk
k, k', cr

Notice that the coherence factor is difFerent from that
for magnetic impurity scattering. Going through similar
calculations, the relaxation due to spin-flip scattering is

f dbS')

& dt ).ou
= ——) ~A(k x k') stg~'

k, k'

x
~

1 —
~

hSk h(Ek, —E„).
Ek Ek) (33)

To simplify the calculation, we replace the quantity in
the absolute sign by its average over the Fermi surface.
The ratio of the normal to superconducting relaxation
times is then

Therefore the electrostatic potential 4 has a finite gra-
dient over a quasiparticle charge difFusion length inside
the superconductor. Such a potential gradient is respon-
sible for the excessive electric resistance close to T at
a normal-metal —superconductor interface. The charge
density associated with such a potential gradient is neg-
ligibly small [smaller than hQ by a factor of (l, /A~)2,
where l, = (4vre No) ~ is the Thomas-Fermi screening
length].

It is straightforward to make the above discussion
quantitative. The linearized Boltzmann equation for
quasiparticles in a superconductor is

fk ~hf fk ~gE
~

fk+vk' kyar ~E
vk' k =

d
)

(36)

(n) 2f(4) for ~, )) 7E)
1 —

& for w, (& w@. (34)

where vk is the quasiparticle velocity (~vk~ = v~~qk~) and
the spatial variation of quasiparticle energy is

hEk = hk. v, —qk(hp, + eh@) + h~A~.
Notice that in both cases the spin-relaxation rate de-
creases (relaxation time increases) below T, . This is to
the advantage of spin injection measurements. The deviation of the distribution function from local

equilibrium is related to h fk by

IV. SEPARATION OF CHARGE AND SPIN
TRANSPORT

hfk' = hfk
k

(38)

In the above discussion we implicitly assumed that the
thickness, d, of the superconducting layer is small com-
pared to the charge and spin dift'usion lengths, Aq

AD&~ and A, = QD7;. (D is the diffusion coeKcient
in the normal state. ) For thicker samples, d & A~, A„
Eqs. (18) and (19) should be modiBed to account for
difFusion efI'ects. The situation is similar to the normal-
metal —superconductor interface problem. When quasi-
particles are injected into the superconductor at the first
junction, their charge and spin disuse into the supercon-
ductor with characteristic times 7q and 7;. However, to
keep charge neutrality in the superconductor, the con-
densate will adjust itself to screen the charge carried by
quasiparticles. In the process of this adjustment, the con-
densate builds up a supercurrent inside the superconduc-
tor to cancel the quasiparticle current and a supercurrent
at the surface (within the penetration length) to carry
away the electric charge. However, the electric Beld (po-
tential gradient) does leak into the superconductor over a
distance of the quasiparticle charge difFusion length. This
is due to the following reason: To screen a quasiparticle
charge density hQ, the condensate must be reduced in
charge density by the same amount, so that the number
density must be reduced by hQ/e. This means that the
Fermi level must be lowered by h p, = hQ/e&0. However,
in a steady state, the electrochemical potential in a su-
perconductor must be a constant due to the acceleration
equation

Therefore Eq. (36) can be written more compactly as

fk ~hf). ~( fk+vk )..n

Vq
(4o)

where the quasiparticle current is

ig = ).qkvkhfk .
kyar

(41)

When T, is approached, v goes to zero and Eq. (40)
becomes the charge conservation condition in the normal
state. Multiplying Eq. (39) by qkvk and summing over
the momentum and spin yields

Notice that the electrostatic potential does not appear in
Eq. (36) directly. It comes in through its effect on the
condensate [Eq. (35)] and the variation of quasiparticle
energy bEk. For a steady state, p, + e4 is constant due
to Eq. (35). Even hEk is independent of the electrostatic
potential. This is a manifestation of the screening of
quasiparticle charge by the condensate. On the other
hand, Eq. (36) can be readily reduced to the normal state
Boltzmann equation by setting v„L,bp, = 0.

To obtain the charge-relaxation equations, we multiply
Eq. (39) by qk and sum over the momentum and spin:
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3 Jp gyle 2Q(. ' l (d

coll

(42)

In a relaxation time approximation

(dg~)

) ..» (43)

where 7 (& wq, 7 is the impurity scattering time which
determines the normal state resistivity, since Eq. (42)
must reduce to Ohm's law for a metal when 4 ~ 0.
Close to T one can also replace qI, by qA. with an accuracy
of A/k~T, . Equation (42) then becomes the diffusion
equation

jg = —DV'hQ, (44)

where the diffusion constant is D = v&w/3. When the
temperature is raised above T, the electrostatic poten-
tial shows up in Eq. (36). Going through similar cal-
culations, one obtains the drift-diffusion equation in the
normal state instead of Eq. (44).

In a similar manner we can derive the relevant equa-
tions for spin relaxation:

&-)s =—
7

7B
(45)

js = ) vl, (h fq't —b fq~) = DVbS. —
A:

(46)

Solving Eqs. (40), (44), (45), and (46), we see that the
quasiparticle charge and spin densities decrease exponen-
tially away &om the injection junction

gQ
—m/Aq gg

—a/A, (47)

where x is the direction into the superconductor. There-
fore if the superconducting layer thickness, d, is larger
than A~ and A„Eqs.(18) and (19) should be replaced by

I I
N~ —N~ g,~,I

Vj —V2 —— e

N~i + N~ eNpg„,
(48)

V + V = Iq~~I
eNpgns

(49)

Now we discuss the implication of these transport
equations and the idea of spin-charge separation in su-
perconductors introduced in Ref. 12. At Grst look, such
a separation is indicated by the two sets of transport
equations for charge and spin characterized by the two
different times, 7q and ~, . However, a closer look reveals
more. As we have mentioned, for a steady superconduct-
ing state, because p, + e4 is constant, the electrostatic
potential has no direct efFect on the quasiparticles. If the
gap is spatially uniform in the bulk of the superconduc-
tor, the third term in Eq. (36) drops out completely and
the resulting equation resembles that of a neutral particle
with spin. This resemblance has at least the following two
meanings. First these quasiparticles do not interact with

the electric Geld which is present inside the superconduc-
tor within the charge diffusion length. Second, there is
no net electric current associated with them. Both are
results of the condensate response to the injected quasi-
particles. The net electric charge injected into a super-
conductor is actually carried away by a supercurrent on
the surface of the superconductor.

The situation for spins is different. Quasiparticles
carry a well-deGned spin which is not screened by the con-
densate. Therefore spins can diffuse into the bulk of the
superconductor and cause a bulk spin current. It was ar-
gued in Ref. 12 that such a separation of charge and spin
transport is more generic and fundamental in the sense
that Bogoliubov quasiparticles of a fully gapped super-
conductor in three dimensions should be neutral, spin-2
particles due to the perfect screening of charge and the
Meissner efFect in a bulk superconductor. The solution
of the two sets of transport equations (40), (44), (45),
and (46) gives two characteristic length scales A~ and A,
for hQ and bS. But due to screening, bQ does not repre-
sent the net charge transport. The net injected electric
charge and current must be mainly confined to within a
Thomas-Fermi screening length and a London penetra-
tion length of the surface, respectively. The spin density
decreases over the spin diffusion length A„which can be
large in the superconducting phase as we have discussed
in Sec. II. Therefore the charge and spin transport in
a superconductor are separated in the following sense:
the charge current is carried by the condensate and ex-
ists only within the penetration length of the surface; the
spin current is carried by quasiparticles and can exist in-
side the bulk of a superconductor.

The separation of charge and spin transport in a su-
perconductor can also be checked experimentally. The
key is to verify the existence of a bulk spin current in a
superconductor. We propose an experimental setup as in
Fig. 1 with a thick superconductor layer sandwiched be-
tween two ferromagnetic films in a FSF tunnel junction.
The thickness of the superconductor is chosen to be much
larger than the London penetration length but of the
same order as the spin diffusion length, i.e., AL, (& d
Such a choice is possible because the spin-relaxation time
usually increases at low temperature, except for case (2)
of magnetic impurity scattering discussed in Sec. II. For
the normal state spin diffusion lengths of order a mi-
cron are attainable. On the other hand, typical London
penetration lengths are of order of a few hundred A. . In
the Fig. 1 setup, the tunneling current is injected at the
El-S junction and drained at the same side of the super-
conducting layer. The electric current must flow within a
penetration length of the top surface of the superconduc-
tor (shaded region). When the direction of magnetization
of I"2 is switched, a voltage signal of Eq. (48) would in-
dicate a nonvanishing spin density at the S-E2 junction,
which in turn implies a spin current flowing through the
superconductor. For the spin-relaxation mechanisms dis-
cussed in Sec. II, we plot in Fig. 2 the temperature de-

pendence of (7; /7;) /, which—according to Eq. (48)
is roughly proportional to ln(Vq —V2). Notice however
that these curves do not represent the absolute magni-
tude of the signal because the normal state relaxation
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FIG. 2. The calculated temperature dependence of
—(7; /7;) which is proportional to the logarithm of the
spin signal. Thick lines are for magnetic impurity scattering,
and thin lines are for spin-orbit scattering. Solid lines are for
the case when the spin-relaxation time ~, much larger than
the energy relaxation time 7~, and dashed lines are for the
case of r, « ra. The parameters used are b/Ao ——10
Ao/eV;„; = 0.2, where b is the gap anisotropy and V;„;is the
injection voltage.

time can be very different for different spin-relaxation
mechanisms.

The experimental evidence of charge and spin separa-
tion is still not clear. A recent experiment was done
with a permalloy-Nb-permalloy sandwich. The junc-
tions were not tunnel junctions so the proximity effect
may be important. A signal [Eq. (48)j was seen close to
T„however, it was found to decrease rapidly when the
temperature was lowered. An anomalously short spin
difFusion length (of order 50 A. ) was also obtained. This
could be due to magnetic impurity scattering, since this
is the only mechanism which gives an increasing spin-
relaxation rate at low temperatures. The shortness of
the spin difFusion length implies that case (2) applies.
The anisotropy of Nb is also small because the intrinsic
anisotropy in Nb is smaller than most of other supercon-
ductors and impurity scatterings will make it even less.

Taking these factors into account, Eq. (30) can explain
the experimentally observed 1n(Vj —V2) —(1 T—/T, ) /

temperature dependence of the signal. To experimentally
check the idea of spin-charge separation, the following
two aspects may be critical: First, one should use tunnel
junctions to isolate the nonequilibrium region &om the
ferromagnetic material to eliminate the proximity effect
and minimize magnetic impurity scattering. If the spin
relaxation is due to spin-orbit scattering, then the rate
will decrease at lower temperatures as we have calculated
in Sec. II. Second, materials with longer spin-relaxation
times in their normal state, such as Al, can be used to
increase the spin voltage signal.

V. CONCLUSION

In this paper, we have performed the electron tun-
neling calculation of nonequilibrium spin injection and
detection between ferromagnets and a superconductor.
The spin-relaxation rate due to magnetic impurity scat-
tering and spin-orbit scattering in a superconductor was
also calculated. The nonequilibrium charge and spin in-
jected into the superconductor obey diffusion equations.
Under certain conditions, the charge and spin transport
in a superconductor are separated in the sense that the
charge current is carried by the condensate and exists
only within the penetration length of the surface. The
spin current is carried by quasiparticles and can exist
inside the bulk of a superconductor. This can be exper-
imentally checked by spin injection and detection tech-
nique with tunnel junctions in the geometry of Fig. 1.
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