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The stability of the How of superAuid helium II between two corotating cylinders is investigated. The
result is compared with the corresponding classical Row of helium I. The validity of Rayleigh's stability
criterion and the relation between a superfluid and a classical inviscid Quid are discussed.

I. INTRO)DUCTION

One of the most classical problems of Auid dynamics is
the determination of the stability of the motion of a liquid
between rotating concentric cylinders (Couette flow).
This problem was first studied by Lord Rayleigh, who,
using simple physical arguments, derived the celebrated
Rayleigh criterion. ' The great importance of the Rayleigh
criterion is that it provides simple physical insight into
the stability of a rotating Aow. The criterion states that
the necessary and sufhcient condition for the stability of
axisymmetric disturbances is that the square of the circu-
latiori does not decrease anywhere. The viscosity of the
Auid, which was neglected in Rayleigh s original argu-
ment, was later taken into account by Taylor. Taylor in-
vestigated the stability of Couette Aow with respect to the
growth of infinitesimal disturbances. He found that when
the outer cylinder is held fixed, there exists a finite range
of rotation velocities of the inner cylinder in which
viscosity has a stabilizing e6'ect. Taylor's analysis showed
also that when the two cylinders rotate fast in the same
direction, a situation referred to as co rotation, the
viscous correction is small and the stability boundary be-
comes asymptotically close to Rayleigh's line. This
second result vindicates the power of the simple, inviscid
argument of Rayleigh.

The aim of this paper is to investigate what happens to
the Rayleigh criterion if the Auid contained between the
cylinders is superfluid helium (helium II) rather than a
classical Navier-Stokes Auid, such as helium I. It was
Chandrasekhar and Donnelly ' in the late 1950's who
first recognized the importance of the helium Couette
problem. The motivations were the interest in the quan-
tized vortex lines which are present when helium rotates,
the issue of establishing the equations of motion of heli-
um II, and the need to understand the operation of a
Couette viscometer. However, contact between theory
and experiments has happened only recently, when the
measurements of Swanson and Donnelly confirmed the
theoretical predictions of Barenghi and Jones and
Barenghi of the critical angular velocity of the inner
cylinder at which Couette Aow becomes unstable and
Taylor vortex Aow appears. The strong temperature
dependence of the transition was also observed by Bielert
and Stamm. These results led Henderson, Barenghi, and
Jones and then Henderson and Barenghi' to investigate

the nonlinear development of the Aow above the transi-
tion. The latter computed the torque which helium ex-
erts on the cylinders in the nonlinear Taylor vortex flow
regime and compared it successfully with existing mea-
surements. A11 these investigations refer to the simple
case in which the outer cylinder is held stationary. The
case in which the cylinders counter-rotate is being investi-
gated. " What happens when the outer cylinder is al-
lowed to rotate in the same direction of the inner cylinder
is the subject of the present study.

II. THE MQDEI. AND THE EQUATIONS

Liquid helium at temperature T is contained between
two concentric cylinders of inner radius R

&
and outer ra-

dius R2, which rotate at constant angular velocities Q&

and Q2. The usual simplifying assumption' is made that
the cylinders have infinite length. The calculations re-
ported in this paper refer to the radius ratio
R i/R2=p=0. 97628 and the gap width R2 R1
=5=0.047 cm of the helium Couette apparatus at the
University of Qregon. The Reynolds numbers
Re, =Q,R, 5/v„and Re2 =02R z5/v„are defined in
terms of the kinematic viscosity v„of the normal fluid. If
T = T&, then v„becomes equal to the kinematic viscosity
of helium I, which is a classical Navier-Stokes liquid, and
the more usual definitions of Re& and Re& are recovered.

The equations which govern the incompressible Aow of
helium II are'

+(v„V)v„=——Vp„+v„V v„+ F,

+(v V)v = ——Vp, —v, T— F,
p p

Vv =0
V.v =0

where v„and v, are the normal Auid and superAuid ve-
locities, p„and p, are the normal Auid and superAuid
densities, p =p„+p, is the total density of helium,
co, =VXv, is the superfluid vorticity, co, =co, /~co, ~, p„
and p, are eflective pressures, v, =(I /4m)ln(bo/ao) is
the vortex tension parameter, ao is the vortex core radius,
bo is the intervortex spacing, I =h /I =0.997 X 10
cm /sec is the quantum of circulation, h is Plank's con-
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stant, and m is the mass of the helium atom. The mutual
friction force is'

F=—ro, X [m, X(v„—v, —v, VX', ) j

BU +(v V)v= ——Vp+vV v .1 2

at p
(6)

Second, if T +0 then p—„—&0 and Eq. (2) describes a pure
superflow:

Bv 1+(v V)v= ——Vp —v, A@X(VX~0) .
Bt p

Finally, if Plank's constant is set equal to zero, then
v, =0 and Eq. (7) reduces to the classical Euler equation
for an inviscid fluid:

Bv 1+(v'V)v= Vp
at p

The Rayleigh inviscid stability criterion applies to Eq.
(8) and states that a stratification of angular momentum
about the axis is stable if and only if it increases mono-
tonically outwards, that is to say, if Q,R, &Q2R2. This
condition, expressed by the Rayleigh line Re, =Re2/i)
showed in Fig. 1, divides the Re& vs Re2 plane into a
lower stable region and an upper unstable one.

To take viscosity into account one must study the
Navier-Stokes equation (6) rather than the Euler equation
(8). Equation (6), which describes the motion of a classi-
cal viscous fluid such as helium I, admits the Couette
solution v=V(r)e4, =(Ar+B/r)e&, where e& is the unit
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FIG. 1. Regions of stable and unstable Qow in the Re& vs Re2
plane: a, stability boundary of helium II, b, the Taylor curve
(helium I), and c, the Rayleigh line.

B'+ ro, X ( v „—v, —v, V X co, ),
2

where B and B' are the mutual friction coefficients, and
the vortex tension force —v, T is given by
T=co, X(VX', ).

Equations (1) and (2) have three interesting limits.
First, if T~T&, then p, ~0 and the normal fluid equa-
tion (1) reduces to the classical Navier-Stokes equation
for a viscous fluid:

vector in the azimuthal direction and the parameters
A = Q—,ri (1—plil )/(1 —

71 ) and 8 =Q,R, (1—p)/
(1—

7i ), where p=Q2/Q&, are chosen to satisfy the no-
slip boundary conditions U& (r =Ri)=QiRi and U&

(r =R2)=QzR2. The analysis of the stability of the
Couette solution with respect to both axisymmetric and
nonaxisymmetric perturbations results in the Taylor sta-
bility boundary showed in Fig. 1. The most significant
difference between the Taylor curve and the Rayleigh line
is that when the outer cylinder is fixed there is a nonzero
critical velocity, Re& =268, at this value of radius ratio.

In the case of helium II, the stability is determined by
the full set of equations (1) and (2). The basic state is as-
sumed to be Couette liow again, v„=v, = V(r )e&
=( Ar+8/r)e&, which corresponds to a uniform array of
vortices aligned along the axis of rotation with areal den-
sity no=2~ A~/I . If it is only the inner cylinder which
rotates, the assumption that the basic state is Couette
flow is justified by the experimental observation that the
attenuation of second sound is proportional to 0&. The
case in which both cylinders rotate together has not been
studied experimentally yet, but a similar assumption is
mathematically convenient and physically plausible.
Nevertheless, one should be careful and understand the
approximations involved in this assumption. First, it
neglects the existence of a vortex free strip' near the
walls. Second, it neglects the possible existence of rem-
nant vortex lines, ' which can be created when helium is
cooled through the A, point and then be present between
the cylinders when still at rest. The Couette flow as-
sumption is therefore valid only if the remnant vortices
have very small density or if they realign along the axis of
rotation when the cylinders are spun up for the first time.
Third, the Couette state is only an approximate solution
because the finite height of the apparatus must necessari-
ly induce a weak vertical circulation. This limitation ex-
ists in both the helium II and the classical Couette prob-
lem. Finally, it is important to note that if the rotations
of the cylinders are such that 2 is exactly zero, then
no=0 and there are no vortices in the system. The
superfluid is in a state of irrotational motion correspond-
ing to a virtual vortex on the axis having strength XI,
where X is the closest integer to 2mB. For the theory to
be valid A must be either slightly positive or negative,
corresponding to vortices oriented along the +z or —z
direction.

The equations, written in cylindrical coordinates r, P, z,
are made dimensionless using the length scale 5 and the
time scale 5 /v„. The stability of the Couette state is
then analyzed with respect to infinitesimal perturbations
of the form exp(ikz+imP+ipt), where k and m are the
axial and azimuthal wave numbers and p is complex. If
the growth rate cr = —Im(p) )0, then the Couette state is
unstable. The linearized equations for the perturbations
are an eighth-order eigenvalue problem for p. The prob-
lem is solved at given g, 6, Re2, k, and I for the value of
Re& at which cr =0. The wave numbers k and m are then
varied and the lowest value of Re& found, Re&„defines
the state of marginal stability. The numerical technique
used in the calculations is based on Chebyshev spectral



3598 CARLO F. BARENGHI 52

expansions and has already been described. The calcula-
tions are performed at T=2. 16 K, because it is in the
high-temperature regime that contact between theory
and experiments has been achieved for rotations of the
inner cylinder only.

III. NUMERICAL RESULTS

The result of the calculation of the marginal states is
the top curve in Fig. 1, which must be compared with the
Taylor curve and the Rayleigh line. Within the range of
parameters investigated, the marginal states are deter-
mined by axisymmetric perturbations (m =0) as in the
classical Couette problem. The critical axial wave num-
bers range from k =2.4 when Re&=0 to k =2.9 when
Re2=900, which must be compared to the value k =3.1

of the Taylor curve. Since the height of the Oregon
Couette apparatus is h =9.398 cm, there are about 74
Taylor cells along the axis when the instability sets in, a
number which is large enough to justify the use of the
infinite cylinder approximation. It is evident from Fig. 1

that the corotating Row of helium II is always more
stable than the corresponding How of helium I. The
difFerence between helium I and helium II is larger if Re2
is smaller. If the outer cylinder is fixed then helium II's
critical velocity is Re&, =313, which must be compared
with the value Re &,

=268 in helium I. When both
cylinders rotate fast in the same direction, however, Fig.
1 shows that the stability curves of both helium I and
helium II tend towards the Rayleigh line. The Rayleigh
criterion is therefore valid for helium II as well.

IV. A SIMPLIFIED MADEL

(mm +k )
v„„=2Qov„~—a,B l A l(u„„—u,„),

k
(9)

C3 C4
c, c2+ =Ta 1+

Ta Ta
C6

c5+
Ta

where Ta= —4A Qo is the Taylor number and the
coeS.cients ci, c~, c3, c4, c5, and c6 are

C) = 2 2+k 2 3

(m rr +k ) +k B lAl+p
k

a,BlAlS'
+P (m ~+k ) (14)

c,= —m'~' —k' —Bl Al,., =+21 AIPk2(m 2~2+k2+a. BI Al ),
me. +kc,=a„BlAl, —2l A[Pk2,

(15)

(16)

(17)

(m m. +k )

k

—(m m +k )v„&=2Av„„+a,Bl Al(u„& —u, &), (10)

0=(2Qo+Pgk )u, &+a„BlA l(v„„—v,„),
0=[2A+Pq(m'~'+k')]v„a—.BI Al(u„, v,—,), (12)

where P=v, /v„, /=A/l Al, a„=p„/p, and a, =p, /p.
Nontrivial solutions of the linear system (9), (10), (11),
and (12) are determined by the roots of the characteristic
equation

c6=a„BlAl(m m +k ) . (19)
To understand the physical meaning of this result,

which is hidden by the numerical calculation, it is in-
structive to consider a simplified model of Eqs. (1) and (2)
which can be solved analytically. The model is the fol-
lowing. Equations (1) and (2) are simplified by introduc-
ing the narrow gap limit that 6«R& neglecting the
efFects of vortex tension in the mutual friction force and
dropping the transverse component of mutual friction
proportional to B'. Since the cylinders rotate rapidly in
the same direction at almost the same speed, the Couette
flow's angular velocity Q= V/r is approximated by
Q = (Q, +Q2) /2 =Qo. Finally, the no-slip boundary con-
ditions of the normal Quid are replaced by stress-free con-
ditions. ' The advantage of these modified boundary
conditions is that the eigenfunctions and all their deriva-
tives are simply proportional to sin(m ~x ) for
m = 1,2, . . . , where x = (r —R i )/5. Experience of simi-
lar boundary value problems in Quid dynamics suggests
that, although the modified boundary conditions alter the
critical Reynolds number, the dependence on the other
parameters of the problem is essentially the same. As-
surning axisymmetric perturbations, one can eliminate
the pressures p„and p, from the z component of (1) and
(2), and the axial velocity components u„, and u„ from
the continuity equations (3) and (4). Setting p =0 (ex-
change of stabilities), the equations for the remaining per-
turbations v„„v„&,v„, and v, &

are

The quadratic equation (13) determines Ta as a function
of

l
A l. The roots Ta= Qk+Q 4P /2—c~, where—

Q =c4c5+c6—cic2 and P=c~(c c4—6 c,c3), form two
families Ta and Ta+, corresponding to the choice of
sign, where the index m =1,2, . . . labels the members of
each family. The existence of two families of solutions in
this problem was recognized by Chandrasekhar and Don-
nelly in their pioneering paper, although at the time the
exact form of the mutual friction force was not clear and
the vortex tension was not known. Chandrasekhar and
Donnelly argued that two separate families originate, re-
spectively, from the Taylor instability of a classical
viscous fiuid (the normal fiuid) and from the Rayleigh in-
stability of an ideal fluid (the superfluid). To see this it
suffices to consider Eq. (13) in the limit T~ Tz by setting
p=0, B=0, a, =0, and a„=1. Then the two roots are
Ta+=0 and Ta =(m +k ) /k . The first root Ta is
equivalent to the condition A =0, which is the Rayleigh
line Q, =Q2/g . Minimization of the second root Ta
with respect to k and m yields the critical wave number
k, =sr/&2 at m =1 and the critical Taylor number
Ta, =658. This well-known number' appears at the place
of 1708 when stress-free boundary conditions replace no-
slip boundary conditions in the study of classical Couette
How and thermal convection. A finite value of Ta
means that if fLO —+ac, then A ~0, and this is why the
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2a'/ af'
pm.

(21)

It follows from Eq. (21) and the definition of the Taylor
number that QO=B

~
A~ /(2Pm ), from which

Q)= 1+ c
2g Q2

1 —c /Qz
1+ 1— —c

j/2 '

(22)

In the limit of rapid rotation Q2~ ~, Eq. (22) reduces to
the Rayleigh line Q, =Q2/rl because c =Pm (1
—rl ) /8 is a small quantity. This result confirms the
finding of the numerical calculation.

The fact that the stability of the Qow of helium II is
determined by the superfluid family Ta+ rather than the
normal Quid family Ta suggests a study of what hap-
pens in the cgse of a pure superflow. If helium's tempera-
ture is lowered from the A. region to the vicinity of abso-
lute zero, Eqs. (1) and (2) reduce to Eq. (7). In this case,
it is possible to do some analytic progress in the narrow

gap limit by assuming axisymmetric perturbations
without altering the boundary conditions. Care must be
taken not to assume exchange of stabilities, however.
The governing dimensional superfluid equation' can be
reduced to

[gv, k (2Q+gv, k )—p ] u„
5 dx

=2Ak2(2QO+Pv, k )u„, (23)

where the radial superfluid velocity component U„must
satisfy the boundary conditions u„(x =0)=u„(x = 1)=0.
The solution is u, =sin(me. x ), where n is an integer and
the eigenvalue is

Taylor curve approaches the Rayleigh line.
In the case of helium II, the curves of the normal Quid

family Ta vs k are higher than the curves of the
superQuid family Ta+ vs k. The region of interest in the
Q, vs Q2 plane is where

~
A

~
is small above the Rayleigh

1ine ( A & 0). Here the superfiuid family attains its
minimum in the long-wavelength limit k && 1, which is

p 2 2 (m ~ ~ +zing~ )Ta-= 1+ (20)
(a,a[ g[+m'~')

In the high-temperature range relevant to the experi-
ments, a, « 1 and a„=1 and Eq. (20) yields the critical
Taylor number

If the outer cylinder rotates faster than the inner one,
then f&0, p &0 and the fiow is always stable. If the
inner cylinder rotates faster than the outer one, then
/&0 and the fiow is stable only if 2QO&v, k . This
means that Couette Qow is unstable to the growth of
long-wavelength (k~0) perturbations. The stability of
corotating Couette superflow is therefore determined by
the sign of A, that is to say, by the same Rayleigh condi-
tion Re& &Re2/rI that governs the stability of a classical
inviscid Quid. The physical mechanism is, however,
different: v, k is the angular frequency of vortex
waves, ' which are antiparallel to the vorticity. The
superfluid instability, therefore, is not caused by an un-
stable stratification of angular momentum, but by the bal-
ance of centrifugal forces and vortex tension forces.

V. CONCLUSIONS

The analytic solution of the simplified model equations
confirms the numerical solution of the exact equations of
motion, and clarifies the origin of the instability and the
relation between a viscous Quid, an inviscid Quid, and a
superfluid. The conclusion is that the Rayleigh stability
condition, which was introduced in the context of an
inviscid Quid and later proved valid for the description of
a viscous fluid, is also relevant to the stability of a quan-
tum Quid such as helium II. This result, which is ap-
parently simple, is achieved in a subtle way.

To appreciate this conclusion it is worth noting that
there is no reason to expect a priori that helium II should
behave like a classical Quid. For example, the experi-
ments of Heikkila and Hollis Hallet' at temperature
lower than considered here showed that, if the inner
cylinder is held at rest, the rotation of the outer cylinder
can have a destabilizing effect. This phenomenon contra-
dicts classical Quid mechanics, because when the outer
cylinder rotates, the angular momentum is stratified in a
stable way and there should be no instability. It is vortex
tension which makes a pure superflow different from a
classic inviscid Qow: the observed instability is due to
vortex waves and the growth of nonaxisymmetric pertur-
bations. '

Finally, the similarity at high rotation rates between
the Qow of helium II and the Aow of a classical Quid is in-
teresting from the point of view of the attempts of using
helium II at temperatures just below T& to study issues of
classical Quid mechanics at high Reynolds numbers. '
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