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Magnetic phase transition in the metal-rich rare-earth carbide halides Gd2XC
(X = Br,I)
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The critical behavior of the ferromagnetic-paramagnetic phase transition of metal-rich rare-earth
carbide halides Gd&BrC and Gd2IC is investigated. These compounds exhibit a layered structure of
Gd —C—Gd slabs which are sandwiched between layers of halogen atoms (Br,I). The critical exponents
P, p', p, and 8 are determined by several methods: modified Arrott plots, Kouvel-Fisher plots, scaling
plots, and ln J vs In(poH) plots. The asymptotic critical exponents P and p as well as the critical
amplitudes Js and hp/ Jo were determined from both the Kouvel-Fisher and the correction to scaling
analysis. The derived critical exponents are identical for all methods and in good agreement with
the predictions of the three-dimensional Heisenberg model whereas the reduced critical amplitudes
Jo/Js(0), @ho/k~T, and D Jo/ho cannot be related to a particular model. The temperature
dependence of the Kouvel-Fisher exponent p(T) is discussed with respect to chemical disorder.

I. INTRODUCTION

Metal-rich halides of the rare-earth elements represent
a new class of compounds which exhibit a number of in-
teresting properties. In general the metal-rich halides
contain building blocks (e.g. , chains or layers of metal
atoms) which are embedded and charged balanced by
surrounding halogen atoms. These metal-rich units gen-
erally accomodate interstitial atoms (e.g. , H, C) or even
transition-metal atoms (e.g. , Fe,Co). Earlier studies of
their physical properties have detected ferromagnetism
in some of these compounds with transition tempera-
tures ranging up to almost room temperature. ' The oc-
currence of a ferromagnetic ordering in these compounds
allows the study of the critical behavior at the phase tran-
sition from the ferromagnetic (ferrimagnetic) state to the
paramagnetic state. Such an analysis is performed to test
whether the observed phase transition is a real second-
order transition and to gain a better insight into main
exchange mechanisms.

Recently, we have analyzed in detail the magnetic
phase transition of the metal-rich halides Gd28rFe2,
Gd2IFe2, and Gd2ICo2. These compounds crystallize
in a layered structure wherein the intermetallic slabs
formed by Gd-(Fe, Co)-Gd are separated by a single layer
of halogen (Br,l) atoms (Fig. I). The critical expo-
nents experimentally determined for these compounds
are in best agreement with those derived for the three-
dimensional (3D) A Y model. This result implies that the
magnetic moments of both Gd and the transition-metal
atom (Fe,Co) are confined to lie within the intermetallic
slabs. We attributed the appearance of this strong planar
anisotropy to pronounced anisotropic exchange interac-
tions induced by the 3d electrons of the transition-metal
atoms.

Another series of metal-rich rare-earth halide com-
pounds which order ferromagnetic are the metal-rich car-
bide halides Gd2BrC and Gd2IC. In these compounds

the 3d transition-metal atoms are substituted by carbon
atoms which are octahedrally surrounded by Gd atoms.
Such Gd6C octahedra are connected via common edges
to form layers which are again sandwiched by layers of
halogen atoms (Br,I) (Fig. 1).

To check if the aforementioned strong planar
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FIG. 1. A projection of the structures of BE'2XTz (a)'
(Refs. 6 and 7) and BE22CC (b) (Ref. 2) along the [110]direc-
tion. Abbreviations are BE': rare earth (Gd); T: transition
metal (Fe,Co); Ã: halogen (Br,I); and C: carbon atoms, re-
spectively.
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II. THEORY

An analysis of the magnetic phase transition is based
on the determination of the critical parameters to test
the predictions of diferent models. In the critical regime
(t -+ 0, t = T/T, —1) the critical exponents P, p', p, and b

describe the temperature dependence of the spontaneous
polarization Jp, the inverse zero field susceptibility y
for T ( T and y for T & T, respectively, and. the field
dependence of the polarization J(poH, T = T,) for the
critical isotherm as follows:

Js = Jp (—t) (t +0, t &-0, ppH = 0),

~
—'-(—t)' (t~o, t&O, p,,H=0), (2)

anisotropy can be modified by a variation of the
type of intersticials we carried out a detailed analysis on
the critical behavior of the carbide halides Gd2A C (X =
Br,I).

tudes p, ho/k~ T, and D J~~ /ho and the ratio Jo/ Js(0) are
determined (Tables I and II). From a comparison of the
theoretical predictions with experimental results, conclu-
sions can be made concerning the dominant exchange and
spin arrangement in the material investigated.

The critical exponents can be determined &om
temperature- and field-dependent measurements of the
magnetic polarization J(poH, T) by several methods:
modified Arrott plots, Kouvel-Fisher plots, scaling plots,
and ln J vs in(poH) plots. In addition to the method
of Kouvel-Fisher (KF) which is used to extract the criti-
cal exponents P (p), the critical temperature T and the
width of the critical regime, we applied the correction-
to-scaling (CTS) analysis. This method yields a more
detailed information concerning the asymptotic critical
behavior. As asymptotic critical exponents we de-
note exponents which are obtained &om an analysis in
the asymptotic critical regime (ACR: t & 10 2). This
analysis is based on the following expressions for the
spontaneous polarization Js(T) and the zero field sus-
ceptibility y i (T):

and

=
~

—
~

t~ (t ~ 0, t & 0, I H = 0),(hol
& Jo)

Js(T) = J, (—t)~ [1+a~ (—t)~] (t & 0, p, H = 0) (6)
(3)

and

(poH) =DJ (t=0). (4) '(T) = (ho/Jo)t~[1+ a+(t) ] (t & o IJoH = 0). ( )

These critical exponents are universal quantities in the
corresponding universality class and, therefore, they de-
pend only on the spatial and the order parameter di-
mensionalities d and n if the exchange energy declines
stronger than 1/r +2. Such a prerequisite implies that
the exchange coupling of the magnetic moment is of
short-range order. Nearest-neighbor interactions are as-
sumed in the 3D Ising model (n = 1) and the 3D Heisen-
berg model (n = 3) of which the critical exponents are
listed in Tables I and II. Moreover, only two exponents
are independent since the others are related to each other
via the following scaling relation:

The prefactors Jo, ho/Jo, and D in Eqs. (1), (3), and
(4) are denoted as critical amplitudes. ' To obtain also
universal quantities, the reduced values of critical ampli-

In addition to the power laws [Eqs. (1) and (3)], these
expressions [Eqs. (6) and (7)] contain the so-called
CTS term a& (a ) arising &om the irrelevant scaling
fields as predicted by the renormalization-group (RG)
calculations. In these terms the plus or minus sign
denotes whether the fit parameters T, and a& (a+) are
obtained from data for t ( 0 or t ) 0. The exponent
L was kept constant at its theoretical prediction for the
3D Heisenberg model 4 = 0.55. It should be noted that
fitting the power laws [Eqs. (1) and (3)] to the corre-
sponding data yields effective critical exponents even if a
critical regime t ( 10 is considered, since the exponent
value depends on the temperature range chosen for the
fit. To assure that the asymptotic critical exponents are
obtained, the CTS analysis is applied according to Ref.
15.

TABLE I. Critical exponents as derived from both different experimental methods and theoretical models. Abbreviations
are MA: modified Arrott plot; KF: Kouvel-Fisher plot; SP: scaling plot; LNP: ln J vs In(poH) plot; SL: scaling law Eq. (5);
(d = 3, n = 3): 3D Heisenberg model; (d = 3, n = 1): 3D Ising model.

Gd2BrC
Gd2IC
(d=3, n=3)
(Refs. 8, 45)
( =dn3= )1
(Refs. 8, 45)

0.365(8)
0.380(8)
0.365(3)

0.325(2)

MA
I

1.387(8)
1.380(8)

KF SP
y y y

1.387(8) 0.379(5) 1.380(6) 0.380(2) 1.382(3) 1.380(4)
1.380(8) 0.380(5) 1.370(7) 0.370(4) 1.385(5) 1.390(6)
1.386(4)

1.241(2)

LNP SL
b b

4.80(25) 4.73(13)
4.68(25) 4.69(15)
4.80(4)

4.82(2)
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TABLE II. Values experimentally determined for the magnetic saturation and the critical am-
plitudes as well as a comparison of the reduced critical amplitudes with the theoretical predictions
of different models. Abbreviations are Js(T = 5 K): the saturation polarization at T = 5 K; p: the
magnetic moment per formula unit; (d = 3, n = 3): 3D Heisenberg model; (d = 3, n = 1): 3D Ising
model.

Gd2BrC
GdgIC
(d=3, n=3)
(Refs. 8, 45)
(d = 3, n = 1)
(Refs. 8, 45)

Js(T = 5K)

(&)
1.56(2)
1.33(2)

hp/ Jp Jp/ Js

1.486(l)

P Jo D

(C s) (&) (Tl —b)

11.9(2) 1.30(10) 34(4) 17(1) 0.83(8)
10.4(2) 1.02(10) 131(10) 65(4) 0.78(8)

1.37(7)

D Jo
&o

1.52 1.81(1)

3.34(25) 1.38(30)
5.30(25) 0.53(20)

1.58 1.33(1)

III. EXPERIMENTAL DETAILS

The sample preparation and the structural analysis
as well as a first investigation on the magnetic prop-
erties is given in Ref. 2. Here, we emphasize only de-
tails concerning the magnetic measurements. The sam-
ples were sealed in quartz capillaries to avoid any contact
with moisture and oxygen. Since the magnetic moment
of these capillaries is three orders of magnitude lower
than the smallest magnetic moment measured, it could
be neclected. The measurements were carried out with
a superconducting quantum interference device magne-
tometer (type: MPMS, Quantum Design) in external
Belds ppH „~ up to 1T and in the temperature range
5 K ( T ( 280K. As temperature steps for the measure-
ment of the isotherms we used LT = 0.5, 1, 2, 5, 10K. To
assure that the temperature accuracy within an isotherm
is better than the smallest temperature step size, we did
not chose a step smaller than 0.5K. The internal field
ppH was calculated by subtracting the demagnetizing
field N J from the external field ppH

IV. DATA ANALYSIS AND RESULTS

The critical exponent values and the critical temper-
ature extracted by several methods are summarized in
Tables I and III, respectively. In Table IV we present the
fit parameters obtained by both the KF and the CTS

analysis. As Bt range we denote the temperature range
for which the corresponding Bt is characterized by the
smallest standard deviation. The magnetic saturation at
T = 5K, the critical amplitudes, as well as the reduced
critical amplitudes are listed in Table II. The uncertainty
limits given in Tables I—IV show the range in which the
deviation is constant within the error bars.

At Brst the temperature dependence of the polariza-
tion J was measured at low fields (poH, „|,( 2 mT) for a
rough estimate of the critical temperature T (Table III).
In the so-called kinkpoint measurement, the polarization
J nearly drops to zero after a sharp kink at the criti-
cal temperature T, (Fig. 2). Furthermore the kinkpoint
measurement can be used to check whether or not the
material investigated is magnetically single phase. If an
additional magnetic phase with a higher critical temper-
ature T,* as the one of the main phase exists, the polar-
ization J does not vanish well above T, . Considering the
temperature dependence of the polarization J in Fig. 2,
we conclude that Gd28rC and Gd2IC are magnetically
single phase.

As a first method to extract the critical parameters
P, p', p, and T, we used modified Arrott plots in which
the measured polarization curves are represented in the
form J /~ vs (poH/J)i/~. The exponents P and p are
chosen in such a way that the isotherms close to the crit-
ical one show an almost linear variation. The critical
isotherm (T = T, ) is the one which passes through the

TABLE III. Values for the critical temperature T as derived from difFerent methods. Abbrevia-
tions are KP: kinkpoint; MA: modified Arrott plot; KF: Kouvel-Fisher plot; SP: scaling plot; LNP:
ln J vs In(ppH) plot.

Gd2BrC
Gd2IC
Gd2BrFe2
(Ref. 7)
Gd2IFe2
(Ref. 7)

KP
T, (K)
108(4)
178(4)
270(3)

280(3)

MA
T,(K)

105.5(5)
176.7(5)
269.5(5)

279.5(5)

KF
T, (K)
105.6(2)
176.2(2)
269.7(3)

279.5(2)

KF
T+ (K)
105.9(2)
176.1(3)
269.9(2)

279.4(2)

LNP
T (K)

105.5(5)
176.0(5)
269.5(5)

279.5(5)

SP
T, (K)

105.9(2)
176.1(2)
269.9(2)

2?9.4(2)
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TABLE IV. Fit paraineters for the spontaneous polarization Js(T) and the inverse zero field susceptibility y (T). Abbre-
viations are KF: Kouvel-Fisher; CTS: correction to scaling.

Gd2BrC

Gd2IC

Analysis

KF
CTS
KF

CTS

Fit range
t

3.68 x 10-'
2.72 x 10
1.82 x 10
1.80 x 10

T
(K)

105.9(4)
105.88(2)
176.2(4)

176.17(1)

P Jp
(T)

0.372(5) 1.3O(1O)
0.365(5) 1.30(10)
0.373(8) 0.98(10)
0.375(8) 1.02(10)

aJ Fit range

3.90 x 10
—3.7(8) 2.03 x 10

3.30 x 10
—5.6(3) 1.60 x 10

T+
(K)

105.9(1)
105.85 (1)
176.0(2)

176.18(2)

hp/ Jp

1.386(6) 44(2)
1.392(8) 34(4) —2.3(2)
1.375(5) 74(2)
1.370(8) 131(10) 7.5(8)

origin (Fig. 3) (Tables I and III). Since we use difFerent
values for p for the isotherms below and above T„we
can determine p' and p independently. In Fig. 3 the
so-called low field data show a deviation &om linearity.
Such a behavior was found in a series of earlier investiga-
tions for numerous materials. ' ' To get rid of these
anomalies an extrapolation of the high Geld data range
(ppH ) 0.1 T) which is characterized by a linear varia-
tion is performed. ' ' The spontaneous polarization
Jg and the inverse zero Geld susceptibility y are ob-
tained Rom the interceptions with the J /~ axis and the
(ypH/J) ~~ axis, respectively. Furthermore, we fitted a
cubic spline to both the spontaneous polarization Js(T)

and the inverse zero field susceptibility y (T). This
spline was used to calculate the Kouvel-Fisher quantities
J& (dJ& /dT) and y i (dy i/dT) numerically. Plot-
ting these quantities as function of temperature T yields
straight lines in the vicinity of the critical temperature
(T -+ T,) and the inverse slope corresponds to P and p,
respectively ' ' ' (Tables I and III).

A further possibility for the evaluation of the critical
exponents P, p', p, and the critical temperature T, is
given by the scaling analysis. If the scaling hypothesis is
valid, there exists a reduced equation of state in the form

J (IjpH)
ltl~+' ' (8)

P ~ 0.855
y ~ 1.88V 1'&1'~

y ~ 1.88V &&c
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I
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FIG. 2. Kinkpoint measurement for both Gd2BrC and
GdgIC.

FIG. 3. Modi6ed Arrott plots for a selection of isotherms
in the critical regime.
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where f is a scaling function and the plus or minus sign
denotes the ferromagnetic and paramagnetic region, re-
spectively. In the scaling plots the data are plotted in
the form 1n(J/ltl~) vs in(poH/ltl~+~) whereby a data
collapse on two branches is observed if the correct crit-
ical parameters P, p', p, and T, are chosen. Figure 4
shows such a scaling plot with optimized parameters for
Gd2BrC. The upper branch represents the ferromagnetic
range (T ( T,) and the lower branch the paramagnetic
region (T & T,). Once again, we test the validity p' = p
by using diff'erent values of p for the data below and
above T, (Fig. 4) (Tables I and III). It should be noted
that an optimum data collapsing is only observed by
using the high field data (poH & 0.1T). ' Earlier
investigations ' have shown that taking into account
data from outside the critical regime a good scaling be-
havior could also be observed. Since for some data sets
it is not obvious when the deterioration from the opti-
mum data collapsing occurs, we additionally performed
the KF and CTS analysis where the critical regime can
be determined more accurately.

The exponent b which describes the Geld dependence
of the critical isotherm (T = T,) can be easily deter-
mined when plotting the quantities ln J vs 1n(poH). In
this graph the critical isotherm is characterized by an
almost linear variation. For materials with a negligible
anisotropy the isotherms for T ( T have a concave and
for T ) T a convex curvature, whereas for materials
with a non-negligible anistropy all isotherms show a con-
vex curvature (Fig. 5). The exponent b is obtained from
the inverse slope of the critical isotherm (Tables I and
III). Again, we find reasonable values for h only when
performing a linear regression on the so-called high Geld
data (poH & 0.1T). 2 ' ' ' ' Moreover, this plot
allows the determination of the critical amplitude D from
the interception of the critical isotherm with the ln J axis
numerically ' ' (Table II) .

In addition to the determination of critical parameters
P (p) and T„ the application of the KF analysis yields
the critical amplitudes Jo and hp/ Jo respectively. This
analysis is based on Gtting the corresponding power law
[Eqs. (1) or (3)] to the data of Jg(T) and y i(T). To
obtain optimized least-squares fits we varied the expo-
nent P (p) and the width of the critical regime while the

Tc = 105.87 K

P = 0.380
38»&Tc

7 = 1.380 MT~

, ~ 0

~0~ 0r~
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0
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critical temperature T was kept constant for a series of
fits. The Gt parameters obtained for the best Gt which
is characterized by the smallest standard deviation are
listed in Tables II and IV, respectively.

As described in Sec. I, the CTS analysis can be used
as a further tool to extract the critical parameters P (p),
T„Jo (ho/Jo), and the width of the critical regime. i
In contrast to the KF method, the CTS analysis is based
on fitting least-squares fits according to Eqs. (6) and (7)
to the data of Jg (T) and y i (T) (Fig. 6). Applying
this procedure, we kept the exponent constant for a se-
ries of least-squares fits (characterized by the same ACR)
whereas Jo (ho/Jo), T, (T+), and a& (a+) were left as
adjustable parameters. For the exponent 4 we used the
value predicted for the 3D Heisenberg model, L = 0.55.
Again, the Gt parameters for which the best Gt was ob-
tained are presented in Tables II and IV. The saturation
polarization Jg(0) which is necessary to calculate the re-
duced critical amplitude Jo/Js(0) was ascertained from
measuring the magnetic moment at T = 5K and in ex-
ternal fields up to ppH g = 5.5T.

Range: 103.50 K & T & 108.00 K

ln(u&/l~l~")

FIG. 4. Scaling plot for Gd2Brc.

12
ln (p,+)

FIG. 5. Plots of 1n J vs 1n(@OH) at a few temperatures
around the critical temperature T, . The straight line repre-
sents the best least-squares fit to the so-called high field data,
i.e., NOH & 0.1T.
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V. DISCUSSION

The metal-rich carbide halides Gd2XC and Gd2XC
(X = Br,I) exhibit ferromagnetism like the recently in-
vestigated metal-rich halides Gd2X T2 (T = Fe,Co). The
crystal structure of both series of compounds is simi-
lar: a sandwich structure formed by layers of halogen
atoms (Br,I) and layers of Gd and Fe (Co) or C atoms
is the common feature (Fig. I). In both cases metal
atom layers are sandwiched between layers of halogen
atoms. However, while the metal-rich carbide halides
contain trigonal antiprisms of Gd6C which are connected
via common edges to form closed packed metal atom bi-
layers, in the structures of Gd2XT2 trigonal prisms are
condensed into intermetallic slabs of Gd-T-Gd. In view
of the similarities but also the distinct differences, we
performed a detailed analysis of the magnetic phase tran-
sition of Gd2BrC and Gd2IC in order to test whether the
substitution of the transition metals Fe and Co, respec-
tively, by C atoms and/or the different structure within

FIG. 6. Temperature dependence of both the spontaneous
polarization Jz and the inverse zero field susceptibility y
for Gd&BrC. The full line represents the CTS least-squares fit
according to Eqs. (6) and (7).

the magnetic layers (composed of atoms which have a
magnetic moment) has a crucial influence on the mag-
netic critical properties.

The critical temperature T for Gd2BrC and Gd2BrC
is distinctly lower than room temperature (Table III).
This result is in contrast to the compounds Gd2BrFe2
and Gd2BrFe2 for which critical temperatures close to
room temperature were found (Table III). However, a dif-
ference between the critical temperatures of the metal-
rich carbide halides and the metal-rich halides may be
expected because a substitution of the transition-metal
atoms (Fe,Co) by C atoms together with a change of the
structure within the magnetic layers must have an in-
Buence on the strength of the exchange interactions and
therefore on the critical temperature T . Moreover, it
should be mentioned that both types of metal-rich halides
show a higher critical temperature T when containing
iodine instead of bromine, and this feature is more pro-
nounced for the carbide halides.

The critical exponents extracted for Gd2BrC and
Gd2IC by diferent methods are in best agreement with
the values derived for the 3D Heisenberg model. In ad-
dition, all exponent values fulfill the scaling relation Eq.
(5). We therefore conclude that the critical behavior of
the metal-rich carbide halides Gd2BrC and Gd2IC can
be described within the &amework of the 3D Heisenberg
model. A prerequisite of this model is that the magnetic
exchange interactions are of short-range order, and both
the order parameter dimensionality n and the space di-
mensionality d are equal to 3.

This result is in strong contrast to the one elaborated
for the compounds Gd2BrFe2 and Gd2IFe2 for which the
critical exponents are in best agreement with predictions
derived for the 3D XY model. We ascribed such a be-
havior to the occurrence of a strong planar anisotropic
exchange interaction induced by the 3d transition met-
als Fe or Co. We therefore suppose that this anisotropic
exchange interaction should be weakened or even disap-
pearing in materials with a similar structure (Sec. I,
Fig. 1) when substituting the 3d transition-metal atoms
(Fe,Co) by nonmagnetic atoms (e.g. , C). The present
study confirms this assumption. Furthermore, we as-
sume that a separation of the magnetic layers is not the
only requirement which is necessary for the occurrence
of a strong planar anisotropy. Indeed, it must be the
distance between the magnetic layers as well as the ar-
rangement of the 3d transition-metal atoms and the rare-
earth metal atoms within the intermetallic slabs which
is responsible for the observed 3D XY behavior in the
compounds Gd2BrFe2 and Gd2IFe2. In contrast, if the
magnetic slabs are only formed by Gd and C atoms as
shown in Fig. 1, the 3D Heisenberg behavior which de-
scribes the critical behavior for numerous materials is
found ' '2 '2 ' '3 ' 2 It should be noted that the crit-
ical behavior of the compounds Gd2BrC and Gd2IC dif-
fers &om the one observed for pure Gd metal. For Gd
single crystals the critical exponent P is more Heisenberg-
like with a tendency towards the mean field value whereas
the exponent p is Ising-like. 3

In addition to the critical exponents we determined the
temperature-dependent Kouvel-Fisher exponent
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which describes the temperature dependence of y (T)
in the temperature range between the ACR (t ~ 0) and
the Curie-Weiss range (t -+ oo). For isotropic homoge-
neous ferromagnets this exponent starts at the asymp-
totic critical value and decreases monotonically to the
mean field value p = 1 with rising temperature. A series
of investigations ' ' ' has shown that chemical disor-
der already causes the typical nonmonotonic temperature
dependence with a maximum at reduced temperatures
t = 0.1.. . 0.5 for p(T) as predicted by the correlated
molecular Beld theory ' and supported by Monte Carlo
computer simulations. ' ' In Fig. 7 we present the
Kouvel-Fisher exponent p(T) for Gd2BrC and Gd2IC.
This exponent shows for both metal-rich carbide halides
the typical monotonic behavior as expected for homoge-
neous ferromagnets. Therefore, this result can be taken
as strong evidence for the high chemical and structural
order of these compounds.

The existence of a magnetic anisotropy in these com-
pounds is pointed out by the modified Arrot t plots
(Fig. 3). In these plots the isotherms seem to coin-
cide in a point shifted to the right &om the origin on
the (poII/J)i~~ axis. Such a behavior has previously
been detected for materials which are characterized by a
magnetic anisotropy. The size of this shift is a mea-
sure for the magnetic anisotropy, ' ' either crystal
anisotropy or random magnetic anisotropy. A further ev-
idence for the occurrence of an anisotropy in these com-
pounds is given by the ln J vs ln(poII) plot (Fig. 5;
cf. Sec. III). In this graph all isotherms show a con-
vex curvature as found many times for materials with
magnetic anjsotropy. 5» i3 i 3 Due to the perfect
structure of the compounds investigated, we assume some
macroscopic magnetic anisotropy arising &om the lay-
ered structure and the arrangement of the atoms within
the magnetic layers. However, since we have investigated
isotropic powder samples (characterized by a randoin dis-
tribution of both the easy and hard directions) it is not
possible to determine the easy and hard direction of these
compounds.

As further methods for the determination of the width
of the critical regime and the critical parameters T„P,
p, Jo, and Jo/Js, we applied both the KF and the CTS
analysis as described in Sec. III. The critical amplitude
Jo yields the same result when. determined by the two
difFerent methods [Eqs. (1) and (6)] whereas large devia-
tions are observed for the critical amplitude hp/Jo. This
difference is probably caused by the different width of
the critical regime used for fitting Eqs. (3) and (7) to
the data. However, we increased the width of the critical
regime until the standard deviation of the corresponding
Bt deteriorates.

For a more detailed comparison of these different meth-
ods we focus our analysis on the Bt parameters and the
so-called "percentage deviation plots" as discussed in
Ref. 15. There the KF as well as the CTS methods were
applied to extract the critical parameters for polycrys-
talline Ni. This study yielded negative (positive) values
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FIG. 7. The temperature dependence of the Kouvel-Fisher
exponent p(T) for both GdqBrC and Gd2IC.

for the CTS term a& (a+). For Gd2BrC a change of sign
for the CTS term a+ is detected. It should be noted that
for Gd2BrC a positive value for this term (a+) could not
be observed when varying both the width of the critical
regime and the exponent p or the critical temperature T, .
A possible reason for this result is based on the scatter-
ing of y i(T) data in the critical regime which originates
from a wavy course of some isotherms measured in the
critical regime (cf. modified Arrott plots, Sec. III). We
attribute a change of the curvature of these isotherms
to experimental shortcomings of our magnetometer ob-
served several times before independent of the particu-
lar material investigated. An evaluation of the quality
of these two methods can be made when using the per-
centage deviation plots presented in Fig. 8 for Gd2BrC.
The deviation of the data of the spontaneous polariza-
tion Js(T) shows no obvious difference between the data
obtained by the KF and the CTS analyses. In contrast,
the percentage deviation plot for y i(T) shows smaller
deviations for the data obtained from the CTS analysis,
especially for t —+ 0. Such a behavior is expected from a
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FIG. 8. Percentage deviation for both the spontaneous po-

larization Jz and the inverse zero field susceptibility y for
GdqBrC. The closed circles denote the data obtained from
the KF Bt whereas the open circles denote the data obtained
from the CTS fit.

more elaborate theory for the CTS analysis in order to
determine the asymptotic critical parameters with bet-
ter accuracy (Sec. I). Comparing our results, we find
that for the spontaneous polarization Jg both methods
reveal no difFerence. If the critical regime (in our exper-
iments estimated by KF plots, scaling plots, and the KF
and CTS analysis) does not coincide with the asymptotic
critical regime, the CTS analysis has no advantage over
the KF analysis and consequently no improvement em-
ploying the CTS analysis concerning the percentage de-
viation may be expected. However, we have shown that
both the KF and the CTS analysis yield critical parame-

ters for the compounds Gd2BrC and Gd2IC which are in
accordance with the values extracted by other methods.

In Table II we present the critical amplitudes and the
reduced critical amplitudes together with their theoret-
ical predictions for both 3D Heisenberg and 3D Ising
model. The values cannot be correlated to a particular
model except for the amplitude ratio D Jo /ho of Gd2BrC
which agrees rather well with the 3D Heisenberg value.
It has been shown that the determination of the critical
amplitudes is much more sensitive to the data than the
one of the critical exponents. ' ' ' ' ' ' On the other
hand, the methods used to extract the critical amplitudes
yielded critical exponents (P, p) and a critical temper-
ature T which are in best agreement with the results
obtained by the other methods. However, we think that
the derived results for the reduced critical amplitudes are
meaningful, and therefore they deserve some discussion.
Surprisingly, the critical amplitude Jo/Js is only about
60% of the 3D Heisenberg value for both compounds.
This finding may indicate that only 60% of the magnetic
moments in these compounds participate in the FM-PM
phase transition. A reason for the strong deviation of
the reduced critical amplitudes Jo/Js and p, hp/A, ~ T for
Gd2BrC and Gd2IC as well as D Jo/IIo for Gd2IC is not
obvious. Impurities can be ruled out [see Kouvel-Fisher
exponent p(T)]. Perhaps the result is a trivial conse-
quence of the polycrystalline nature of the sample. In this
case it is conceivable that the irregular orientations of the
grains preclude full alignment of the moments. However,
if only 60% of the magnetic moments seem to actually
participate in the magnetic phase transition, the critical
amplitudes Jo and ho/Jp are also affected and their re-
duced counterparts Jo/Js and pho/kg) T are expected
to dier from the reduced critical amplitudes predicted
by the 3D Heisenberg model.

To summarize, we have shown that the magnetic phase
transition in the metal-rich carbide halides Gd2BrC and
Gd2IC which are characterized by layered structure (con-
sisting of layers of halogen and Gd-C atoms) can be de-
scribed by the 3D Heisenberg model. A comparison with
the critical behavior of the metal-rich halides Gd2BrFe2
and Gd2IFe2 supports our conclusion of a strong pla-
nar anisotropic exchange interaction induced by the 3d
transition-metal atoms in these compounds.
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