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We consider a two-layer Heisenberg antiferromagnet which can be either in the Neel-ordered or
in the disordered phase at T = 0, depending on the ratio of the intralayer and interlayer exchange
constants. We reduce the problem to an interacting Bose gas and study the sublattice magnetization
and the transverse susceptibility in the ordered phase, and the spectrum of quasiparticle excitations
in both phases. We compare the results with spin-wave theory and argue that the longitudinal spin
Buctuations, which are not included in the spin-wave description. , are small at vanishing coupling
between the layers, but increase as the system approaches the transition point. We also compute
the uniform susceptibility at the critical point to order O(T ), and show that the corrections to
scaling are numerically small, and the linear behavior of y„extends to high temperatures. This is
consistent with the results of the recent Monte Carlo simulations by Sandvik and Scalapino.

I. INTRODUCTION

In the past few years, there has been a significant inter-
est in the physics of quantum phase transitions in two-
dimensional (2D) spin systems. The purpose of the
present paper is to study in detail the disordering transi-
tion in a two-layer S = 1/2 Heisenberg antiferromagnet
described by

Here 0; = 1, 2, the first sum runs over nearest neighbors,
and the exchange couplings are assumed to be positive
(see Fig. 1).

For small J2/ Jq, the model describes two weakly inter-
acting 2D Heisenberg antiferromagnets. Each of them is
ordered at T = 0 and possesses Goldstone excitations re-
lated to a spontaneous breakdown of a rotational symme-
try. In the opposite limit, J2/Jz )) 1, pairs of adjacent
spins &om difFerent layers form spin singlets separated
&om triplet states by a gap, J2. The presence of a
gap implies that the rotational symmetry is not broken.
Thus one should expect a disordering phase transition at

FIG. 1. The system under consideration is a two layer an-
tiferromagnet with intralayer exchange coupling Jz and inter-
layer exchange coupling J2.

some critical ratio of J2/Jq.
The two-layer Heisenberg model has attracted a lot of

interest in the last few years. This interest was stimu-
lated in part by the experimental observation that some
of the high-T, superconductors contain pairs of Cu02
layers which are separated from other layers by a charge
reservoir. ' In addition, a two-layer antiferromagnet is
probably the simplest non frustrated spin system which
displays a quantum disordering transition of the O(3)
universality class. Several quantitative predictions about
the behavior of observables near such a transition have
been made recently, and a two-layer antiferromagnet is
an ideal candidate to test these predictions.

The phase diagram of Eq. (1) has been studied numer-
ically, by quantum Monte Carlo, series expansion,
and exact diagonalization techniques, and analyti-
cally, using spin-wave and mean-field Schwinger-
boson theory. There are several issues which emerged
from these studies. Some of them are related to the
universal ratios of various observables and are discussed
elsewhere. Here we will focus on the properties of the
system at T = 0, and on the corrections to scaling at
finite T. The key issue we want to address at T = 0
is the applicability of perturbative and self-consistent
spin-wave approaches (the latter is very similar to the
Schwinger-boson mean-field theory). It is well known
that spin-wave expansion works extremely well for a
single-layer S = 1/2 antiferromagnet. At the same time,
for a two-layer system, spin-wave and Schwinger-boson
theories yield results which are inconsistent with nu-
merical simulations. In particular, the Schwinger-boson
mean-field theory yields a critical value of the inter-
layer coupling of (Jq/Jq)„4. 5, which is nearly 2

times larger than (J2/Jj )„2.55 obtained in series ex-
pansion and quantum Monte Carlo studies. A self-
consistent spin-wave theory (see Ref. 11 and Sec. IA)
also predicts a very large value of (Jg/Jq)„- 4.3. The
predicted value of the spin-wave velocity at the critical

0163-1829/95/52(5)/3521(12)/$06. 00 52 3521 1995 The American Physical Society



ANDREY V. CHUBUKOV AND DIRK K. MORR 52

point, c, = 2Jq, is also somewhat larger than the Monte
Carlo result c, (1.7 —1.8)Jj (where we set the lat-
tice constant ao equal to unity). We will argue that the
discrepancies between the spin-wave results and the nu-
merical simulations have a physical origin and are related
to the fact that in the spin-wave approach one neglects
longitudinal spin fluctuations. Our analytical approach
to the problem is based on the introduction of a triplet
of S = 1 bosons for a pair of S = 1/2 spins [see Eq. (7)
below]. In the disordered phase, this triplet of bosons de-
scribes the excitations above the singlet ground state of
a pair, while in the ordered phase, where we introduce a
condensate for one type of boson, the excitations are split
into two transverse and one longitudinal magnon modes.
We will show that the contributions &om longitudinal
fluctuations to J2' and c, are substantial, which makes
the 1/S expansion inapplicable. However, we will also
show that as J2 decreases, the spin-wave approximation
becomes more and more reliable, and at vanishing J2,
longitudinal spin fluctuations do not contribute to the
sublattice magnetization and susceptibility.

Furthermore, we will discuss the temperature depen-
dence of the uniform susceptibility y at the transition
point. Monte Carlo simulations have shown that the uni-
versal, linear behavior of y„at J2 ——J2' extends up to
very high T Jq. For comparison, in a single-layer an-
tiferromagnet, the deviations from linearity become sub-
stantial already at T 0.6J. To understand this result,
we will compute the leading nonuniversal O(T ) correc-
tion to the susceptibility and show that it is numerically
quite small for all T ( Jq.

We start in the next subsection with the spin-wave cal-
culations for Eq. (1). In Sec. II, we will introduce the
transformation to bosons and consider in a systematic
way the excitations in the disordered phase, the critical
value of J2, and the spin-wave velocity at the critical
point. In Sec. III, we extend the approach to the or-

dered state by introducing a condensate for one of the
bosonic fields. We will show how the triplet of excita-
tions splits into two gapless transverse modes and a lon-
gitudinal mode with a Bnite gap. We will obtain the
T = 0 sublattice magnetization and the uniform suscep-
tibility at arbitrary J2 and show how they deviate &om
spin-wave results for increasing J2. Finally, in Sec. IV,
we will compute the uniform susceptibility y„(T) at the
critical point and show that the lattice-dependent O(T~)
corrections to the scaling form of y„remain small up to
T = Jq. Our conclusions are stated in Sec.V.

Spin-wave calculations

We start our considerations with a brief review of the
spin-wave calculations. At small J2, the spins are ordered
antiferromagnetically in the layers and also between the
layers. Introducing bosons via the Holstein-PrimakoK
transformation, and performing standard manipulations,
we obtain two branches of spin-wave excitations with the
dispersion eq(k) = ez(k+vr) = eg, where, to order 1/S, '

~~ = 4J~S[(1 —~k) + (J~/2J~)(1 —~~)l (2)

where

and vk = (cosk + cosk„)/2. It is not difficult to show
that the fluctuations near k = (m, vr) are in-phase fluc-
tuations of the spins in the two layers, while those near
A: = 0 correspond to out-of-phase fluctuations. There is
indeed a Goldstone mode in eA, at k = (7r, vr) because of
a spontaneous symmetry breaking. The renormalized J~
and Jq differ from the couplings in (1) due to the 1/S
corrections:

1 . 4JgS+ JgS 1 1 .(4JgSvA, + JgS)va 1 - 4JyS&g+ JgS
bg ———

N — 2eI, 2' 2 ) 3
A:

2~A.
' N 2~1,

k

(4)

The summation in (4) is over the whole Brillouin zone.
The sublattice magnetization to order 1/S is given by
No ——S—bq. Evaluating bq with bare couplings Jq 2, as is
required in the 1/S expansion, we obtain that hq reaches
a value of S = 1/2 only at a very large Jz/Jq = 13.6. A
somewhat better, though less justiBed estimate of J2' can
be obtained if one formally considers the expressions for
the renormalized couplings as self-consistent equations,
and solve them for S = 1/2. These calculations have been
performed by Hida, who found that the sublattice mag-
netization first increases with J2, passes through a max-
imum, and then decreases (see Fig. 2). There is a weak
Brst-order disordering transition at J2' 4.36J~. Similar
results were obtained in the mean-Beld Schwinger-boson
approach by Millis and Monien. Still, the critical J2
is much larger than J2' = 2.55 ' obtained in numerical

simulations.
In the 1/S expansion, one also can compute the spin-

wave velocity. We performed calculations to second order
in 1/S, and after straightforward but somewhat tedious
calculations obtained

c, = 2~2SJj 1+ —
l

1+ Q 'l

4' ( 4S~) ' (5)

where now Jq z are the solutions of (3) and (4) to or-
der 1/S, and Q is a cumbersome function of Jq/ Jq
whose explicit form we do not present. At J2 ——0,
we obtained Q 0.022 which completely agrees with
the results of other studies. The spin-wave velocity
remains finite at the critical point, and it is therefore
reasonable to compute it at (Jq/Jq)„- 2.55 which
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II. DISORDERED PHASE

The key starting point of our consideration is an ob-
servation that for sufBciently large J2, pairs of adjacent
spins &om the two planes form spin singlets. The ex-
cited state of a given pair is a threefold-degenerate triplet
state. It is then natural to introduce a triplet of bosons
for any given pair. Each boson describes the transforma-
tion from a singlet state to one of the states with S = 1.
Specifically, we introduce

¹=Si;+ S2, , L' = Si,' —S2,') (6)

is suggested by numerical simulations. For this ratio
of the couplings, we obtained Q = 0.044. Evaluat-
ing then Jq 2 and substituting them into (5), we find
c, 3.62JqS[1+0.094/2S+0. 026/(2S) ]. Observe that
the 1/S correction is very small. For S = 1/2, we ob-
tain c, 2.03 Jq. As we mentioned earlier, this value
is somewhat larger than c, (1.7 —1.8)Jj extracted
&om the fit of the Monte Carlo data for the uniform
susceptibility to the scaling formula.

The main weakness of the spin-wave theory is that it
assumes that long-range order is well established, and
only includes transverse spin fluctuations. However, at
the critical point, transverse and longitudinal fluctua-
tions become indistinguishable and should be treated on
equal ground. We therefore proceed now to perturbative
calculations which explicitly take the longitudinal spin
fluctuations into account.

culations. We will now do the same for a disordered
state. To this end, we modify the transformation to
bosons by introducing a factor A (( 1 into the square

root as U, = 1 —A(ata; + btb; + c,.c;), and simultane-

ously introducing an overall factor 1/~A into all three
components of I;. It is not difFicult to check that the
commutation relations between L and M (and, hence,
the spin algebra) do not change under this transf'orma-
tion; however, the value of the spin on each site in the
ground state is now O(l/A) » 1. Below, we perform a
systematic perturbative expansion in A which is similar
in spirit to the 1/S expansion in conventional spin-wave
theory. The physical results indeed correspond only to
A = 1, but we will see that the first two terms in the ex-
pansion already yield results consistent with the Monte
Carlo data.

Equation (7) has been applied before to study the
dimerization in the S = 1/2 Heisenberg model on a
square lattice with an interaction between first and sec-
ond neighbors, and also the dimerization transition in
a S = 1 chain. We believe that this approach has some
advantages over the mean-field Schwinger-boson theory.
For example, it correctly reproduces the fact that at the
critical point and in the disordered phase, the magnon
excitation spectrum is threefold degenerate.

We now substitute (6) and (7) into the Hamiltonian.
To leading order in A, the interaction between bosons
can be neglected, and diagonalizing the quadratic form
in bosons, we obtain a threefold-degenerate excitation
spectrum with the dispersion (cf. Ref. 16)

and three bosonic fields as eg = (J2 [J2 —4J~ + 4J~ (1 + vy) ]) ~ (8)

M,' = ata; —b, b;, L; = —(c,. U; + U;c;),
M+ = ~2(atc; —ctb, ), L,+ = v 2(atU; + U;b, ),
M,. = ~2(cta; —btc;), L, = ~2(b, U, + U, a, ), (7)

where U, = 1 —a,. a; —b,. b; —c,c;. It is easy to check

that the commutation relations for M and L are the same
as for a vector and a generator of rotations: [M, MP] =
ie~p~M~, [L,LP] = ie~p~M~, [M, LP] = ie~p~L~.
This in turn implies that the spin commutation relations
for Si and S2 are satisfied. The U term, however, im-
poses the constraint that only one boson can be excited
at each lattice site. This indeed follows &om the fact
that there are only four physical states for a given pair
of spins. For the physical states, we have S; = 3/4 as it
should be. Notice that a similar restriction on the num-
ber of bosons holds also for the conventional Holstein-
Primakoff transformation for S = 1/2. In this sense,
the transformation above can be viewed as an extension
of the Holstein-Primakoff transformation to nonmagnetic
states. One can also introduce an analog to the Dyson-
Maleev transformation, but we found that the latter is
less convenient for practical purposes.

Furthermore, a conventional way to perform spin-wave
calculations for a Neel-ordered state of a S = 1/2 sys-
tem is to extend a model to large S, perform 1/S ex-
pansion, and set S = 1/2 at the very end of the cal-

where Jf = Jq/A. For sufficiently large J2, the excitation
energy is real (which indicates a stability), and there is a
finite gap in the spectrum whose minimum is at k = m.
This gap vanishes at J2 ——J2' ——4'. Below this point,
the excitations near k = m are purely imaginary which
signals an instability and implies a need for a change of
the ground state.

To obtain a better estimate for the critical value of J2,
we included anharmonic terms into consideration, com-
puted the self-energy terms by usual means, and obtained
to order O(A )

J2' = 4' ~

1 —0.665A+ —
2

A ln(1/A) + O(A ) ~

. (9)
1 2

We see that the first-order correction shifts the transition
towards smaller J2. If we had restricted the calculation
to include only this term, we would obtain J2' in a range
between 1.34Ji and 2.4Ji, depending on whether we leave
the correction in the numerator or put it into the denomi-
nator. The second-order correction is positive and partly
compensates the downshift renormalization due to the
first-order term. Unfortunately, the second-order cor-
rection is logarithmically divergent at the transition,
and we cannot obtain the precise value of J2' to order
A . We therefore can only argue that the actual value of
J2' is in between our zero-order and first-order results.
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A somewhat better estimate of J2' can be obtained ap-
proaching the transition &om the ordered phase, and. will
be discussed in the Appendix. Notice, however, that the
first-order estimate of J2' is already closer to the nu-
merical result than J2' 4.3' which was obtained in a
self-consistent spin-wave approach.

We also computed the spin-wave velocity at the critical
point. To order O(A), we obtained

c, = 2Ji (1 —0.256A)

For the physical case of A = 1, this gives c, between
1.49Ji and 1.59Ji again depending on whether we keep
the correction in the numerator or put it into the denom-
inator. The second-order correction to the spin-wave ve-
locity is again positive and partly compensates the O(A)
contribution, but it is again of the form A21n(1/A) which
prevents us &om obtaining the precise value of c, to
order O(A ). Alternatively, however, we can reexpress
c, in terms of the critical value of J2. Doing this, we
find that to order A, c, = 0.5J2'(1+ 0.409A+ ). For
A = 1, this yields c, = 0.705J2'. Using then the numer-
ical result J2' ——2.55Jq, we obtain c, 1.80Ji which is
consistent with c, = (1.7 —1.8)Ji, extracted from the
Monte Carlo data. In any case, the velocity we found is
smaller than that obtained in the spin-wave theory.

III. OB,DE&ED PHASE

We now consider the case J2 ( J2' when the system
possesses a Neel order. We assume that the sublattice
magnetization No is directed along the z axis. In our
approach, a nonzero No = No implies that there is a sin-
gle particle condensate of the c quanta with momentum
vr = (vr, ir): (c ) = n. In a mean-field approximation, we
then have Np ——A QP(1 —P), where P = An . Intro-
ducing the condensate into the Hamiltonian and evaluat-
ing the ground state energy Eo in the mean-field approx-
imation (i.e. , to leading order in A, but keeping P fixed),
we find

AEp ——J2p —4Ji p(1 —p) .

Minimizing the energy, we obtain P = Pp = (4Ji
J2)/8Ji. For J2 ——0, we have pp ——1/2, and hence
Np ——1/(2A) as it should be. We then performed the
standard computations for a Bose gas with a condensate
and obtained the quasiparticle spectrum. It now con-
tains two different branches of quasiparticle excitations.
The excitation spectrum for fluctuations in the direction
perpendicular to the condensate (i.e. , for a- and b-type
bosons) is doubly degenerate. For these excitations, we
obtained to leading order in A

(i2)

We see that the transverse fluctuations are gapless as
they indeed should be. For the spin-wave velocity near
k=m wehave

c. = 2J,*(1—p) / (is)
Observe that for J2 ——0 we recover the mean-field disper-
sion for the Heisenberg antiferromagnet: e~ = 2Ji (1—

2)i/2
For the dispersion relation of the fluctuations along the

direction of the condensate (i.e. , for c-type bosons), we
found

(i4)

We see that the longitudinal fluctuations in the ordered
phase have a finite gap at the antiferromagnetic momen-
tum, e~~(m) = 8Ji [P (1 —P)j / . Also observe that at
J2 ——0, the longitudinal mode becomes dispersionless:
e~~(k) = 4Ji. However, we do not know whether this re-
sult survives beyond the leading order in A. The actual
dispersion for a c boson may also contain some finite
imaginary part (due to higher-order terms in A) which
can be substantial at small J2.

The computations which lead to Eq. (14) require some
care. The important point is that since n ~ A /, there
is a cancellation of the overall factor A in the nth term
in the expansion over density in U, and all terms in the
series are in fact relevant. In practice, this implies that
evaluating the contribution to the longitudinal dispersion
from L,L, one has to examine each term in the series,
put all c bosons except for two into a condensate, com-
pute the numerical combinatoric factor, and explicitly
sum the resulting series.

We then used the results for the quasiparticle spec-
tra and computed the sublattice magnetization and the
uniform spin susceptibility beyond the mean-field level,
to order O(A). The computations and the procedure of
extending the first-order results to A = 1 are discussed
at some length in the Appendix. The results are pre-
sented in Fig. 2 and Fig. 3. For comparison, in Fig. 2, we
also plotted the self-consistent spin-wave result for the
magnetization. It is essential that at J2 ——0, both our
results are exactly the same as obtained in the first-order
1/S expansion. In other words, for a single-layer antifer-
romagnet, there are no independent contributions &om
longitudinal fluctuations. This result provides a quali-
tative explanation of why the 1/S expansion works so
well for a single-layer antiferromagnet. Indeed, in our
approach, we treat longitudinal fluctuation as a sepa-
rate bosonic mode. At the same time, in the 1/S ex-
pansion, the longitudinal mode appears as a pole in the
two-particle Green function. To obtain this pole, one
has to sum an infinite number of the 1/S terms. Then,
roughly speaking, the contribution &om the longitudinal
mode represents the contributions &om high-order terms
in the 1/S expansion. The absence of the longitudinal
correction ip. our effective "spin-wave theory" therefore
implies that the series in 1/S converges rapidly, and the
dominant contribution comes from the first-order term.

We emphasize, however, that the longitudinal fluctu-
ations can be neglected only for J2/Ji (( 1. As J2
increases, the deviation of our result for No &om the
self-consistent spin-wave result becomes more and more
substantial as seen in Fig. 2. Near the disordering transi-
tion, longitudinal and transverse fluctuations have nearly
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equal strength, and the actual behavior of sublattice
magnetization and uniform susceptibility differs in an es-
sential way &om the prediction based on the spin-wave
theory.

Notice that in some range of small J2, both the sub-
lattice magnetization and the uniform susceptibility are
larger than for a single layer; i.e. , the system first be-
comes more "classical, " and only then, at larger J2, do
quantum fluctuations push the system towards the disor-
dering transition. The region of more "classical" behav-

0.6
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04
~ 'M
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O.2

FIG. 2. Sublattice magnetization as a function of J2/Jq.
Points, the self-consistent spin-wave result; solid line, the re-
sult of our present calculations which take longitudinal spin
Buctuations into account. The critical value of interlayer ex-
change is J2' = 2.73Jq (see the Appendix). Note that the
self-consistent spin-wave theory predicts a weak first-order
transition at Jz' ——4.36J~ which is probably an artifact of
the approximation.

ior at intermediate J2 has been observed in the mean-field
Schwinger-boson approach; it is also present in the self-
consistent spin-wave analysis (see Fig. 2).

Near the transition point, we obtained

& = ~(Z„/4J, ) (P/~')'/l'+ l, (15)

where Z~ ——1 —0.163%, Z~ = 1+0.255A, and g 0.03
is the critical exponent for spin correlations at critical-
ity. The factor A cannot be obtained within the present
approach because of the divergence of the Gaussian cor-
rections near the transition point in 2 + 1 dimensions.
Our estimates in the Appendix place A to be roughly
equal to 2. The ratio No2/[2vr(p, ) /~ +»] is an overall
factor for the dynamical spin susceptibility. Using (15)
and the result for the spin-wave velocity at the transi-
tion point, we obtain No2/[2+(p, ) ~+"] = B/J~+", where

(1 —0.064)/(2vrA +"). Three different numerical
estimates of B all yield B = 0.063. This is roughly
consistent with our estimate B = 0.149/A, though we
only approximately know that A 2.

We also computed the quasiparticle dispersion to or-
der O(A) near the transition, and explicitly obtained the
Goldstone mode in the transverse channel. These cal-
culations were performed only to leading order in P,
when one can neglect cubic terms. For a general P,
the Goldstone modes arise as a result of cancellations
between the second-order contributions from the cubic
terms and the first-order contributions from the quartic
terms. A similar situation is known to exist in frustrated
spin systems. We did not perform explicit calculations
of the spin-wave spectrum at arbitrary P and therefore
cannot make a definite prediction about how longitudinal
fluctuations influence the spin-wave velocity at small J2.
However, given the good agreement between our result
and the spin-wave result for the susceptibility in a single-
layer antiferromagnet, and the consistency between the
spin-wave result for the spin stiffness, p, = c, y~, and
the numerical data, we expect the corrections due to
longitudinal fIuctuations to be zero or at least small at
vanishing J2. However, near the transition point, we have
already shown that the corrections to the spin-wave ve-
locity cannot be reduced to only those due to transverse
fluctuations. Thus the spin-wave result for c, , which
neglects longitudinal contributions, is most probably not
quite accurate even though the velocity remains finite at
the transition point, and the O(l/S2) correction to c, is
much smaller than the O(l/S) correction (see Sec. IA).
In other words, we argue that near the transition, the
series of 1/S terms is not rapidly convergent even if the
first few terms in the series seem to indicate the contrary.

0.1

0.2 0.4 0.6 0.8 1.2
I

1.4 1.6

IV. UNIFORM SUSCEPTIBILITY
AT THE CRITICAL POINT

FIG. 3. Transverse susceptibility in the ordered phase as a
function of Zq/Jq. The critical value of J2 is the same as in
Flg. 2.

In a single-layer Heisenberg antiferromagnet, the lin-
ear temperature dependence of the uniform susceptibility
associated with quantum-critical behavior has been ob-
served in the temperature range 0.35' ( T C 0.6J~. At
lower temperatures, there is a crossover to another lin-
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ear behavior associated with the renormalized-classical
regime (which, however, has not yet been observed),
while at higher temperatures, y„Battens and has a broad
maximum at T J~. ' How far the linear dependence
extends at high T depends on the lattice-dependent cor-
rections to scaling. The Monte Carlo results for a two-
layer antiferromagnet at the critical J2 have shown that
the linearity extends to sufficiently high temperatures,
T Ji, i.e., the corrections to scaling at J2 ——J2'
are smaller than those of a single-layer antiferromagnet.
Below we will compute these corrections perturbatively.
But first we consider the o-model description of a two-
layer system, &om which one can obtain the leading, uni-
versal, linear in T term in the uniform susceptibility.

A. o-model analysis

A simple way to obtain a o-model description of a
spin-S quantum antiferromagnet, which we will follow,

was suggested by AfBeck. In application to our sys-
tem, one has to double a unit cell in each of the two
layers and introduce n; = (S; —S;+q)/2S, I

(S;+S;+q)/2S. At large S, n becomes a classical unit
field with commuting components, while the commuta-
tion relations between n and l are the same as for a vector
and a generator of rotations. Introducing n and l into
the Heisenberg Hamiltonian and making a transforma-
tion &om the Hamiltonian to the corresponding action
which contains only the derivatives of n, we obtain the
action of two interacting O(3) o models. In terms of n
and l, the interaction term has the form = (nqn2 —lql2),
where = (x J2. The generator of rotations itself contains

ga derivative of n, l n x , and the lilz term thus only
leads to a velocity renormalization. Neglecting this term,
and also introducing the magnetic field into the action for
susceptibility calculations, we obtain1. . . 1 (On, . - l' 1 f'On,8= —(Vng) + (Vn2) += ngn2+ 2 I

O
—iH xn,

I
+

2g ) c (O7
—iHxn,

I

r

where g is a coupling constant which depends on the ratio Jq/Jq, and H is measured in units of gp~/h. Introducing
o'q 2 ——(nq + n2)/~2, we can rewrite the o-model action as1. . . 2 1 KOog . - &

'
1 /Oo2(Vo.g) + (V'o2) + = o~ +

I

—iH x o.
g

I
+

I

—iH x o2
Ij c (O7

The constraints on the o fields are o io2 ——0, oz + o2 ——2.
The evaluation of the susceptibility at the mean-field (N = oo) level is straightforward. Using the results of Ref. 3,

we obtain y = (yq + y2)/2, where y„ is a susceptibility per spin, and yq 2 are the mean-6eld susceptibilities for the
two o Gelds,

T cs~m]
X&,2

7lC T
~cswmi 2/T

&cs~mi g/T
~cs~ mi, g/T

where mq ——v:-2 + m2, and m2 ——m, where m is the
mass obtained from the second constraint equation. At
g = g = s~(A+v'A += I=I) where A J is
the upper cutofF, we have m = 8T + O(T ), where
8 = 21nI(~5+ 1)/2]. At low T && =, Xq is exponen-
tially small in T and can be neglected compared to y2.
It is not difficult to show that the contributions related
to the Quctuations of ~j are exponentially small and per-
sist even beyond the mean-field level. As a result, the
universal term in the uniform susceptibility is solely due
to o2, and y„ is precisely hol f of that in a single-layer
model.

B. Computation of the subleading term in y„(T)

The o-model approach gives us the leading, univer-
sal, temperature dependence of the uniform susceptibil-
ity. Now we compute the leading nonuniversal correc-
tion to y„. We will again use a microscopic approach

based on a transformation to bosons. However, this ap-
proach clearly has to be modified compared to what we
did before at T = 0 because the quasiparticle densities
(both normal and anomalous) diverge at 6nite temper-
ature, and the expansion in A is no longer valid. For
this reason, we will perform a self-consistent, mean-Geld
calculation of the susceptibility: We first assume that
anharmonic contributions to the quasiparticle spectrum
produce a T-dependent gap which eliminates divergencies
of quasiparticle densities at the transition point, and then
we evaluate the quasiparticle densities with the renormal-
ized spectrum and solve the self-consistent equations for
the gap. In principle, one can perform these calculations
using the same transformation to bosons as before. This
procedure is then equivalent to self-consistent 1/S calcu-
lations in 2D. However, we found it more convenient to
use a similar but slightly different form of the transfor-
mation to bosons, introduced by Sachdev and Bhatt.
In their approach, one introduces an extra bosonic field
instead of a U term in (7):
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L; =. —(cts; + stc;), L+ = ~2(ats, + stb;), L, =. v 2(bts, + sta;).

The expressions for M are the same as before. The
commutation algebra for spins is again satisfied, while
the constraint on the length of the spin now reduces to
a,-a; + 6,. '6; + c,-c; + s,.s, = 1. The advantage of this
transformation is that one no longer needs to assume
that the density of excitations is small. However, we did
not use this transformation for our T = 0 calculations
above because we found it difficult to perform a system-
atic expansion about the mean-field solution. However,
the mean-Geld calculation is straightforward: One has
to put the s field into a condensate ((s) = so), neglect
fluctuations of 8, and reduce the on-site constraint to a
constraint imposed on average quantities. We first list
the T = 0 results which are similar (but not identical)
to the results we obtained to the zeroth order in A. In
the disordered phase, we indeed again find the threefold-
degenerate quasiparticle spectrum with eg = QA2& —R&2,

where AI, ——J2 + 2JqspvI„By ——2Jqspvj„and the self-
consistent equation for Sp follows from the constraint on
the length of the spin: so ——1 —(3/N) P&(Ai —ei, )/2ei, .
At the transition point, we obtained Sp = 0.9. The criti-
cal value of J2 is then J2' ——4Jq8p = 3.2J~, and the T = 0
spin-wave velocity at criticality is c, = 2Jisp 1.8'.

We now consider Gnite temperatures. Assume that the
condensate of the s field has a form ss ——(so)z —o (1—
m2/4), such that at the critical point and near k = vr,

e& ——c, (k + m ). Substituting the full expressions for
AI, and eI, into a self-consistency equation at finite T, ex-
panding in T, and evaluating the lattice sums, we obtain

Cswm
(20)

(21)

Here 0 is the same as in the a-model calculations, and the
second term is a lattice-dependent correction which we
found to be p = —0.061. Furthermore, we have checked
that the mean-field formula for the uniform susceptibil-
ity is given precisely by Eq. (18) with no extra lattice-
dependent corrections (we applied a magnetic field, redi-
agonalized the quadratic form in bosons, and computed
the magnetization along the field). Substituting then the
result for the mass m to order T2 into (18), we obtained

to sufficiently high T Jq. As we already discussed, this
is consistent with the Monte Carlo data.

V. CONCLUSIONS

In this paper, we considered a two-layer Heisenberg an-
tiferromagnet which can either be in the Neel-ordered or
in the disordered phase at T = 0 depending on the ratio
of the intralayer and interlayer exchange constants. We
applied a transformation to bosons which is suitable for
a singlet configuration of a pair of spins, and considered
in a systematic expansion the quasiparticle excitations in
the disordered phase, and the critical value of the inter-
layer coupling. We then extended the approach to the
ordered phase by introducing a single-particle conden-
sate of one of the Bose fields and computed the mean-
field quasiparticle dispersion, the sublattice magnetiza-
tion, and the transverse susceptibility at arbitrary J2.
We then computed one-loop corrections to the sublat-
tice magnetization and the susceptibility, and considered
the relative strength of the longitudinal spin fIuctuations.
We found that the contributions of these fluctuations are
zero in a single-layer antiferromagnet, but are quite sub-
stantial near the transition point, where the transverse
and the longitudinal fluctuations are equally important.
The results of our T = 0 calculations are in a reasonable
agreement with the Monte Carlo and series expansion
data. We also computed the temperature dependence of
the uniform susceptibility at the critical point, and found
that the lattice-dependent corrections to the universal
scaling behavior y„oc T are small for all T & Ji. This is
again consistent with the Monte Carlo data which show
that the linear behavior of g„extends to sufIiciently high
temperatures T Jq and flattens only at even higher
temperatures.
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APPENDIX

where Q = ~50/4' in the mean-field approximation [the
1/N correction extended to a physical case of N = 3 re-
duces this value by about 20% (Ref. 31)]. We see that
the numerical factor in the subleading term in the sus-
ceptibility is very small, and, e.g. , at T = Ji, constitutes
only 5% of the mean-field value. Indeed, at T Ji,
higher-order corrections in T/Ji could also be relevant,
but the fact that the leading correction to the scaling re-
sult is small is at least an indication that the universal
linear dependence of the uniform susceptibility extends

In this appendix, we compute the sublattice magneti-
zation, the transverse susceptibility, and the spin stiff'ness
in the Neel phase to order A. We start with the calcula-
tions of the magnetization.

Sublat tice magnetization

Our point of departure is the expression for I, Eq.
(7), extended to A « 1. In the ordered phase, Ns
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(I,) /2 = (ctU) ~A, where the averaging is over the exact
ground state. The mean-field calculations in the ordered
state were presented in Sec. III. In these calculations,
we considered only the condensate piece of the c field,

(c) = n. Here we will need both n and the fluctuating
component of c. Substituting c~ = aSA,. + cg, into No,
expanding in U up to an infinite order, and collecting all
terms which contain at most one pair product of Quctu-
ating fields, we obtain after some simple combinatorics

A[z (P) + Z (P) + Z (P)

+Z4(P)1 k (A1)

where, we recall, P = An, and

Here

XII(k) = J2+ P(4 —3P) + vt, (1 —2P)

&II(k) = ' P(2 —P) + vA:(1 —2P)',

A~ (k) = J2 + 2J~ vg + 4J~ P(1 —vg), (A3)

Z2(P) =—

Z4(P) =

&(P) 8(1 P)2 i

2 —P 1 .BII(k)
4(l —P) N 2eII (k)

4 —3P 1 ( 1 AII(k) I

4(1-P) )-' 2+2, (k))~

1 1 f 1 A~(k) )
1 —P N I, 2 2e~(k)) (A2)

J~ = Jq/A, and the dispersions for transverse and longi-
tudinal fluctuations are given by (12) and (14). Observe
that near the critical point, No oc ~P. The next step
is to express P in terms of Jq and J2. To this end, we
compute the ground state energy Eo with the O(A) cor-
rections which come &om noninteracting spin waves and
&om the normal ordering of c operators in the expansion
of U. Combining the two contributions, we obtain

AEo —J2P 4Jy P[(1 P) 2A(1 —P) Zi (P)] —A ).[Ax (k) —&z (k)] —
2 ) .[+II (") (A4)

Minimization with respect to P then yields

P = Po —
[ s(Po) + s(Po) + v(Po) + s(Po)]

where

( 1 A~(k) )
Z. (P) = —): (1 —») I

--+
N 2 2e~(k) )

Zs(P) =

Zy(P) =—

1 f 1 AII(k) l) 4 —6Pi 3P + (—3+8P —4P )vg
i

——+
4N(1 —P)' „-- 2 2m

II (k) )

, ) 2 —2P + P'+ (—3+ 8P —4P') vt
4N 1— 2eII

z (P)
P( P)

8 (1 —P)'

QPo(1 —Po)
0

1 —A Zg/Po
1 —A Zg/(1 —Po)

- 1/2

(1 —AZ )

(A7)

where

Notice that the correction terms Zq, Z2, Zs, Z6, Z7', and
Zs are due to fluctuations in the direction of the conden-
sate, while the terms Z4 and Z5 come &om transverse
Quctuations.

Substituting (A5) into (Al), we obtain, to order O(A),

~(Po) + Z2(Po) + Zs(Po) + (P )
Zs = Zs(po) + Zs(po) + Zv(po) + Zs(po) .

At J2 ——0, Po ——1/2, and evaluating the lattice sums,
we obtain No ——(1/2A) —no, where no ——N P&[(i-
v~2) ~~2 —1]/2 = 0.197 is the density of transverse Ruc-
tuations (spin waves). This result is equivalent to the
first-order spin-wave result; i.e. , longitudinal Buctuations
do not contribute to sublattice magnetization to first or-
der in A. This is a direct consequence of the fact that
the longitudinal mode is dispersionless at J2 ——0, and
hence the c bosons on adjacent sites do not interact with
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each other. It is essential, however, that the longitudinal
fluctuations are small only for Jz/Ji «1. Near the dis-
ordering transition, longitudinal and transverse fluctua-
tions have nearly equal strength, and the actual behavior
of magnetization divers in an essential way &om the pre-
diction based on the spin-wave theory. In this limit, we
obtained

(A9)

where ZN = 1 —0.163A, and the fully renormalized P
satisfies the equation

8JiP[1 —(3/7r) A/+Po q . .] = J2" —Jz, (A.10)

where Jz" = 4Ji (1 —0.665A+ .) is the same as we ob-
tained approaching the critical point &om the disordered
phase. We have checked that the two analytical expres-
sions for J2' are indeed also identical. The subleading
term in (A10) is a Gaussian correction to the sublat-
tice magnetization. In the theory of phase transitions,
it is usually assumed that the Gaussian term is in fact
expressed in terms of fully renormalized P rather than
Po. The correction term then diverges as one approaches
J2' as it indeed should in 2+1 dimensions. Due to this
divergence, the self-consistent approach is valid only at
J2' —J2 ~ A . In the opposite limit J2' —J2 (( A, scaling
considerations predict that the sublattice magnetization
should behave as No (J2' —Jz)~, where P 0.35.

The above considerations are also relevant as to how
one should extend the perturbative result for No at ar-
bitrary P to A = 1. We have seen that near Jz ——0,
one should keep P = Po in the O(A) terms. At the same
time, it is not difFicult to make sure that in order to ob-

Transverse susceptibility

We will use a direct way to obtain the transverse sus-
ceptibility in the ordered phase; that is, we will apply a
homogeneous transverse magnetic field and compute the
induced magnetization. For definiteness, we will assume
that No is directed along the z axis, and apply a magnetic
field in the x direction.

For the calculations of the transverse magnetization,
we found it convenient to introduce new Bose operators
as linear combinations of the original a and b bosons:

a;+b;
v2

a- —b.
(A11)

tain the same J2' on both sides of the transition, one has
to perform calculations self-consistently, i.e. , evaluate the
subleading terms in (A5) with the fully renormalized P.
To first order in A, both procedures are indeed equiva-
lent. However, the extension to A = 1 yields diferent
results in the two cases. The self-consistent solution of
(A5) for A = 1 is plotted in Fig. 4. We see that there is a
substantial downturn renormalization of P in the region
J2' —J2 (& A, where the self-consistent solution is in fact
invalid. If instead, we approximate the critical value of J2
from the region of intermediate P (see Fig. 4), we obtain
the larger J2' 2.3, which is in better agreement with
numerical results. On the other hand, the perturbative
solution (with Po in the subleading terms) gives a correct
description of the sublattice magnetization at small J2,
shows no unphysical downturn renormalization near the
transition, and yields J2' 2.73Ji, which is reasonably
close to the numerical result. For all these reasons, we
plotted the perturbative solution for No in Fig. 2.

2.5
Gaussian approximation

In terms of these new operators, the transformation to
bosons, extended to large A, is

1.5
M,". = —i(stc; —cps;),

= —A ~ (ctU;+Uc),
= A i (stV;+ U, s;),
L,," = iA '~'(ptv; —v,p, ),

(A12)

0.5

0
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35

FIG. 4. The solution of the self-consistent equation for
the fully renormalized value of the single-particle condensate,
P = (c ) . Points are the results of the self-consistent calcu-
lations extended to the physical case of A = 1. The downturn
renormalization at small P is due to divergent Gaussian Huc-

tuations, and is probably unphysical. The solid line is the
extrapolation of the self-consistent formula at intermediate P
to = 0.

where U; = [1 —A(s, s; + p,.p; + c,. c;)] ~ .
The advantage of using this new form of the trans-

formation is that a magnetic field applied along x only
introduces a condensate of the p field. As the expectation
value of M is obviously site independent, the c- and p-
field condensates should have the same momentum; i.e. ,
the condensate of p should also have a momentum vr.

Let us first discuss the mean-Geld results. In the mean-
field approximation, the transverse magnetization per
spin is M~ = M /2 = (p) (c) = A (poPo) ~, where we
have introduced p = A(p), and 7 = po at the mean-field
level. The mean-field ground state energy depends on
both Po and po and is given by

AEo = Jz(Po + po) —4JiPp(l —Pp) + 8Ji Popo

2II (pp Pp)'~, —
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where Eo is the energy per a pair of spins, and, as before,
the magnetic field is measured in units of gp~/h. Dif-
ferentiating over po and substituting the result into M~,
we obtain

(pp Po)'~' 1 PpH
J2 + 8Ji pp

(A14)

To obtain the susceptibility, we need M~ only at van-
ishing magnetic field. Substituting Po ——(4Ji —J2)/8 Ji
into (A14), we find

1 4Ji —J2
4' 8J* (A15)

Ji 16(J*)2 J2
4%2 16(J*)2 (A16)

Observe that at J2 ——0, we recover the classical spin-
wave result yg = 1/8 Ji. For the spin-stifFness we obtain
using (13)

For J2 —— 0, we again recover the classical spin-
wave result. In the opposite limit, J2 = 4Ji, p,
(Ji/A ) [(4Ji —J2)/8Ji]. Finally, for the ratio Ne/p,
we have Ne/p, = 1/Ji independent of J2.

We now obtain the expression for y~ to order O(A).
Froin (A12) we have M~ = A gPp + AM~, where

N g&& (c& pi, ). To compute p and b, M
to Grst order in A, we will need the excitation spectra
of quasiparticles in the presence of the Geld. To obtain
them, we substitute the transformation to bosons into
the spin Hamiltonian and restrict our calculations to the
terms which are quadratic in bosons. The fluctuations
of the 8 Geld are decoupled &om the other two modes,
while the fluctuations of the c and p Gelds are coupled in
the presence of a Geld. The computation of the quadratic
form in the c and p bosons again requires some care as
one needs to carefully examine all terms in the expansion
of the square root in (A12), keeping in mind that both p
and P are not small in A. Assembling the contributions
&om all terms in the series, we obtain

R = Eo + ) A, (k) „ + ( „ „+ ) + A„(k)p„p„ + (p„p „+ p„p „)
B,(k) t $ $ Bp(k)

where

and

+A, (k) c&cr, + (c&c & + ckc r, ) + C(k)(ckpi, + p&ci, ) + D(k)(p&c & + pr, c g),
B.(k) t t t

2

&&0 —J2(P+ p) —4JiP(1 —P)[1 —2AZi(P)] —2H QPp+ 8JiPp[l + A/(8(1 —P) )]

(A17)

A, (k) = J2+ 2Ji [2P+ vg(1 —2P —2p)], B,(k) = 2Jivg(1 —2p),

A„(k) = J, + 2J,* 2p+ + v&
~

1 —2p —q+ p~ &

B,(k) = 2J,* p~ & p~ &

1 —
g 1—

A.(k) = J.+2J,* P +,+v~
~

4 —3P P p f (1 —2P) 2 —4P+. P'l
1 — 1— 1 — 1 —P2

2 PP'~ -&(1 —2P)' 2 4P+ P'&-
(1-P)' 1 P(1--P)'

C(k) =-H. +2J,' (P )'&' 1—

D(k) = 2J* (P ) 1—

Diagonalizing then the 2 x 2 matrix for 8 bosons and the 4 x 4 matrix for coupled c and p bosons by the usual means,
we obtain three branches of quasiparticle excitations. The dispersion of the s boson has a gap, e, (vr, m) = H . This
result is valid for any J2 and is indeed the expected result since s quanta describe the fluctuations of the transverse
components of M, and the k = m mode of these fluctuations is a homogeneous precession of the magnetization around
the direction of the field [we recall that both condensates have momentum vr, and hence homogeneous (k = 0) modes of
composite fields M, and M correspond to k = vr mode of the s boson]. Furthermore, we found after a diagonalization
that one of the two coupled modes of the c and p bosons remains gapless at k = m, while the other has a gap which
in the absence of the Geld is the same as the gap for the c quanta. The presence of a gapless excitation is a direct
consequence of the Goldstone theorem.

For the calculation of the transverse magnetization, we actually need only the ground state energy. Collecting the
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zero-point contributions, which appear after diagonalization, we obtain to order H

(A20)

where Eo is given by (A18), i = s, p or c, e; = (A2-
B2)'~z, and lz = (A, + e;)/2e;, x; = B;—/(A; + e;).
Simultaneously, substituting old Bose operators in terms
of new ones into LM~, we also obtain

, C(xi + x,) + D(1 + aux )
&p + &c

(A21)

PH
J, —5AJ,*Z, '

H.P
12vrAJi ( P )

[1+O(P)], (A22)

where Z~ = N P& vi, /gl + vg = —0.328, J2' is given
by (9), and we keep P rather than Po in the O(A) terms.
Collecting the two contributions to M~, we obtain

Z
Xi = "

/1 1+—4' 3vr (P p

t'A' l+OI —I+ . .
gP)

(A23)

Evaluating p oc PH2 from BEt t/Bp = 0 and using (A5)
and (A21), we obtain the result for y~ ——M~/H to
order O(A). The full expression is, however, too cum-
bersome to be presented here, and so we analyze only
the limiting cases and plot the result for arbitrary J2 in
Fig. 3 (we used the same procedure of extending the re-
sult to A = 1 as for the sublat tice magnetization) . Near
the critical point, we found

where

ZJ
gJ —

8J ) (A24)

2

Z~ = 1 —A —) "2 = 1 —0.551A (A25)

is the contribution Rom s and p bosons, which is ex-
actly the same as in the first-order spin-wave theory. In
other words, longitudinal fluctuations do not contribute
to the susceptibility of a single-layer antiferromagnet.
This is consistent with the fact that the first-order 1/S
result for y~ agrees well with the numerical data. How-
ever, the longitudinal fluctuations are again small only
for Jq/Ji (( 1. As Jq increases, our expression for y„
deviates &om the spin-wave result, and eventually turns
to zero much earlier than in the self-consistent spin-wave
theory.

where Z~ = 1+0.255%. The subleading term is a Gaus-
sian correction. Its divergence again implies that the
self-consistent approach only works for P & A . In the
opposite limit A )) P, a self-consistent theory is inappli-
cable. Scaling considerations predict that in this limit
y~ = A(Zx/4Ji) (P/Az)il(i+'i), where rl 0.03 is the
critical exponent for spin correlations at criticality, and
A is a constant whose value cannot be obtained in the
present approach. At A )) P, we also have p, = y~c2
AJ Z (P/A ) ~( +"), where Zp ——1 —0.257A.

In the opposite limit, J2 ——0, we find
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