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Magnetic transitions in triangular antiferromagnets with distorted exchange structure
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Finite-field properties of easy-plane antiferromagnets with deformed stacked triangular lattices
are considered. Different distortions of the ideal 120' spin structure at H = 0 lead to different
types of behavior in a magnetic field applied in the basal plane. For several of them, additional
orientational phase transitions are predicted. The theory explains unusual properties of RbMnBr3
including the low-field phase transition between incommensurate and commensurate spin structures.
We report also the results of antiferromagnetic resonance measurements in KNiCl~ which detect
unambiguously two nonequivalent interchain exchange constants in this compound.

I. INTRODUCTION

The efFect of &ustration is an important topic in cur-
rent studies of magnetism with particular attention given
to the two-dimensional spin systems on a triangular lat-
tice from both theory and experiment. The family of
hexagonal magnetic compounds of ABXs type (includ-
ing CsNiClq, RbNiCls, CsVClq, CsMnBrs) is an example
of three-dimensional frustrated systems. In these mate-
rials magnetic ions B + form linear chains along the c
axis which are arranged in a regular triangular lattice.
Due to frustration of the antiferromagnetic exchange in-
teractions a so-called 120 or triangular spin structure
is developed below a magnetic ordering temperature T~
which is typically less than 30 K. This noncollinear struc-
ture leads to a variety of new properties not found in
ordinary two-sublattice antiferromagnets. Among them
there are a new type of critical behavior, ' splitting of
T~ in systems with an easy-axis type of anisotropy, re-
orientation by a magnetic Geld through a collinear phase
in compounds with easy-plane anisotropy, and several
new modes of antiferromagnetic resonance with compli-
cated &equency dependences from a magnetic field.

The simple ABX3 lattice has the space group
P6&/mmc, but phase transitions to lower symmetries
are fairly common. It was found that structures
of RbFeBr3

&
below 108 K, of KNiC13

&
and of

RbMnBr3, at room temperature, are described by the
space group P63cm. In the distorted lattice one of the
three adjacent chains is shifted along the c axis relative
to the other two chains. The structure of RbMgBr3 af-
ter a phase transition at 449 K is characterized by the
space group P3c1, which corresponds to the shifts of
two chains along the e axis by the same distance in oppo-
site directions. RbVBr3 undergoes a transformation

to an unidentified structure (either P6sem or P3cl) at
90 K.

Generally lattice deformations due to a structural
phase transition lead to some modifications of magnetic
interactions and, consequently, to a partial lifting of frus-
tration on a stacked triangular lattice. Study of such par-
tially un&ustrated systems is of fundamental interest, be-
cause they do not simply correspond to an intermediate
case between un&ustrated and &ustrated magnets but
show novel physical phenomena absent in the two lim-
iting cases. Namely, there were found successive phase
transitions in the easy-plane triangular antiferromagnets
RbFeBrs (Ref. 21) and RbVBrs (Refs. 19, 20) at H = 0,
incommensurate spin structure, two field-induced phase
transitions, and a complicated phase diagram with a new
type of tetracritical point in RbMnBr3.

Previous theoretical considerations of these distorted
triangular antiferromagnets have been focused primar-
ily on zero-field properties. The double phase transition
in RbFeBr3 and RbVBr3 and the incommensurate spin
structure in RbMnBr3 were explained by models with
several exchange constants in the basal plane.
However, their finite-field properties and, in particular,
the low-Geld phase transition in RbMnBr3 are not prop-
erly understood yet.

In the present work we consider phase transitions of
distorted triangular ABX3-type antiferromagnets in an
applied magnetic field at T = 0. We show that new orien-
tational phase transitions are possible in these commen-
surate helimagnets. They include a spin reorientation
inside a helix plane rather than a change in the posi-
tion of this plane as would be for usual spin-Hop tran-
sitions. Such transitions arise naturally from competing
anisotropies in the spin plane provided by small distor-
tions of the exchange structure due to a partial lifting of
frustration on the deformed lattice.
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The rest of this paper is organized as follows. In Sec. II
we briefly describe the Lagrangian approach to the low-

energy, long-wavelength dynamics of triangular antiferro-
magnets developed previously by diferent authors.
This macroscopic theory is used in subsequent sections
to study properties of antiferromagnets with distorted
exchange structure. Magnetic transitions of triangular
antiferromagnets with lattice deformations of "RbFeBr3-
type" are discussed in Sec. III and a distortion of ex-
change constants in KNiC13 is determined from antiferro-
magnetic resonance measurements. In Sec. IV we adopt
a simplified crystal structure for RbMnBr3 as a stacked
triangular lattice subject to uniaxial deformation in the
basal plane and show that this gives rise to the observed
phase transition in a magnetic field between incommen-
surate and commensurate spin structures. We also dis-
cuss the unique behavior of an antiferromagnetic reso-
nance mode near this transition, which makes this as-
signment unambiguous.

II. LOW-ENERGY DYNAMICS
OF TRIANGULAR ANTIFERROMAGNETS

The magnetic subsystem in undistorted ABX3 com-
pounds is described by the Hamiltonian

chains planes

Q = J ) S; . S~ + J' ) SA, S(

+D) (S;)' —H) S,

for spins of magnetic ions B + placed on a stacked tri-
angular lattice (we put p = gp, ~ to 1 here). The con-
stant of exchange coupling between nearest neighbors
along chains J is several orders of magnitude larger than
the exchange between adjacent spins in the basal plane
J', which leads to a quasi one-dimensional behavior of
the system at high temperatures and significant quan-
tum fluctuations in a three-dimensionally ordered mag-
netic phase. Single-ion anisotropy is either of the easy-
axis type (D ( 0), as in CsNiCls, RbNiCls, CsMnls, or
of the easy-plane type (D ) 0), as in CsVClq, CsMnBrs,
KNiC13.

In the absence of anisotropy and a magnetic field,
the exchange interactions stabilize at low temperatures
a noncollinear triangular spin structure. The adjacent
moments along chains are antiparallel, while spins on the
neighboring chains in the same plane are at angles of 120
to each other so that the antiferromagnet is subdivided
into six sublattices. The order parameter of this magnetic
structure is a pair of mutually perpendicular, unit vectors
lq and 12, which transform according to the irreducible
representation of the space group of the hexagonal Bra-
vais lattice with wave vector Q:

K4~S licosgr+12singr, Q=
~

—,0, —~.(Sa c)
The orientation of the spin plane is determined by single-
ion anisotropy and an external magnetic field. Their

competition gives rise to a spin-flop transition for either
sign of the anisotropy constant D.

The comparison of low-&equency dynamics of trian-
gular antiferromagnets observed in the experiments on
antiferromagnetic resonance with predictions of the qua-
siclassical linear spin-wave theory gives surprisingly good
agreement. An explanation of this fact for quan-
tum systems can be given in terms of a phenomeno-
logical macroscopic or "hydrodynamic" theory for the
low-energy, long-wavelength dynamics. ' According to
this theory the number of low-lying modes of the spin-
wave spectrum and their behavior in an applied Beld de-
pend only on the symmetry of a magnetic system. There-
fore, linear spin-wave theory can satisfactorily describe
them for quantum antiferromagnets ordered at T = 0,
though the constants of the magnetic Hamiltonian used
in corresponding formulas have to be renormalized to
take quantum fluctuations into account.

Since we are interested in phase transitions of tri-
angular antiferromagnets in a magnetic Geld, we adopt
the Lagrangian approach, which is the most adequate
for our purpose and allows to obtain all results ana-
lytically. The macroscopic theory ' predicts for non-
collinear antiferromagnets three quasiacoustic spin-wave
branches whose gaps at k = 0 are determined by a rel-
ativistic anisotropy and an external Geld. The corre-
sponding spins motion is described by time- and position-
dependent rotations of the pair (li, 12) determined by
three angle functions. The resonance spectrum at T = 0
(gaps of the acoustic spin waves) can be calculated using
the phenomenological Lagrangian 2 = f AdV:

, (0+~H)'+, Iii. (A+ pH)j' —E.„, (3)

where n = l~ x 12, y~ is the magnetic susceptibility in
the spin plane, y~~ is the susceptibility in the direction of
ri, i1 =

(y~~
—y~)/g~, 0 is the angular velocity of the

rotations in spin space, and E „is the anisotropy energy
of relativistic and nonlinear susceptibility origins given
in the lowest approximation by E „=—an, /2.

The combination in which the angular velocity A and
the magnetic field H enter Eq. (3) is determined by
the condition that the total magnetic moment has to be
equal to the angular momentum of spin rotation multi-
plied by a gyromagnetic ratio p. The Lagrangian density
(3) is obtained after that from symmetry arguments. si
Analogous expressions were also derived by an exact
low-energy, long-wavelength expansion around the Ne'el-
ordered ground state of the quantum Hamiltonian.
Parameters of the spin-wave Lagrangian (3) can be ob-
tained either &om such microscopic transformation or
f'rom their macroscopical interpretation calculating cor-
responding physical quantities. In the classical limit with
J )) J', J )) D one finds, at T = 0, y~ = 1/16J, g = 1,
a = DS2. The Lagrangian (3) adequately describes low-
frequency and static properties of triangular antiferro-
magnets with small anisotropy constant ~D~ (CsNiCls,
RbN1Clg, CsVClq) . ' It predicts a spin-fiop transition
for the case of easy-axis (easy-plane) anisotropy at H, ~

——

~a~/qy~ = 16~D~JS, when magnetic field is directed par-
allel (perpendicular) to the c axis.
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However, there is a number of planar antiferromagnets,
e.g. , CsMnBr3, RbMnBr3, KNiC13, for which D ) 3J'.
In this case spins do not leave the basal plane for all va-
lues of the magnetic field in the basal plane, representing
XY-type of behavior. To understand the corresponding
magnetization process, note that for J' (& J the low-
energy degrees of freedom may be represented in terms of
the antiferromagnetic vectors L, for each of three chains
in the magnetic unit cell. The total energy of the inter-
action of a noncollinear structure with a magnetic field
is a sum of individual interaction energies of three chains
in this approximation. As for ordinary antiferromagnets,
each vector L; tends to be perpendicular to the Geld.
This is apparently not possible at small magnetic fields
where single-ion anisotropy and interchain coupling are
dominant. Only one antiferromagnetic vector is directed
perpendicular to H at this Geld region as shown in Fig. 1.
The angle between the another two vectors monotonously
decreases and, for D ) 3J', the sublattice-fIip transition
at the critical field

H, = v48J'JS2

takes place before the spin-8op transition at H, f (see
Fig. 1). The subsequent reorientation of spins occurs in
a way similar to that for a simple two-sublattice antifer-
romagnet with easy-plane anisotropy.

The destruction described of the triangular structure
with the transition at H lies beyond the framework of
the macroscopic theory, which considers only small devi-
ations from the exchange configuration (2). Nevertheless,
this approach can still be used to consider magnetic pro-
perties at small Gelds H & H . At zero field there is only
one Goldstone mode associated with homogeneous rota-
tions of all spins by an angle y in the easy plane. The &e-
quencies of the two other relativistic modes (w QD J)
exceed the characteristic exchange frequency gJ'J and
cannot be calculated in the low-energy limit. The simpli-
fied Lagrangian density, which is a restriction of (3) on a
one-dimensional spin space, is given by

&II

24 H4 (5)

where the anisotropy is created by a magnetic Geld ap-
plied in the basal plane. Its angular dependence is de-
termined by the first invariant in the expansion of the
magnetic energy over powers of H/H, which depends
on the relative orientation of the field H and spin vec-
tors: g[(A, H) + (A*, H) j; here A = li +il2. The phe-
nomenological parameter g can be easily calculated in
the mean-field approximation comparing energies of two
symmetrical orientations (p = 0 and &p = ~/2) of the
spin structure with respect to the magnetic Geld. More
strict derivation of the sixfold anisotropy in ABX3-type
antiferromagnets can be found in Refs. 12 and 34. This
consideration of spins motion in terms of a single angle
function is analogous to that used previously in the the-
ory of ferromagnetic and antiferromagnetic chains with
strong planar anisotropy.

The minimum of E „(y) is achieved for p = m/2,
which corresponds to the low-field spin configuration in
Fig. 1. Small homogeneous oscillations near this equi-
librium position are described by the equation of motion
d(BA/Brj)/dt = BA/Bp, which gives their frequency

H3
H2

C

3
2(1+ q)

(6)

Such a dependence of the resonance frequency with mag-
netic field was observed in CsMnBr3. Though at fields
H H sublattices deviate significantly from the 120
structure, the expression (6) is close to the exact numer-
ical results by Chubukov for H & 0.7H . Moreover, the
accuracy of (6) grows with the increasing XY character
of spins, that is, with increasing ratio D/3 J . Therefore,
considering transitions in the noncollinear phase of dis-
torted triangular antiferromagnets at H & H, we will
base our analysis on some modifications of the simple
spin-wave Lagrangian (5). For the collinear phase at
H ) H, Eq. (6) is replaced by a usual paramagnetic
dependence co = pH known for two-sublattice antiferro-
magnets.

III. MAGNETIC PROPERTIES
OF RbFeBrq- TYPE MODIFIED

ANTIFERROMAGNETS

FIG. 1. Spin structures before and after the sublattice-Qip
transition. Arrows represent antiferromag;netic vectors of
three adjacent chains.

Near the melting point all hexagonal ABX3 crystals
have an undistorted structure described by the P6s/mmc
space group. Phase transitions to lattices of lower sym-
metry with decreasing temperature are characterized
usually by displacements of chains of magnetic atoms
as a whole without deformation so that the intrachain
distance between spins remains unchanged. The typical
structural transition to the lattice of P63cm space group
is accompanied by the shift of one from the three adja-
cent chains upward along the c axis while the two oth-
ers shift downward, keeping the crystal center of mass
undisplaced. Distortions of this type were found in the
low-temperature phase of RbFeBr3, ' at room temper-
ature in KNiCls (Ref. 16) and in RbMnBrs (Ref. 17) and,
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A-A A-B

J') S; S,. + Ji) Si, Si.

The other type of structural transition in the hexa-
gonal lattice is realized in the nonmagnetic compound
RbMgBrq (Ref. 18) and consists in the upward shift of
the first chain along the t- axis and the opposite shift of
the second chain. Considering again changes only in ex-
change interactions we can describe a spin model with
the lattice of this type by the same Hamiltonian of the
centered honeycomb model with two coupling constants
in the basal plane. In this case atoms on B sites lie in
the plane of Fig. 2, while atoms on Aq and A2 sites are
displaced forward and back, respectively.

At zero field the classical ground state obtained by
minimization of (7) is a planar spin structure presented
in Fig. 3 with antiparallel spins along the c direction.
The angle 0 is given for Jy ( 2J' by

J~coso =
2JI ' (8)

whereas for Ji ) 2J' the structure is collinear (0
0). The characteristic parameter of the problem is
the relative difFerence between exchange constants b =
(Ji/ J' —1). Depending on the sign of h there are possible
two types of the distorted triangular structure: I, with

probably, in R.bVBr3. The crystal unit cell in the basal
plane is enlarged to become v 3a x v 3a (Fig. 2), preserv-
ing the hexagonal symmetry. Because chains are shifted
usually on a sinall distance from the basal plane [ 0.5 A.

in RbFeBrq (Ref. 14)], magnetic properties may be con-
sidered by placing spins on the same stacked triangular
lattice and changing interactions in the Hamiltonian (1)
in accordance with a reduced symmetry of the crystal
structure.

On the RbFeBr3-type modified lattice there are two
kinds of exchange coupling constants between nearest
neighbors in the basal plane: J' for pairs on equiva-
lent Aq-A2 sites and Jz for pairs on A-B sites, as shown
in Fig. 2. The Hamiltonian of this centered honeycomb
model (in terms of Zhang et al. ) is obtained by the ev-
ident replacement of the second term on the right-hand
side (RHS) of Eq. (1):

A2 Al

FIG. 3. The relative orientation of spins on adjacent chains
at H = 0 for an antiferromagnet on the deformed lattice of
RbPeBr3 type.

0 & 120 (0 & 8 & 1), and II, with 0 ) 120' (h & 0). We
will show that reorientation processes in magnetic field
are difFerent for them.

Since the superexchange interaction J' originates from
the overlap of electron orbits of B + atoms with valence
p orbits of intermediate L atoms, it depends in a com-
plicated way from the interatomic distances and bond
angles. It is difIicult to predict in advance the relation
between J' and Jz for deformed lattices of the P63cm
space group, where A-B distance is larger than Aq-A2,
as well as for lattices of the P3cl symmetry, where spac-
ing relations are opposite. Therefore, for each lattice we
must consider both types of the distorted spin structure.

Without field the spin ordering occurs in two steps in
each case with an additional intermediate collinear phase
between T~i and T~2 (AT~/T~ ~b~) which is either
ferrimagnetic (8 ) 0) or partially disordered (8 & 0).2s

At low temperatures magnetic field applied in the basal
plane leads, as in the case of ordinary triangular anti-
ferromagnets (Sec. II), to a transition into the collinear
phase at the critical field H, which depends on both J'
and Jz. However, if the relative difFerence between J'
and Ji is small, one may still use the old expression (4)
neglecting corrections of the order of ~h~ to H, . We con-
sider in this approximation magnetic properties of the
noncollinear phase at fields H & H .

The asymmetry of the magnetic structure with a
preferable direction in the spin plane results in the
anisotropy of inplane susceptibility. For ~h~ && 1 this
anisotropy is represented by the invariant [(H, A) +
(H, A*)2], which arises due to the partial breaking
of translation symmetry of the original Bravais lat-
tice. Comparing mean-field energies for two perpendic-
ular orientations of the spin system we can express the
anisotropic part of magnetic energy associated with the
distortions as

A, A,

E'„= b((Hli) —(H12) ).

FIG. 2. The schematic crystal structure and exchange con-
stants in the basal plane for hexagonal antiferromagnets of
P63cm, and P3c1 space groups. The dark bonds are J'; the
light bonds are Jz.

The difFerent sign of E'„ for the above two types of dis-
torted triangular structure can be easily understood in
terms of interactions of individual chains with magnetic
field (Sec. II). The whole anisotropy energy of the spin
system in the magnetic field is given by
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x~ H'
E „= H ! bcos2p+ cos6y! .

3 8H.' (10)

For a type-I distorted triangular structure both aniso-
tropies in (10) favor the same orientation of spins. The
only difFerence from the case of perfect triangular anti-
ferromagnets (Fig. 1) is that, due to the partial lifting of
frustration, it is the antiferromagnetic vector of B chains
L~ which is directed perpendicularly to H. This corre-
sponds to y = 7r/2 at the equilibrium and substituting
(10) into (5) we find the resonance frequency:

1 . 3 t' H' 'i
!p = —arcsin —

~

1—4( H) for H & H* . (12)

(4b/3 + 3H'/2H. ' lcd: pH 1+~
which has a linear asymptote for small H in contrast to
(6). The formula (ll) is valid for small 8 at the field range
0 ( H & 0.7H, and incorporates partially quantum fluc-
tuations through renormalization of g. The behavior of
oi(H) in case I including the region near H, was found
numerically in the classical limit (rI = 1) by Tanaka et
OL However, properties of the type-II distorted triangu-
lar structure were considered incorrectly there.

In case II (b & 0), the anisotropy (9) gives a different
spin orientation at low fields with the pair of sublattices
on B chains directed along H (Fig. 4). Such a configu-
ration is energetically unfavorable at higher fields, where
the sixfold anisotropy becomes significant. Rotation of
the spin system between the two limiting orientations
y = 0 and y = n /2 occurs with an additional phase tran-
sition. Minimizing (10) we find the following sequence of
equilibrium states

(8 ) 1/4
for H &H*=H

!
—!h!!

The phase transition at H = H* is of second order. Tak-
ing for the estimation b = —0.05 we obtain, from (12),
H* = 0.46H . Thus already very small changes in the
exchange constants alter significantly the behavior of the
triangular antiferromagnet in a magnetic field. The ex-
istence of the orientational phase transition at H = H*
reveals itself as a small change of slope in the magneti-
zation curve corresponding to the jump Ay/y = 2!b! in
susceptibility. The most pronounced sign of this phase
transition, however, can be seen in the behavior of the
lowest branch in the resonance spectrum with magnetic
field

)3(H*' —H') &
"

for H &H*,
g 21+qH: &

lj2
~3(H4 —H 4) 1 3 H'4~

~
(1+q)H4 4 4 H'~

for H & H*, (13)

which corresponds to the disappearance of the gap in the
spin-wave spectrum at H = H* (see Fig. 5).

We have derived expressions (12) and (13) in the
limit !b! (( 1. They are not appropriate when H* be-
comes equal or exceeds the actual value of critical field
for the sublattice-flip transition determined by H
H2(pl+ 3(1 —!8!)2—l),s that is, for!h! & 0.3. To find
H* in this case a numerical investigation of the original
Hamiltonian is required.

There are three hexagonal antiferromagnets RbFeBr3,
RbVBr3, and KNiC13 for which these results can be ap-
plied. The antiferromagnetic resonance has been mea-
sured only in KNiC13. In Fig. 6 we present experimental
data obtained by Tanaka et aL along with the results
of our measurements. Obviously, the behavior of the
lowest branch of the antiferromagnetic resonance or(H)
corresponds to case I (Ji & J'). The fit of the exper-
imental points at fields H & 0.7H, with g —0.6 and
H, = 23 kOe (Ref. 36) and p = 3.14 GHz/kOe (Ref. 9)

H& H* 80

60
x

g 40

U

20

H& H*
0 10 15

Field (koe)
20 25

FIG. 4. The behavior of the triangular spin structure with
8 ) 60 at small fields.

FIG. 5. The behavior of the lowest branch of resonance
spectrum for the type-II distorted triangular structure with
b = —0.05 (solid line) and with h = —0.2 (dashed line). Dot-
ted line corresponds to u = pH in the collinear phase. Pa-
rameters H, p and rI are chosen the same as in KNiClq (see
text).
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80
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40
O'

20

0
0 10 15

Field ( koe)
20

I

25

b = —0.4. Such a deformation of the 120 structure is
too large to be described by our approximate formulas.
However, the phase transition field H* still has to ex-
ist because of the different symmetries of the low-field

(H ~ H') and high-field (H + H, ) phases and can
be determined from the measurements of resonance or
magnetization in RbVBr3 at low temperatures. Adachi
et aL also supposed the second type of deformation
of the spin structure in RbFeBr3 at T = 0 and found

Ji/ J' = 0.85 from the observed splitting of the Neel tem-
perature. The field of the orientational phase transition
can be estimated as H* —0.6H in this case.

FIG. 6. Spectrum of antiferromagnetic resonance in
KNiC13 at T = 1.3 K. Solid squares represent the results
of our measurements. Four points at low field and high fre-
quency correspond to the exchange branch of resonance which
is not described by the macroscopic theory. Open symbols
and dashed lines are experimental results and theory respec-
tively from Ref. 9. The solid line is drawn using Eq. (10) with
parameters from the text (Ref. 37). It 6ts the experimental
points for fields 0 ( 0.7H = 16.1 kOe.

gives 8' = 0.08 + 0.01.s7 Quantum eKects are important
in KNiC13 because the relative difFerence between trans-
verse and inplane susceptibilities g deviates significantly
from its classical value g = 1. As a result, the esti-
mated value for b is smaller than that of Tanaka et al. ,
who neglected these efFects. Also, due to the extremely
large anisotropy D 200J' in this material results
obtained in the XY approximation are in good agree-
ment with experimental data on KNiC13 practically for
all fields 0 ( H & H .

On the other hand the magnetization measurements
did not show any evidence for the splitting of the Neel
temperature TN ——8.6 K with an accuracy of 0.15 K. It
should be noted in this connection that the investigation
of dielectric properties of KNiC13 revealed up to four suc-
cessive ferroelectric transitions. Generally, they can be
not only of the displacive but also of the order-disorder
type. The latter is confirmed by an electron difFraction
study interpreted as the existence of a certain degree of
structural disorder in the vertical shifts of the magnetic
chains. Therefore, the RbFeBr3-type deformations in the
crystal lattice of KNiC13 can be changed even within the
temperature interval of the antiferromagnetic ordering.

In RbFeBrq and RbVBr3, instead, a large splitting of
the Neel temperature was observed with T~q ——5.6 K,
T~2 ——2 K (Ref. 21) and T~i ——28 K, T~2 ——21 K
(Ref. 20), respectively. The convincing arguments in fa-
vor of one of the two types of the deformed triangular
structure were suggested only for RbVBr3 by Tanaka and
Kakurai on the basis of neutron scattering measure-
ments in the intermediate phase. From the temperature
behavior of the intensity of Bragg peaks they concluded
that the spin ordering between T~y and T~2 has a par-
tially disordered collinear structure. They estimated also
the angle between sublattices in the distorted spin tri-
angle at T = 0 as 8 = 73' and, thus, ji/J' = 0.6 or

IV. DISTORTED TRIANGULAR STRUCTURE
IN RbMnBrs

100

80

x
60

O

40

20

10 20 30
Field ( koe )

40

FIG. 7. Spectrum of antiferromagnetic resonance in
RbMnBr3 at T = 1.3 K from Ref. 22. The dashed line marks
region where the hysteresis of the intensity and shape of res-
onance absorption signal was observed.

The macroscopic properties of RbMnBrq, another
easy-plane magnetic compound with a deformed stacked
triangular lattice, difFer significantly from those we have
discussed in the previous section. The experimental
results on the spectrum of antiferromagnetic resonance
in RbMnBrs at T = 1.3 K (T~ = 8.8 K) are reproduced
in Fig. 7. A low-&equency resonance branch analogous to
those in CsMnBr3 and KNiC13 exists in magnetic fields
H ) 30 kOe until the transition with a spin flip of the two
pairs of sublattices takes place at H = 39 kOe. How-
ever, for H & 25 kOe there is no observable low-&equency
resonance absorption. The disappearance of a resonance
signal in the Beld region 25 & H & 30 kOe is accom-
panied by a hysteresis in its intensity and shape, and,
simultaneously, with a small hysteresis in the magnetiza-
tion curve. ' This seemingly unique efFect is connected
with the more complicated magnetic structure found in
RbMnBr3.

Single-crystal neutron difFraction measurements on
RbMnBrs (Refs. 24, 25) show an incommensurate mag-
netic structure at low temperatures and fields. While
the commensurate structures discussed in Secs. II and III
give rise to a magnetic Bragg peak at ( —,—,1), indexed
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in the a x a lattice, the neutrons data give two triads
of magnetic peaks in the (hkl) plane near to (i, i, 1).
These triads correspond to spiral structures with turn
angles of 128 and 142 which are greater than the helix
angle of 120' needed for the commensurate structure.

The crystal structure of RbMnBr3 near the Neel tem-
perature is known with less certainty. The birefringence
study of Kato et aL is compatible with orthorhombic
distortions below 220 K in addition to the room tempera-
ture RbFeBr3-type modifications of the crystal lattice.
Recently, the existence of orthorhombic distortions at
T = 12 K has been demonstrated in powder neutron
scattering experiments. Whether or not they coincide
with RbFeBr3-type crystal deformations in the antiferro-
magnetic phase is still in question.

The appearance of an incommensurate helical spin or-
der at zero field was attributed to orthorhombic deforma-
tions of the underlying hexagonal lattice in a number of
papers. ' Though the corresponding spin model might
be too simplified to explain the real complicated magnetic
structure of RbMnBr3, we show that the destruction of
such an incommensurate spin spiral by a magnetic field
provides an explanation of the low-field phase transition
observed in this compound.

We consider spins on a stacked triangular lattice sub-
jected to a small uniaxial deformation along one of the
hexagonal directions in the basal plane. Due to the rel-
ative change of interatomic distances, one can expect a
deformation of inplane exchange interactions as shown
in Fig. 8. Horizontal spin bonds are J', while bonds be-
tween rows are Jz. The Hamiltonian of this row model
of Zhang et al. is obtained by the replacement of the
second sum on the RHS of Eq. (1) on

s(k) =2JS cosk, c

k.a ~3+2J'S2 cosk a+2 —cos cos k„a . (15)J' 2 2 ")
Minimizing s(k) one obtains k& ——0, k, = vr/c, while k
is given by

ka Ji
2 2J (16)

If the relative deviation of exchange constants from the
old value h = (Ji/J' —1) is small, the wave vector of the
incommensurate spin structure can be represented as

(2k=Q+q, q=
~

—,0, 0~.&&3a' ' ) (17)

This expression allows us to consider the spin configu-
ration in the continuum approximation as a slow modu-
lation of the perfect triangular structure (2). It is de-
scribed locally by the vector pair (li, 12), which rotates
from point to point by the angle y = q . r. The direc-
tion of the modulation vector q is uniquely determined
by the direction of external deformation of the triangular
lattice. Three types of structural domains with equiva-
lent directions of orthorhombic distortions yield a triad of
peaks with threefold symmetry for incommensurate wave
vectors surrounding commensurate position at Q.

In the continuum approximation the energy (15) of the
incommensurate magnetic structure is given by a sum of
two terms, one of which represents rigidity of the trian-
gular structure

intrarow interrow
J' ) S; S, +Ji ) Sg. Si. (14)

2

0«) 4 4"*) 4 ~)

Note that the hexagonal symmetry of the lattice is broken
in this model and the wave vector of the commensurate
structure (2) does not correspond to a special symmetri-
cal point in the Brillouin zone.

To find the ground state of the system at zero field one
has to substitute a helical spin configuration of general
form S(r) = (Scos(kr), S sin(kr), 0) in the Hamiltonian
of the row model. The energy per spin is given by the
Fourier transform of the exchange energy:

while the second is the Lifshitz invariant,

H, = 16(J'+ 2Ji) JS2 . (20)

—~3J'S a8
dx

An in-plane magnetic field produces a hexagonal aniso-
tropy energy (5) with the critical field of the fhp of two
sublattices H given in the row model by

Then, if we omit gradients along y and z, the energy
density per spin is written as

E= J'S a
i ~

——~3J'S ab + cos6(p.

FIG. 8. The schematic crystal structure and exchange con-

stants in the roar model for RbMnBr3.

The functional (21) has a form typical for many other
systems with a weak incommensurability. 42 A transition
in such systems occurs because of the competition be-
tween the Lifshitz term and the anisotropy which favors
the commensurate phase. The angle function yo(x) of
the ground state satisfies the sine-Gordon equation



3518 ZHITOMIRSKY, PETRENKO, AND PROZOROVA 52

6
a pp (x) + s sin 6yp ——0II H

2H6 (22)

With increasing magnetic field its solution gradually
evolves from the perfect sinusoidal structure happ(x) = Qx
as

1
yp(x) = —am[(x + xp)/I]3

(23)

until the critical field is reached (am denotes elliptic am-
plitude; l is proportional to its modulus). 42 This field

H* = H, g~~S~ (24)

corresponds to a lock-in phase transition into the com-
mensurate state p = m/2. The deviations of the spin
spiral (23) from the sinusoidal structure are very small
at almost all fields H ( H* and the helix period is
& = (2~/p) (1 + 57r H /512H' ). In the vicinity of H*
these deviations become large and the incommensurate
structure transforms into an equidistant set of domain
walls between regions, where spins are ordered with the
commensurate wave vector Q. The period of the spiral
is given by A = (4/7rq) 1n[H*/3(H* —H)] in this region,
while the actual interwall spacing is 3 times smaller than
A, due to the existence of three types of domains.

The spectrum of small oscillations can be found
by including in (21) the kinetic energy from (5) and
linearizing the equation of motion for a small amplitude
Q, p(x, t) = yp(x)+Q(x, t) (see, e.g. , Ref. 43). In order to
describe the antiferromagnetic resonance, we need only
to determine the form of the solution at small wave vec-
tors. It follows from Eqs. (21)—(23) that the ground state
&pp(x) is degenerate with respect to an arbitrary transla-
tion along the x axis (to a change of xp). Therefore,
the spectrum of small oscillations is always acoustic in
character for all H ( H*. As a result, the frequency of
homogeneous antiferromagnetic resonance is exactly zero
until the transition into the commensurate phase, after
which the frequency is given by Eq. (6).

In a real system this ideal behavior is smeared near
H* by a strong pinning of local domain walls on diBer-
ent sample imperfections and the phase transition into
the commensurate phase is accompanied by hysteresis
eKects.""

If, in addition, there are deformations of the RbFeBrs
type, the hexagonal anisotropy in (21) should be replaced
by (10). This modification does not change the above
conclusions about the phase transition to the commen-
surate phase and the disappearance of the resonance at
H ( H*, while the actual expressions for H* and the spa-
tial dependence pp(x) become more complicated. These
deformations would give rise also to deviations of the re-
sonance frequency from (6) in the commensurate phase
(H & H*).

We take from the magnetization measurements H' =
27 kOe, H = 39 kOe for RbMnBr3 and substituting
them into (24) obtain b = —0.1. The sign of h' is deter-
mined by the sign of the deviation of the helix angle from
120 known from neutron scattering experiments,
which give also close values for critical fields. The angle

between adjacent spins can be estimated as 127 for this
value of b. However, there are several discrepancies with
neutron data, which show two triads of peaks around
the commensurate position instead of a one triad, as in
our model. The commensurate wave vector of the high-
field phases (H & H*) is also attributed to be difFerent
from Q. Nevertheless, we believe that the characteris-
tic behavior of the lowest branch of antiferromagnetic
resonance (spin-wave gap) at H & H* together with the
subsequent Hip of two pairs of sublattices at H indicated
by the fall of the exchange branch (Fig. 7) suggests the
conventional triangular spin structure in this field region
described by six sublattices. Whether these discrepan-
cies can be resolved involving a more complicated crystal
structure of RbMnBr3 as well as an explanation of the
whole H-T phase diagram ' in terms of the present
model requires additional investigations.

V. CONCLUSIONS

The phase transitions of the hexagonal easy-plane an-
tiferromagnets with partially released frustration due
to deformations of exchange bonds were studied in the
framework of the macroscopic theory. Using symmetry
arguments we have shown that diR'erent types of dis-
tortions of the ideal triangular structure in hexagonal
easy-plane antiferromagnets (previously studied2~ 2s at
H = 0) can be distinguished unambiguously by their
behavior in a magnetic field applied in the spin plane.
For the first two types of distortions described by the
Hamiltonian of the centered honeycomb model an addi-
tional anisotropy occurs in a magnetic field. Its compe-
tition with the sixfold magnetic anisotropy of the orig-
inal triangular structure can result in a reorientational
transition of second order. The absence of such a transi-
tion in KNiC13, as shown clearly by our resonance mea-
surements, together with the linear dependence of w(H)
at small H points to the first type of distortion of the
exchange triangular structure. Analogous investigations
of RbFeBr3 and RbVBr3 will provide explicit informa-
tion about distortions of the spin structure in these com-
pounds too. The third type of nearly triangular spin
structure represented by the incommensurate spin spiral
of the row model undergoes a lock-in transition to the
commensurate noncollinear phase and, then, a second-
order transition to the collinear phase, as was observed
in RbMnBr3 with a magnetic field in the basal plane.

The advantage of the macroscopic approach adopted
in the present work is the possibility of an analytical de-
scription of complicated distorted spin structures, reduc-
ing them either to well-studied systems with weak incom-
mensurability (Sec. IV) or to very simple systems with
competing anisotropies (Sec. III). However, all predic-
tions of this method are restricted by small (about 20%)
deformations of the exchange coupling constants. The
obtained results remain valid for systems with small easy-
plane anisotropy (D ( 3J'), if the condition H* ( H, r
is satisfied. In contrast, the magnetic properties of the
two-dimensional partially unfrustrated models will be
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similar to those of the quasi one-dimensional ferromagnet
CsCuClq (with antiferromagnetic interchain exchange), 44

rather than to the properties discussed here for quasi one-
dimensional anti ferromagnets.

An interesting feature connected with the complicated
nature of superexchange interactions in ABX3 com-
pounds and observed in both KNiC13 and RbMnBr3 is
an unusual dependence of exchange constants on the de-
formed bonds from the interatomic spacing. Namely, in
KNiCls the exchange grows (Jz ) J') with the increase of
distances between magnetic ions for RbFeBr3-type defor-
mations, while in RbMnBrs it becomes smaller (J,' ( J')
with orthorhombic compression of the lattice in one of
the hexagonal directions.
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