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The interlayer coupling strengths associated with difFerent oscillation periods in Co/Cu/Co sand-
wiches for different orientations are calculated based on the spin-asymmetry of the reBection axn-
plitude at extremal points. A realistic tight-binding model which includes s, p, and d orbitals is
adopted to calculate the reBection amplitudes. At the interface, all evanescent states are included
to meet proper boundary conditions. The spin asymmetry of the re8ection amplitude which is the
crucial factor for determining the coupling strength is found to depend on the details of the band
structures. Unique features are found when there are more than one reQected waves, which do
not exist in the single-band model. For certain periods inferred from the spacer Fermi surface, the
coupling strengths are found too small to be detected.

I. INTRODUCTION

The discovery of the exchange coupling between ferro-
magnetic layers separated by nonmagnetic spacer layers
has stimulated a great deal of interest lately. ' The re-
lation between the period of the oscillatory coupling and
the Fermi surface of the spacer material seems to be es-
tablished to some degree. Theoretical studies indicate
that the period is determined &om the extremal span-
ning vector of the Fermi surface of the spacer material. '

Experixnentally, the change of period depending on the
structure or the orientation was observed with the Cu
spacer. The Fermi surface can be artificially altered in
the Cu-Ni alloy and the increase of the oscillation pe-
riod as a function of the composition was observed.
When the spacer is thin, the period can deviate from the
spanning vector. Thus, observation of many oscillations
up to a very thick spacer layer is necessary to measure
the period accurately. Actually, Unguris et aL observed
the interlayer coupling up to more than 50 monolayers
(ML) of Ag (Ref. 10) and Au (Ref. 11) spacer and peri-
ods obtained &om these experimental data are in good
agreement with those predicted &om the spanning vec-
tors of the Fermi surface for the spacer materials. How-
ever, for transition-metal spacers, it is not well under-
stood why only a few distinctive periods are observed ex-
perimentally among many possible periods inferred from
the Fermi surface of the spacer. Short periods can be
suppressed by the sample condition such as the interface
roughness. However, in many cases even the possible
long periods were not observed. In Fe/Cr multilayers,
it is not clear yet which extremal or nesting feature of
the Cr Fermi surface gives the experimentally observed
long period 14—16 Before comparing with the experimen-
tal data, one should examine the coupling strength for
each possible period. The existence of the spanning vec-
tor in the spacer Fermi surface is the necessary but not
suFicient condition. When the coupling strength corre-

sponding to that period is too small, the period will not
be observed experimentally.

Due to the spin splitting in the magnetic layer, elec-
trons with different spins in the spacer layer "see" difFer-
ent boundary conditions at the interface. This causes a
change of the density of states in the spacer and the in-
terlayer coupling energy is the total-energy difFerence of
the ferromagnetic and antiferromagnetic configurations.
In first order, this can be calculated &om the "force
theorem. " Then, the interlayer coupling is the difFer-
ence of the single-particle energies calculated with the
single-particle Green's function and the T-matrix formal-
ism. This method is applicable with the first-principles
calculations and also the interlayer coupling can be
expressed in terms of the reHection amplitudes as shown
by Bruno and Stiles. As commonly adopted in other
theoretical models, perfect lattice match and sharp inter-
faces are assumed. The in-plane momentum k~~ is con-
served throughout the multilayer and thus a good quan-
tum number. In order to calculate the coupling strength,
summation over k~~ needs to be performed and in the
limit of a thick spacer, only the contribution near the
extremal points of the Fermi surface is important. This
suggests that in order to investigate the dependence of
the coupling strength on material parameters and orien-
tation, one should carefully examine how electron states
associated with the extremal points match at the inter-
face. This is expressed in terms of the spin asymmetry
of the reflection amplitude at the extremal point, which
is another factor for the coupling strength apart &om
the shape of the spacer Fermi surface. A similar argu-
ment was made based on the misalignment between the
bands in the spacer and ferromagnetic layers by Mathon,
Villeret, and Edwards. Bruno evaluated the reflection
amplitude with an s-like single-band tight-binding (TB)
model for the (100) fcc Co/Cu/Co system but the sp-
d band hybridization efFects and evanescent states are
not included. In this paper, we present a realistic TB
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method to calculate the reflection amplitude and examine
the e8'ects of sp-d hybridization on the coupling strength
in Co/Cu/Co sandwiches for (001), (110), and (ill) ori-
entations. We will show that it is essential to take into
account the sp-d hybridization and realistic band struc-
tures. When there are more than one reflected wave, the
reflection amplitude will depend on how each reflected
wave couples with the incident wave. The reflected wave
which couples most strongly with the incident wave tends
to get the predominant portion of the reflection. The re-
sults will be compared with other calculations and avail-
able experiments.

II. THEORETICAL MODEL

We consider a sandwich system which consists of two
semi-infinite magnetic layers labeled by I (left) and R
(right), separated by a nonmagnetic layer. The interlayer
coupling J is defined as

Fermi surface. For a given k, there can be several span-
II

'

ning vectors, denoted by q,~
= k; —k~, where k; is the

wave vector for the incoming wave and k~ is the wave vec-
tor for the reflected wave. Lr;~ is the spin asymmetry of
the reflection amplitude, i.e. , Ar;~ = (r+ —r, .)/2, where
r+ (r, .) is the re8ection amplitude for a majority (mi-
nority) spin associated with k; and k~. 9,~ is a constraint
function, which takes the value 1 when q;~ is an extremal
spanning vector and 0 otherwise. v;. is the average group
velocity at extremal points kII + k;z and kII + k~z. K, .

is the average curvature radius of the Fermi surface at
the corresponding extremal points and the phase factor
P, . = 0, ir/2, and ir for maxima, saddle points, and min-

ima, respectively (see Refs. 12 and 21 for details). The
temperature-dependent factor F; (D, T) was tested in a
recent experiment. The coupling strength decreases at
higher temperatures. In this paper, we only consider
the zero-temperature case (T = 0). Then the coupling
strength for a given period with n equivalent extremal
spanning vectors is given by

J= OF —O~F
2S Is/Ar, , /'/D', (5)

1 +oo
AQ„= —Im )7r —OO

def(e) Tr ln(l —Go T '"Go T ),

where OF and O~p are the grand canonical potentials for
the ferromagnetic (F) and antiferromagnetic (AF) con-
figurations and S is the area of the layer. Using the
force theorem or the &ozen potential approximation, the
change in the grand potential LO is given by the change
in the single-particle density of states as

where Io ——hv, e, n/4vr wh. ich is determined by the ge-
ometry of the spacer Fermi surface. In this paper, the re-
flection amplitudes are calculated &om the realistic TB
model with s, p, and d orbitals. The method is de-
scribed in Appendix B. We express the eigenstate of
the heterostructure using the complex-band solutions
of each material including the evanescent states. By im-
posing proper boundary conditions at the interface, we
can obtain the reflection and transmission amplitudes.

(2)

J = Im) ) ' '
(Ar; )e' ~*~ +~*~ F; (D. , T) 8;~, .

(3)

where

2~kB TD/hv,
F; (D, T) =

sinh(2vrkrrTD/hv, )
(4)

Here the superscript o. is a label for diA'erent k 's which
II

are the in-plane projections of the extremal points on the

where v labels the two coupling configurations (F and
AF), Go is the unperturbed Green's function of the
spacer material, T is the T matrix, f is the Fermi-Dirac
distribution, and Tr denotes the trace. The interlayer
coupling can be expressed in terms of reflection ampli-
tudes as in Refs. 12 and 21. In this paper, a realis-
tic multiband model is considered and in general there
are many reflected waves. When the thickness D of the
spacer is large, the dominant contribution comes from the
extrernal points and its asymptotic form (keeping only
the leading term) can be shown to be (see Appendix A
for details)

III. fcc Co/Cu/Co SANDWICHES

In this section, we apply the method of Sec. II to
Co/Cu/Co sandwiches. The thickness of each Co layer
is assumed to be semi-infinite. The TB parameters for
Cu are taken from Ref. 26 with the p on-site energy (Ez)
adjusted slightly to make the Fermi surface closer to the
de Haas —van Alphen measurements. The best fit E„ is
found to be 1.36651 Ry and the resulting Fermi surface
is shown in Fig. 1 together with experimental data &om
Ref. 27. Also shown in the figure are the extremal span-
nirig vectors (q; ). For fcc Co, we take parameters of
paramagnetic Co &om Ref. 26 and adjust on-site ener-
gies E„E„,Ep for each spin by fitting the band structure
to that in Ref. 28. The best-fit on-site energies for both
spins are listed in Table I. In both materials, E = 0 is
taken as the Fermi level. The lattice constant of Cu is
a = 3.603 A (Ref. 27) and it is assumed to be the same for
Co. We calculate the strength of the interlayer coupling
based on Eq. (5) for (001), (110), and (ill) orientations
and the results are summarized in Table II. Io in the table
is obtained by using the group velocities and curvature
radii inferred from the experimental Cu Fermi surface in
Ref. 27. We can also calculate Io from the TB model
and those values are a little larger than those shown in
the table mainly due to the larger group velocity. Io is
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Orientation q,~

(ool)

(11o)

gr
gs
g1

g2

g3

g4

gl

Period
(A)
10.6
4.6
12.2
3.2
4.2
2.7
9.4

IQ

(mRy)
5.0
11
2.6
7.3

0.80
88
1.3

0.044
0.53
0.43
0.015
0.13
0.45
0.46

IolArf /D'
(mJ/m )

0.021
6.7
1.0

0.0036
0.030

38
0.59

TABLE II. Strength of the interlayer coupling in fcc
Co/Cu/Co. Io is determined from the experimental Cu Fermi
surface (Ref. 27). The thickness of the spacer layer is taken
as D = 1O A..
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the crucial factor which determines the coupling strength
for each period. We shall discuss our analyses for (001),
(110), and (ill) orientations separately.

-0.6

A. (001) orientation
001

For the (001) orientation, there are two nonequiva-
lent extremal spanning vectors qz and qs as shown in
Fig. 1(a). Their corresponding kll's are denoted by kr
and ks. kp ——0 and qp leads to a longer period of 10.6
A. ks = (0.41, 0.41, 0)—and qs leads to a shorter period
of 4.6 A. . As shown in Table II, the coupling strengths of
qr and qs are totally different due to the difference in
~Ar~. This is easily illustrated with the bulk band struc-
tures for kll = kr [Fig. 2(a)] and kll = ks [Fig. 2(b)]. For
both cases, Cu and Co with majority spin have a predom-
inantly sp-like band at the Fermi level and ~lr+~ is small.
However, Co with minority spin has completely difFerent
band structures for k~~

——kr and k~~
= ks at the Fermi

level. For kll = kr, there are two states in Co (with
difFerent A:, 's) having the same (Ai) symmetry as the
incoming wave, thus significant transmission occurs and

~

is small. On the other hand, for kll = ks, the avail-
able state in Co has a difFerent symmetry [see Fig. 2(b)]
and total reflection occurs (~r ~

= 1). In Fig. 2(b), we
label states which are symmetric (antisymmteric) with
respect to the exchange of x and y coordinates by Ai
(A2), since the space group for this case has only two
one-dimensional irreducible representations. As a result,

kr and»rg«» kll = ks at the
Fermi eve For kll = ks, (&r( is slightly bigger than 0 5
because of the phase difference between r+ and r . The
situation for k~~

——ks is similar to the complete quantum-
con6nement model and yields a strong coupling.

In Fig. 3, lr+~ (solid) and ~r
~

(dotted) are plotted as
a functio n of energy for k~~

= kr and k~~
——ks»ound the

Fermi level. For both cases, ~r+~ is small. For kll = ks,
total reflection occurs abruptly near —1 eV (~r+~ =1) due
to the existence of a tiny gap between the two A~ bands
caused by anticrossing [too small to be seen clearly in the
middle panel of Fig. 2(b)]. When a gap occurs between
two Ai bands in Co, the incident wave of Az symmetry

0.4
CU Co Co

0.2

0

-0.2

-0.4

0 j. ,o 1,0

FIG. 2. Bulk band structures of fcc Cu and Co for the (001)
orientation for (a) k~l = 0 and (b) kll = ks = (0 41, 0.41, 0) —.
Here c = —.

with energy inside the gap is totally reHected. Near the
Fermi level, most of the differences in reHection ampli-
tudes come from the minority-spin bands. For k~~

——kz,
~r

~

is small very near the Fermi level and increases
rapidly below the Fermi level as the group velocity of
minority spin Co bands decreases. ~r

~

finally becomes
one when the group velocity is zero at the bottom of the
Ai band. Below that point (E —0.55 eV), total reflec-
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tion occurs due to the absence of available states with
the same symmetry. For k~~

= ks, ~r
~

= 1 at the Fermi
level due to the symmetry mismatch. Away &om the
Fermi level, an incoming wave is partially transmitted
as the bands with Aq symmetry become available in Co.
The recent spin-dependent photoemission experiment
shows that electrons with minority spin are more strongly
confined for k~~

= 0, which qualitatively agrees with our
result [see Fig. 3(a)]. However, unlike the Fe magnetic
layer, the complete confinement of electrons with the mi-
nority spin and k~~

——0 in the spacer is not expected at
the Fermi level.

Nordstrom et al. calculated the interlayer coupling
for (001) Co/Cu/Co sandwiches with 5-, 7-, and 11-ML
magnetic layers, using a Green's-function method. The
coupling for each period is obtained by partitioning the
k~~ domain. They found that the coupling of the short
period is almost the same for 5-, 7-, and 11-ML Co lay-
ers. A coupling strength of about 4 m J/m at 10 A.

for the short-period oscillation is inferred &om their re-
sult, which agrees well with our result of 6.7 mJ/m2. On
the other hand, the strength for the long-period coupling
varies with the thickness of the magnetic layer and the
coupling strength for the 5- and 7-ML case is much big-
ger than our result. However, for the ll-ML case, the
coupling strength decreased noticeably and became al-
most invisible for thicker spacers. Note that our result
corresponds to the case of infinite Co layer thickness.
Kudrnovsky et al. evaluated interlayer coupling of the
long and short periods for the 1-ML and semi-infinite Co
layers. They found that the long-period coupling is sup-
pressed for the semi-infinite Co layer and the coupling
strength for the short period is about 8.7 mJ/m, which
agrees well with our result. The change of electronic
structure in very thin Co layers and how it changes re-
Qection amplitudes in the Cu spacer need to be studied
further in detail.

There are several experimental results available for
samples grown by molecular-beam epitaxy (MBE) along

0—2

Energy (eV)
FIG. 3. Re6ection amplitudes as a function of energy for

the majority (solid curve) and the minority (dotted) spin for
the (001) orientation for (a) k~~ = 0 and (b) k~~

= ks.

the [001] direction. Johnson et al. measured the ex-
change coupling of Co/Cu/Co sandwiches as a function
of Cu layer thickness with Co layer thickness fixed at 60
A (about 35 ML). The measured coupling strength was
about 0.4 mJ/m at 6.6 Cu ML. Five antiferromag-
netic peaks were observed and their positions agree well
with the short-period oscillation predicted by the theo-
retical calculations of Nordstrom et aL, except that the
theoretically predicted peak at 9 ML was missing in the
experimental observation. Since there is a strong ferro-
magnetic peak (at 8 ML) preceding this antiferromag-
netic peak (see Fig. 2 of Ref. 19), the effect of interface
roughness may average out these two peaks and cause the
antiferromagnetic peak to be absent. Since the averaging
of the ferromagnetic and antiferromagnetic coupling may
depend on the degree of interface roughness, we expect
the coupling strength to be sample dependent. Indeed,
tHTs missing peak was observed by Bloeman et al.so with
a ferromagnetic bias. The observed coupling strength
is smaller than the theoretical predictions, which is ex-
pected, considering the efFects of the interface roughness
and finite temperature. Since only a few peaks were ob-
served, it is difEcult to obtain two periods in a reliable
way by fitting the data. This point is further illuminated
by comparing with other experiments. Qiu, Pearson, and
Bader reported the observation of three antiferromag-
netic peaks with a period of 5.5 ML with a number
of MBE grown Co/Cu/Co samples. DifFerent Co layer
thickness with 8, 14, and 20 ML were studied and the
results appear to be independent of the magnetic-layer
thickness. At first sight, it can be argued that the short
period is wiped out due to the interface roughness and
only the long period survives. However, the positions of
the observed peaks in Ref. 31 are almost out of phase
with the long-period antiferromagnetic peaks predicted
by the theoretical studies. Instead they agree well with
the theoretically predicted short-period peaks, if we as-
sume that the theoretical peaks at 9 and 14.5 ML were
averaged out with neighboring ferromagnetic peaks by in-
terface roughness. The coupling strength of this observa-
tion was 0.08 mJ/m at 6.2 ML, 2 which is much smaller
than the theoretical value for the short-period oscillation
(perhaps due to a strong smearing effect of the interface
roughness), but about four times bigger than our theo-
retical value for the long-period oscillation. Therefore,
we suspect that the peaks observed in Ref. 31 are su-
perpositions of long-period and short-period oscillations
(including the smearing efFect), while the short-period
coupling plays a more important role.

B. (110) orientation

For the (110) orientation there are four possible pe-
riods, associated with three different k~~'s: ki, k2, and
ks. ki ——(2, —2, 2)—is at the center of the neck of
the Cu Fermi surface and it is associated with two dif-
ferent extremal spanning vectors qi and q2 [Fig. 1(b)].
They lead to the periods 12.3 and 3.2 A. , respectively.
k2 —— (4, —4, 0)—with the spanning vector qs which
passes through the A point (projected in the plane) as
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FIG. 4. Bulk band structures of Cu and Co for the (110) orientation for (a) k~~ = kq = (-, ——,-)—, (b)

k~~ = kq = (—,——,0)—,and (c) k~~
= ks = 0. Here c =

shown in Fig. 1(c). qs gives rise to the 4.19 A. period.
k3 ——0 with the spanning vector q4 shown in Fig. 1(a),
which gives rise to a period of 2.7 A.

Bulk energy bands for k~~
= kq are shown in Fig. 4(a).

In Cu, there is a band gap and lower bands are completely
immersed below the Fermi level. These completely filled
bands make little contribution to the interlayer coupling.
Cu has four k vectors at the Fermi level, which are de-

noted by +k and +kp. Each of the two nonequivalent
spanning vectors qq and q2 is related to two possible com-
binations of +k and+kg. k~ ~ —k and —kg —+ kg lead
to qq, while k ~ kg and —kg ~ —k lead to q2. For
the incoming wave with k = k, there are two reHected
waves with k = —k and kg. We define each reHection
amplitude as r = r(k ~ —k ) and r~~ = r(k~ ~ k~).
Similarly, r~~ = r(—kg —+ kg) and r~~ = r( k~ ~ k~). —
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In Co with majority spin, the states near the Fermi level
have the same character (predominantly sp-like) as the
incident waves and both ~r~+

~

and ~r+b~ are small. For the
minority-spin electron, the incoming wave is almost to-
tally reflected, since the states available in Co now have
very different character (predominantly d-like). However,
the incoming wave is mostly reflected to —k rather than
kp although they have the same symmetry. This seems
to be related to the larger overlap between two wave
functions with k and —k than between those with k
and kp. This property can be explained only when hy-
bridized wave functions are examined. It is found that
l&r-I = l&rbbl = 0.43 and
a result, the shorter period is not detectable although it
has a bigger geometrical weight. In Ref. 19, these two
periods could not be separated by partitioning the k~~

domain because they corresponds to the same k~~. Our
result clearly explains why the shorter period is not visi-
ble. The coupling strength of the longer period obtained
in Ref. 19 is in good agreement with ours.

Figure 4(b) shows the band structure for k~~
= k2.

There are also four k, values (denoted by +k, and +kg)
in Cu at the Fermi level. Here k ~ kg and —kg ~ —k
correspond to the same spanning vector q3 which lead to
a period of 4.19 A. . Note that k, ~ —k, or —kd —+ kg
does not lead to an extremal spanning vector, which can
be seen in Fig. 1(c). Since the Fermi level falls within
the band gap in Co with the majority spin, the incom-
ing wave is totally reflected for the majority spin. For
the minority spin the incident wave is partially reflected,
since a state with the same symmetry can be found in
Co. This is in contrast with other extremal points where
total reflection occurs for minority spin instead of ma-
jority spin, and it shows that degree of confinement of
electrons with each spin depends on the detailed band
structure at each extremal point. For the incoming wave
with k, = k, (—kg), there are two reflected waves with
k = k~ or —k, and the reflection amplitude for state
kg (—k, ) is small. Thus, the interlayer coupling for this
period is very weak, which agrees with other theoretical
studies.

Energy bands for k~~
= ks ——0 are shown in Fig. 4(c).

Total reHection occurs for minority spin due to the mis-
match in band symmetry whereas large transmission oc-
curs for majority spin, since a state with character sim-
ilar to the incident wave is found in Co. The large ~Ar

~

combined with the large geometrical weight of the Cu
Fermi surface leads to very strong coupling (38 mJ/m )
for k~~

——k3. However, because the period is very short
(about 2 ML or 2.7 A), it is not likely to be observed
experimentally. Due to the lattice mismatch between Cu
and Co, it would be diKcult to get sharp interfaces. Two
points are worth mentioning here. First, considerable
strain is expected in the Co layer when it is grown on Cu
substrate due to the 4% lattice mismatch. In Co with
Ininority spin, the band with character similar to the in-
cident wave from Cu is just above the Fermi level [see
Fig. 4(c)]. This band might be lowered slightly below
the Fermi level due to the sample condition such as the
strain efFect. Thus, a very small change of band structure
can cause a big difference in ~b, r~ and thus the coupling

strength at this extremal point. Second, when the curva-
ture radius of the Fermi surface is large, the asymptotic
equation given in Eq. (3) is a good approximation only
for a relatively thicker spacer layer. When the Fermi sur-
face is truly nested as in (001) Cr (which is believed to be
responsible for the short period for that orientation), the
interlayer coupling should be obtained by an integration
over the nested region as done in Ref. 33.

For MBE grown samples grown along the [110] direc-
tion, only the long-period oscillation was observed. This
seems reasonable since the other possible periods are ei-
ther too short (about 2 ML) or too weak to be observed.
The observed peak positions are consistent with the the-
oretical calculation reported in Ref. 19. The measured
coupling strength is about 0.7 mJ/m at 8.5 A, which is
consistent with our result (1 mJ/m at 10 A.).

C. (111)orientation

0.4
Cu

' Co
majorit

Co
minorit

0.8

-0.4
—1

FIG. 5. Bulk band structures of Cu and Co for the (ill)
orientation for k~~ = kr, = ( —,—,——)—.Here c = —.

~3

Currently, there is a diKculty in growing good qual-
ity samples by MBE along the [ill] direction. On
the other hand, the (111) magnetic multilayers can pro-
vide a critical test for the theory, since there is only one
nonequivalent extremal spanning vector for this orienta-
tion and the period is long so that the coupling strength
will be relatively less affected by the interface roughness.
As shown in Fig. 1(a), the extremal spanning vector qL,

passes through the center of the neck of the Cu Fermi
surface for this orientation and the corresponding k~~ is

kJ. = (s, s, —
&)—.Bulk band structures for the (111)

orientation for k~~
= kz, are shown for —m/c & k, & vr/c

(k, = kpzzl) in Fig. 5, where the spacing between two ad-

jacent planes is c = a/~3. Note that the band structure
has a reflection symmetry about the axis at some Gnite
k„ instead of k, = 0 [reflection axis for (001) and (110)
orientations]. Since the band in Co with majority spin
has similar character to that in Cu at the Fermi level,
large transmission is expected. For the minority spin,
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FIG. 6. Re6ection amplitudes as a function of energy for
the majority (solid curve) and the minority (dotted) spin for

k~~
= kI, for the (111)orientation.

there are two waves with positive group velocities at the
Fermi level. One has the "wrong" symmetry and does
not couple with the incident wave. The other has the
"right" symmetry, but different character Ii.e. , the over-
lap of the state with the incident wave is small ( O. l)].
Thus, transmission is weak and Ir I

is almost one. The
magnitude of the reBection amplitude of each spin for en-
ergies around the Fermi level is displayed in Fig. 6. Near
the Fermi level, the electrons with the minority spin are
highly confined and ~r

I
decreases sharply for energies

below the Fermi level as new states with character sim-
ilar to the incident wave appear. Here, we find that be-
sides band symmetry, the detailed character of the state
also plays an important role in determining IErl and the
coupling strength.

All available experimental observations for this orien-
tation are in good agreement with our result. In the sam-
ples grown by MBE, the coupling strength was found to
1.1 mJ/m at 8.5 A (Ref. 6) and 0.54 mJ/rn at 10 A.

(Ref. 36) (to be compared with our result of 0.59 mJ/m
at 10 A.). In sputtered samples, the coupling strength is
weaker but of the same order of magnitude.

IV. fcc Co/Cuq Ni /Co SANDWICHES

In this section, we examine the exchange coupling of
magnetic multilayers made of Co and Cuj Ni within
the virtual crystal approximation. TB parameters for
paramagnetic Ni are taken &om Ref. 26 and the linear
interpolation scheme is used for the TB parameters of
Cuz Ni . Scattering due to alloy disorder is neglected
in our calculation. The change of period was already
given in earlier studies ' and we focus on the change of
coupling strength for the (111) and (110) orientations in
this paper. For the (110) orientation, the short period is
assumed to be completely wiped out due to the interface
roughness. Then, only one long period for each orienta-
tion needs to be considered, which is related to the neck
of the Cu Fermi surface. In Fig. 7, the coupling strength
in Co/Cuq Ni /Co is plotted as a function of the Ni
concentration for the (111) (solid curve) and (110) (dot-

FIG. 7. Estimated coupling strength in Co/Cuq Ni /Co
as a function of Ni concentration for the (111) (solid curve)
and (110) (dotted curve) orientation at D = 10 A. The cir-
cles are experimental results for Co/Cu/Co with MBE grown
samples (Refs. 6 and 36) for the (111)(solid) and (110) (open)
orientations. The squares are from the sputtered samples for
the (111) (solid) (Ref. 9) and (110) (opeu) (Ref. 7) orienta-
tion. Experimental coupling strength are from the first anti-
ferromagnetic peak and scaled to D = 10 A..

ted) orientation. The group velocity and the curvature
radius of the Fermi surface in Cu~ Ni at the extremal
point is calculated Rom the TB model since experimental
values are not available. For Cu (x = 0), our calculated
values are off' by 17 and 28% in the geometrical weight Io
for the (111) and (110) orientations, respectively. Note
that in the previous section Io is obtained based on the
experimental data for the Fermi surface. Most of the
error comes from the group velocity. To compensate for
this error, the theoretical curves in Fig. 7 are scaled down
such that the coupling in Co/Cu/Co is the same as that
obtained in the previous section.

The coupling strength increases as a function of Ni
concentration for the (ill) orientation. This is mainly
due to the change of the geometrical weight Io. Both
the average group velocity and the average curvature ra-
dius of the Cuq Ni Fermi surface increase with similar
rate. Ir+I and Ir I

remain almost unchanged. For the
(110) orientation, the increase of the coupling strength
is very small. As Ni concentration increases, the group
velocity slightly decreases and the curvature radius of the
Cu~ Ni Fermi surface slightly increases. As a result,
Io remains unchanged as a function of z. However,

I
4r

I

increases gradually since Is+I decreases as a function of
x while l~-I = 1 «r ail x

Our results are compared with available experimen-
tal data. The first antiferromagnetic peaks are taken
&om the data and their strengths are scaled to give cou-
pling strengths at D = 10 A. . Circles are &om MBE
grown Co/Cu/Co samples 'ss for the (111) (solid) and
(110) (open) orientation. Squares are &om sputtered
Co/Cuq Ni /Co multilayers. The coupling strength is
much weaker for the sputtered samples. For the (111)ori-
entation (solid square), the strengths are almost same
for x = 0, 10, 15, and 19 %. For the (110) direction (open
square) 7's2 the coupling strength decreases slightly as the
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Ni concentration increases. These trends do not com-
pare favorably with our results. This discrepancy im-
plies that the coupling strength in Co/Cui Ni /Co may
be affected considerably by disorder and defects in the
sputtered samples. In an earlier study, the coupling
strength of the alloy spacer is predicted to decay expo-
nentially as a function of x in the dilute limit. It is at-
tributed to the finite lifetime of the quasiparticle due to
the incoherent scattering.

V. CONCLUSION

We have presented a method to calculate the reflec-
tion amplitudes within the TB scheme and estimated
the coupling strength in Co/Cu/Co multilayers for all
possible periods for (001), (110), and (111) orientations
by using the spin asymmetry of the reflection amplitude,
Lr. The estimated coupling strengths are consistent with
other first-principles calculations and in good agreement
with experimental observations for (110) and (ill) ori-
entations. For the (001) orientation, the strength of the
shorter-period coupling seems to be weakened consider-
ably by the interface roughness and we could not extract
reliable strength for the longer period &om the experi-
ment. ~Ar~ varies from one extremal point to another
and is the crucial factor for determining the coupling
strength. We have shown that among possible periods
predicted &om the spacer Fermi surface some have too
small coupling strengths to be observed experimentally
due to the small ~Ar I When the incident wave is well
transmitted for one spin component and totally reflected
for another, strong coupling strength is obtained. This is
analogous to the complete quantum-confinement model.
The presence of a band gap or mismatch of band sym-

I

metry for incident and transmitted waves is not the only
reason for the large reHection amplitude. More detailed
properties such as overlap between incident and trans-
mitted states should be considered. Realistic band struc-
tures including sp-d hybridization are needed for this pur-
pose. When the incident wave is reflected into more than
one wave, the reflection amplitude can be totally difer-
ent for each reflected wave with the same symmetry. This
case is clearly shown in (110) Co/Cu/Co. The reflection
amplitude also depends on the properties of two wave
functions in the spacer corresponding to a given period
and when these two states do not couple well, the in-
terlayer coupling is very weak. For the transition-metal
spacer, this mechanism is expected to play an important
role since there are many bands near the Fermi level. We
have also calculated the change of the coupling strength
in Co/Cui Ni /Co system. Our results do not agree
with experimental data from the sputtered samples and
this discrepancy may be partly due to the incoherent elec-
tron scattering by disorder and defects.
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APPENDIX A: DERIVATION
OF THE INTERLAYER COUPLING

Combining Eqs. (1) and (2) in Sec. II, we have

J= — Im d k~~

deaf

(s) ) Tr [(Qo+L,FGoyR, F)n (G +L,AFGoyB, AF)n]
nn=1

(Al)

where Tr= 2 g J'dk„which denotes the trace over all Bloch states for the spacer material with o being the spin
index (g or $) and c is the distance between two adjacent atomic planes. The magnetic moment of the left magnetic
layer (L) is fixed to be upward. Then, the magnetic moment of the right magnetic layer (R) is parallel or antiparallel
to that of L depending on the coupling configuration. Suppose that there are X real wave vectors (denoted by k,+. ) for
waves propagating to the right with energy e'. There are also X real wave vectors (denoted by k, ) for waves traveling
to the left.

Carrying out the integral over k, for terms in the trace of Eq. (Al) via the contour-integral method, we obtain
(with v =F or AF denoting the ferromagnetic or antiferromagnetic configuration)

2
dk dk' k o. Gp k o. k o. T '" k'o. k'cr Gp k'o. k'o. T ' k, o. = X. -' ' 'R. .' ',

zj

(A2)

where 'R ' and 7Z v~ are N x N matrices with r -,.
'"' and r.,-' ' are reflection amplitudes,

~L,v, a' iIc. zL, L,v & —ik; zl.
U

=e ~ r. -' ' e2'5

~R,v, o iA;+zR R,v, a —ik. z~=e ~ r. -' ' e' i2 2'5

(A3) (A4)
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L,+ L,F,t L,AF, g
"22 "u "2
R,+ R,F,f R,AF, $

"x2 "u "u (A5)

The trace can be written as P„z[(A ) —(AA~) ], where

and A are the eigenvalues of 2N x 2N matrices 'R

and 'R with

( ~I,v,g~R, v,t 0'R"=
I ~I,v, g~R, v, g (A6)

and zl. (left) and z~ (right) are positions of the two in-
terfaces. The thickness of the spacer is D = lzl, —zRI.
While the up-spin (g) is always the majority spin in layer
I, it can be the majority or minority spin in layer R de-
pending on whether the configuration is ferromagnetic
(F) or antiferromagnetic (AF). Thus we have

APPENDIX B: CALCULATION
OF THE REFLECTION AMPLITUDE

H, (k([) = (k[), l;nl(H E)lk((, l + o", n'), (Bl)

where H is the Hamiltonian and E is the energy. The
matrix elements of H —E defined in the three-dimensional
TB basis (Ik, n)) can be written as polynomials in e'"*'
with H~ ~ as the coefFicients,

We calculate the reHection amplitudes using the em-
pirical TB method with two center integrals. Let N~
be the number of basis orbitals. In this paper, 8, p,
and d orbitals are included and N~ ——9. A planar or-
bital state is denoted by lk~~, l; n), where l designates the
atomic-plane position and o; labels the nine atomic or-
bitals. In the planar orbital basis, H( )(k~~) represents
a matrix which couples a given atomic plane to the 0.th
neighboring plane. The matrix element is given by

2N N

) (w' —~"') =4) (A7)

where Lr is the spin asymmetry of the reAection ampli-
tudes. When the two magnetic layers are made of the
same material (Co in this case), Ar;~ = ArP~ = Ar, and.
J is given in Eq. (3) of Sec. II.

When the spacer is thick, the integration over r and k~~

can be performed by using the contour integral and sta-
tionary phase approximation. When it is expanded as a
power series of n, the coeKcients can be shown to decay
as 1/n . Therefore, the interlayer coupling is dominated
by the leading term. Keeping only the leading term, we
have

m

(k, IH —Elk, ') = ) H( ), (kii)
' "*'. (B2)

c is the distance between two adjacent atomic planes,
A; is the wave vector perpendicular to the plane, and
m is the number of neighboring planes coupled to the
center plane on each side. In this paper, interactions up
to the second-nearest neighbor are included. For the fcc
crystal we have m = 2 for the (001) or (110) orienta-
tion and m = 1 for the (ill) orientation. From now
on, we consider the m = 2 case for convenience. It can
be easily extended to the general case. In order to cal-
culate reQection amplitudes, all bulk solutions including
the evanescent states (complex k, ) are needed. They can
be obtained from the "companion matrix"

0
0
0

H (+2) 'H (—2)

1
0
0

H(+2) 'H( —1)

0 0
1 0
0 1

H(+2) 'H(0) H(+2) 'H(+~) )
(B3)

where 1 is the identity matrix of the same dimension as H. The eigenvalues of the above matrix are e'" with k in
general a complex number. The eigenvector associated with k = k~ is denoted by C~ with its ith component denoted
by C~; (i = 1, ..., 2m%~). In general, the number of solutions is N~ = 2m%~ Note that C.~ N~+ (n = 1, 2, , X~)
represents the projection of the jth state onto the basis orbital o. at the zeroth atomic plane.

We consider a heterostructure which consists of materials I (with l = —1, —2, —3, . . .) and II (with l = 0, 1, 2, 3, . . .).
For an incoming wave (from the left) with k, = k; in material I, reflection occurs at the interface (midway between
l = —1 and l = 0). We express the wave function as a linear combination of bulk propagating and evanescent states.

—1 Ng Ng/2 —] Ng

I@;) = ) e*"'('+ ~ )') C Ik„, l;n, I) + ) r . ) e'"'('+ ~ ) ) C . Ik, , l;n, I)

);,) *' ('+'~') ) C,"„..Ik„, ;,II),
L=O

(B4)

where r;~ = r(k; ~ k ) is the reflection amplitude and t;~ = t(k; -+ k. ) is the transmission amplitude. k. is a k
solution (in general complex) of E = E(k~~, k, ) for bulk material I with the negative group velocity if it is real or with
Im(k ) ) 0 if it is complex. 42 On the other hand, a k solution for material II, k must have either a positive group
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velocity (if real) or Im(k ) ( 0 (if complex). The evanescent states decay exponentially away from the interface and
the change of the density of states in material I is mainly due to the states with real k~ unless the spacer is very thin
and the imaginary part of k for the evanescent state is very small. At the interface, all evanescent states should be
included to satisfy the boundary conditions. Boundary conditions are obtained by imposing (k~~, l; n~ (II —E)~vp;) = 0
for l = —m, . . . , m —1. These can be expressed in matrix forms. We define matrices Bq and B2 as

t/ o

0
H' "

II,I
o

0
H( —«)

II,I
H( —2)

II,I

H(+2)I-H'+'I
0

o
—H(+')I

0

o

( o

0
H( 2)

II
o

0
—H( 'II
—H' "II

H""I,II
H(+~)

I,II
0

H(+2)
I,II
0

The average is taken for the matrix HI II or HII I at the interface and this is a good approximation when two
)

materials have similar TB parameters such as Co and Cu. Using the eigenvectors of the companion matrix, we
construct matrices Qq and Q2 as

—i,k
N~ 2&

(0 p 2 2k& c+II &
'ck& c+II ~ 2 ~~ g2 gII

) ~ 0 ~
7 7 1 ) 2 ~ ~ N~/2l &

where 0 is a null column vector. A is a column vector which consists of reHection and transmission amplitudes such
that

A = (rilqlri2) ~ ~ ~ )lri Ng/2) til ~ ti2~ . )lti, Ng/2) ~ (B7)

where A denotes the transpose of A. Then, the boundary conditions can be expressed as

Bge '"''C, + (HgQg + B2Q2)A = o.

The reQection and transmission amplitudes which appear in A can be easily obtained from the above equation.
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