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Stochastic resonance and phase shifts in superparamagnetic particles
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In single-domain particles magnetic moments behave as overdamped rotary oscillators with a
potential oc cos 8. Thus they make a well-understandable object for studies of stochastic resonance
(SR). With a numerically exact approach, we analyze magnetic SR in superparamagnetic assemblies
including a situation when an external field creates a controllable inequality of the potential-well
depths.

INTRODUCTION

In recent papersi on stochastic resonance (SR), the
main model under investigation is an overdamped anhar-
monic oscillator with the potential U(q) = —aq + bq,
both a and 6 being positive. Though possible to realize
experimentally, this model does not at all exhaust the
variety of systems displaying the SR behavior. For exam-
ple, the importance of studies of magnetic SR had been
clearly outlined in Ref. 8. Hereby we present a considera-
tion of SR in a well-known material object—an assembly
of single-domain particles embedded in a solid nonmag-
netic matrix. With some minor changes it is valid also
for magnetic Buids suspensions of anisotropic ferropar-
ticles.

Single-domain particles of a ferromagnet or ferrite with
a uniaxial anisotropy provide a perfectly understandable
and simple in realization example of a bistable system
sensitive to the thermal noise. As it had been shown ex-
perimentally yet in the middle of the 1950s (Ref. 9) and
since then many times verified (see Ref. 10, for exam-
ple), with the particles of a size 100 A. in the tempera-
ture range about 100 K, one may easily proceed from the
conventional ferromagnetism (particles being tiny perma-
nent magnets) to superparamagnetism, i.e. , intense fluc-
tuational motion of a magnetic moment inside the parti-
cle. The parameter responsible for the change of regimes
is o = KV/k~T the ratio of t—he magnetic anisotropy
barrier (K is the first anisotropy constant and V the
particle volume) to the thermal energy k~T.

Since its foundation by Neel in 1949, the theory of
relaxation processes in single-domain particles had un-
dergone a considerable development. Here we em-

ploy it to analyze SR.
The below presented results give an account and a

set of conventional characteristics (signal-to-noise ratio,
phase shift) of SR in a rotationally bistable system with
the potentials U(6) = —a cos 8 or —a cos2 6 —b cos 6
which correspond to the cases of zero and finite bias mag-
netic field, respectively. We deal in the framework of the
linear-response theory speci6ed for SR in Refs. 1 and 3,
i.e. , express the results in terms of the dynamic suscep-
tibility y. However, unlike former attempts, ' while
evaluating y, we retain a big enough part of the relax-

ation spectrum, thus making our calculations numerically
exact. In other words, all the significant contributions of
intrawell modes are always taken into account. In this
aspect our paper is closely related to Ref. 21, where the
same potential has been analyzed numerically in the case
of color-noise driven stochastic relaxation.

I. GENERAL RELATIONS

Consider a uniformly magnetized (single-domain) par-
ticle with a magnetic moment p, = pe, where e is a unit
vector. The particle has a uniaxial magnetic anisotropy
(crystalline or other) with the energy density K; the di-
rection of the anisotropy axis is denoted by a unit vector
n. let the particle (or an assembly of identical parti-
cles) be fixed inside some nonmagnetic solid matrix. In
the case of an assembly, we assume that the particle con-
centration is small enough as to be able to neglect their
magnetic dipole-dipole interaction.

The orientation-dependent part of the particle energy
in the absence of external magnetic fields is

U = —KV(en)

where the variable (en) = cos 8 is in fact the normalized
projection of the magnetic moment on the direction of
the anisotropy axis. In the presence of a thermal bath,
the orientational distribution function W(e, t) of vector
e obeys the Fokker-Planck-like equation

—W+ATV=O, A=-
Bt 2070

J
i

WJU+JWi,
(kgyT

(2)

G(o) = exp(ax ) dx .

where vo is the decay time of the Larmor precession in
a bulk material (a dimensionless rate of spin-lattice re-

laxation), and J = (e x B/Be) is the operator of an in-
finitesimal rotation. The stationary solution of Eq. (2)
reads

Wo ——Zo exp(o cos 8), Zo ——4mG(o),
1
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The stochastic resonance is determined by the longitu-
dinal (with respect to n) modes of the relaxational prob-
lem (2). Since A is not a self-adjoint operator, it pro-
duces, together with the spectrum of eigenvalues (A, ),
two sets of eigenfunctions defined as

hereafter we use the notation x = cos8. The subject of
our interest is the correlator p2((x(t)x(0)))p, where the
averaging over x(t) is performed with the function W
from Eq. (6), and that over the initial conditions with
the equilibrium function Wp. Using formulas (4)—(6), one
gets

where + denotes the Hermitian conjugation. These
eigenfunctions are connected by relation

p, =Woe;,

p. '((x(t)x(o))) op'f dicho xxD w(x, t ~~x 0) wp

k2)- ()l e
—&a&.

k=x
(7)

and orthonormalized. Their expansion in the Legendre
polynomial series

p, =
2 ) (2l + 1) a&' P~(cos8), @, =) .

b&~ lP~(cos8),
l=o l=p

(5)

produces two sets of eigenvectors, (a~)~'l and (b~)~~l, the
components of which, as follows from Eqs. (4) and (5),
are related to each other by

= I'(R&t')o —(R)o(R')oj bv
(k) (k)

where the subscript 0 denotes the averaging over the equi-
librium distribution Wp from Eq. (3).

The Green function of Eq. (2), i.e. , the probability den-
sity of a state (x, t), providing the initial state is (xp, 0),
reads

W(x, t~xp) = ) pg(x) gg(xo) e
k=o

the summation here is taken only over the odd values of
k.

Transforming the correlator (7) by the Kubo formula,
one arrives at the longitudinal dynamic susceptibility

y(A) = y' —iy" = (p, 'B/k~T) ) m) A) /(A) + iO),

B = [(cos 8)p
—(cos 6)p (8)

of a single-domain particle with respect to the external
field H(t) = H exp(iAt); here we have introduced a no-

(k)tation so~ = B aI so as P au~ = l.
According to the fluctuational-dissipation theorem, the

spectral density function in terms of y reads

Q(cu) = 7rH' ~y~' (i((u —0) + 4 "~ y" (o)) .

Setting o) = 0 (the necessary condition of the onset of
SR) and comparing the signal-induced (b-function) and
noise (proportional to T) contributions in expression (9),
one gets with the aid of Eq. (8) the signal-to-noise ratio

B(o, 0) = oB). .
1+ Ar), 2

OtDk 7k+ -"(.-.) )
Wk7 k TP

1+ (Or), )2 '

(10)

and the phase shift

(t)(o, 0) = —arctan(y"/y') = —arctan ) )1 + 07k 1 + (07k)

where we have introduced the spectrum of relaxation times r), = 1/A)„and made use of the relation p = IV, where I
is the magnetization of a ferromagnet, valid for single-domain particles. As long as summations in Eqs. (10) and (11)
are infinite, the corresponding expressions represent exact results for SR in a single-domain particle assembly.

II. MAGNETIC STOCHASTIC RESONANCE

The sets of relaxation times vk and weight coeKcients mk were evaluated numerically. Substitution of expansions
(5) into the Fokker-Planck equation (2) yields a homogeneous tridiagonal recurrence relation
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The first term of this expansion describes the interwell
relaxation process responsible for SR proper —the right
maximum in Fig. 1. But at low temperatures o )) 1 and
due to that wi is exponentially large. Because of that
one has to set Ovi )) 1 for any finite &equency, and the
Brst term drops out. The second and following terms in
Eq. (15) render the contribution of intrawell relaxation
whose rate remains Bnite at T —+ 0. Substituting the
truiicated Eq. (15) into Eqs. (9) and (10), instead of zero
predicted by formula (14) one obtains R(cr -+ oo) =
Yielding the correct limiting value, Eq. (15) however, is
not accurate enough for a correct description of R(o')
at large o, i.e. , low temperatures. Indeed. , it is easy to
show that it gives (dR/do )o negative whereas the exact
numerical treatment proves that the initial temperature
slope of the R(1/o)curve . is positive —see Fig. 1. This
low-temperature increase of the function R(1/o') causes
the additional maximum at the signal-to-noise (SR) ratio
in superparamagnetic systems.

With minor complications our method provides a di-

rect way to study the case of nonequal potential wells.
Physically it means merely that some bias constant field
Ho is applied to the particle parallel to its anisotropy
axis n,. Then the energy function (1) is replaced by

U = —@Ho(en) —KV(en) (16)

where now the Brst term oc cos 6 breaks the bidirectional
symmetry of the potential. However, the two-minima
pattern for the potential U(8) exist as long as the bias
field is smaller than H, = 2K/I —the maximum coercive
force of a single-domain particle. In the range Ho ( H,
though the wells' equilibrium populations and transition
rates are difFerent, the magnetic moment still undergoes
interwell motions.

For this case the Fokker-Planck equation (2) redefined
with regard to Eq. (16) after the procedure similar to that
yielding Eqs. (12) and (13) turns into a pentadiagonal
recurrence relationship

(,)
/(/+ 1)

The conjugated one reads

l —1 (') 1 (')
(2/ —1)(2/ + 1) (2/ —1)(2/ + 3)

[/(/+ 1) —A ] /(*l+( /" b('
l 2l 1 1—1 2l+ 3 1+1

(/ —2)(/ —1)/ (;) /(/+ 1) (;) (/+ 1)(/+ 2)(/+ 3) (;l
(2/ —3)(2/ —1) ' (2/ —l)(2/ + 3) ' (2/ + 3)(2/ + 5) '+2

(18)

These recurrence relations are solved using matrix contin-
ued. &action method. ' Figure 2 shows how the decay
of SR takes place due to gradual shoaling of one of the
minima under growth of the bias field Ho. To character-
ize the latter, in Eqs. (17) and (18) we have introduced
a dimensionless parameter ( = @Ho/k~T. With such a
choice, the ratio s = (/cr does not depend upon temper-
ature and gives the strength of the external field in the
units of the internal (i.e. , anisotropy) one.

As the field strength grows, the position of the SR max. —

imum moves rightward, to higher temperatures. Nor-
mally, one would have expected a shift to the opposite
side because of the increase of the net relaxation rate.
To explain the "reversed" shift one has to note that the
presence of the field cardinally changes the temperature
behavior of the coeKcient B—the static susceptibility of
the system. At Ho ——0, when (cos6)o ——0, with the
temperature growth it diminishes &om 1 to 3 rendering
the initial susceptibility. However, under nonzero Beld
the e6'ect of saturation of the longitudinal magnetiza-
tion, yielding B ~ 0 at T ~ 0 becomes essential, and B

gmzos &om zero at T —+ 0 to 3 at T —+ oo. Due to that
at Ho g 0 the combination cr B [see Eq. (10)] acquires
a temperature maximum of its own. It is this specific
(static) temperature-dependent factor that reverses the
direction of the SR maxima shift.

III. PHASE BEHAVIOR,

The developed approach is very convenient to obtain
a comprehensive account of the frequency and tempera-
ture behavior of the phase shift in the system in ques-
tion. The problem has special interest since those de-
pendences for bistable systems have been put under dis-
cussion in Refs. 5 and 6 with contradicting conclusions.
Some particular numerical simulations on the same sub-
ject reported in Ref. 7, though interesting, are insuK-
cient to draw out a Bnal clarification.

Before proceeding to discussion of the details of the
phase behavior, we would like to emphasize after the au-
thors of Ref. 25 that neither lack nor presence of the
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phase maximum may be taken as a "signature" of the
SR proper. Actually, the maxima of R and ~P~ have es-
sentially different origin. Whereas the first one occurs
only under certain match between the interwell hopping
rate and the external &equency, the second depends just
on the very existence of intrawell transitions. A large dif-
ference in the positions of these maxima (cf. Figs. 1 and
3) and the existence of the ~P~ peak in the range Awo )) 1
where SR is clearly absent (cf. curves 5, 6 in Fig. 1 and
curves 2, 8 in Fig. 4), are the particular manifestations of
this fact. However, despite that there is no such a thing
as a stochastic resonance of the phase shift, the behavior
of ~P~ under SR conditions is definitely worth considera-
tion.

The main point of the argument set out in Refs. 5
and 6 is whether ~P~ increases or decreases in the low-
temperature limit at high &equencies, i.e., 07p & 1. Note
that the reversed characteristic intrawell time wp which
remains finite at T —+ 0 is the only natural frequency
scaling parameter here, since the interwell hopping rate
7y, being exponential in T, may not be used for this
purpose.

The temperature-&equency behavior of the phase shift
in magnetic SR evaluated by rigorous numerical proce-
dure is presented in Fig. 3 and with special emphasis to
high frequencies in Fig. 4. The asymptotic representa-
tion (15) helps in understanding the origin of the limit
P(0) = P(T + 0) and the form of the curves at low tem-
peratures, i.e. , at Oui —+ oo and 0 )) l. Under these
conditions Eq. (15) yields for the phase shift
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FIG. 4. Phase shift as a function of dimensionless temper-
ature at high frequencies; ATp = 1 (1), 2 (2), 10 (8), 50 (g).

dimensionless temperature, one gets for the initial slope
of the ~P(T) ~

curve

1/mr= p

= arctan —Aro
I

1 + —
I2 ( 2o)

which is in a full agreement with the numerical data of
Figs. 3 and 4.

DifFerentiating Eq. (19) with respect to 1/0, that is

That means that at any finite frequency the absolute
value of the phase always increases with temperature.
This result is consistent with the simulations of Ref. 6.
Apparently, the effect is entirely due to intrawell motions
and plays the main role in the temperature range where
the interwell process may be neglected. But as soon as
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against dimensionless frequency.
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the latter is activated, it immediately becomes the dom-
inating one. Together with creating conditions for SR,
the interwell process tends function [P(T) [

down to zero.
Given that, Eq. (20) is a direct proof of existence of a
maximum at the temperature dependence whatever large
0 may be.

An overview of the curves in Figs. 3 and 4 suggests that
at 07o )) 1 the position (1/o) of this maximum rather
weakly if ever depends upon O. Numerical investigation
confirms this conclusion. As it is shown in Fig. 5, the
value of (1/cr) first grows rapidly, then passes through
a maximum, and Gnally descends very slowly to the limit
(1/o. ) = 0 at 0 m oo.

Dealing in terms of intra- and interwell transitions, it is
easy to understand also the conclusion of Ref. 5 prescrib-
ing a monotonous decrease and no maximum of [P(T)[.
Though wrong for our case, it is valid for a system of
a special type the one which completely lacks any in-
trawell degrees of freedom. For such a model, instead of
formulas (11) or (15), the phase is exhaustively described
by a relationship P = —arctan Avi. Then for any 0,
however small, at T -+ 0 it tends to —7r/2 because of
the fast growth of the response time. Any heating causes
reduction of 7i and hence diminution of [P[. Comparison
of the two cases proves that with respect to the phase be-
havior, the systems with or without intrawell processes,
though both capable of SR, are qualitatively difFerent.

CONCLUSIONS

Let us sum up the presented theoretical evidence.
Single-domain particle assemblies ofFer a well-

realizable possibility to study all the scope of efFects per-
tinent to SR.

The kinetic (rotary diffusion) equation for the particle
magnetic moment may be easily solved with high pre-
cision thus taking into account contributions from the
intrawell motions which are essential for a correct de-
scription of SR, especially at low temperatures.

This kinetic model does not use any kind of adiabatic
assumption, and due to that is capable to render fre-
quency dependences of the SR characteristics.

By application of the external constant Geld of ar-
bitrary strength, the symmetrical double-well potential
may be gradually transformed into a single-well (dipo-
lar) one; upon growth of the bias field, SR maximum
noticeably shifts to higher temperatures.

In the low-temperature —limit the phase of magnetic os-
cillations [P] increases with temperature due to intrawell
relaxation processes.
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