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Theoretical study on quantum effects in triangular antiferromagnets
with axial anisotropy using the numerically constructed Bogoliubov transformation for magnons
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Quantum efFects expressed by the energy shift b,E from the Neel energy E "' and the spin reduction
AS for zero-point Auctuations of magnons are investigated theoretically for the triangular antiferromag-
nets (TLAP) on the xy plane with the one-ion-type axial anisotropy —

~D ~ (S') . We use a method of con-
structing the canonical transformation without knowledge of the analytical expression called the Bogo-
liubov transformation. As a result, boson-type excitations are obtained numerically. Here, characteris-
tic properties are discussed in comparison with those for TLAP with the plane-type anisotropy
+ ~D~(S'), for which the canonical transformation can be given in analytical form. Furthermore, the
calculation is performed to reveal quantum effects in a six-sublattice structure, which is formed in lay-
ered TLAF with the interlayer antiferromagnetic exchange interaction. The behavior of calculated b,E
and AS is discussed in the context of magnetic properties of VBr2, VCl&, CsNiBr3, and CsMnI3 ~

I. INTRODUCTIGN

Though quantum effects in spin systems of antiferro-
magnetic compounds have not beeri defined explicitly, ex-
pressions of their characteristic features using energy-
shift AE and spin reduction AS due to zero-point quan-
tum Auctuations for magnons have been well confirmed.
In fact, the calculations of AE and AS for two-sublattice
Neel states in a square-type lattice, i.e., the collinear spin
structure, are the archetype subject in the theory of
magnetism in antiferromagnetic compounds. '

However, quantum effects in triangular antiferromag-
nets (TLAF) have not yet been well confirmed because
TLAF contain essentially the spin frustration in the
three-sublattice structure. In Fig. 1(a), we show the
three-sublattice structure A, B,C on the plane. The cor-
responding first Brillouin zone for this magnetic unit cell
is illustrated in Fig. 1(b). It should be noted that the Neel
state is a noncollinear structure. In TLAF, therefore, the
type of anisotropy plays an essential role in magnetic or-
derings. Here, we consider the one-ion-type anisotropy.
As for TLAF with an anisotropy of the easy-plane type
(called TLAF-PL), the 120' Neel structure is well
confirmed as shown in Fig. 2(a). The theoretical study of
spin-wave expansion from such a 120 Neel structure on
the plane has been reported by Oguchi, in connection
with the quantum effect hS. Furthermore, Jolicoeur and
Le Guillou have also discussed AE and ES in TLAP
without any anisotropy, introducing the method of per-
forming a generalized Bogoliubov transformation by the
use of symmetric properties of the system. Recently, the
effect of interlayer exchange interaction on systems of
TLAP-PL has been studied by %'elz. In these re-
ports, the spiral symmetry of the spin structure en-
ables theoretical investigations using spin waves. There-

fore, the analytical canonical transformation (Bogoliubov
transformation) can be obtained, which leads us to an
easy estimation of quantum effects.

On the other hand, the study of quantum effects in
TLAF with an anisotropy of the easy-axis type (called
TLAF-AX), whose axis (z axis) is perpendicular to the
plane, has not yet been carried out because low-
symmetric spin structure [the deformed 120 structure as
shown in Fig. 2(b)) prevents the analytical diagonaliza-
tion of the Hamiltonian, though the magnon dispersion
has been thoroughly investigated by Suzuki and
Natsume in the context of the explanation for magnetic-
resonance properties in VBr2 (Ref. 6) and VC12 (Ref. 7).
In the present work, quantum effects in TLAF-AX are
investigated on the basis of a method of numerical con-
struction for canonical transformation.

B
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FIG. 1. The three-sublattice structure for the triangular anti-
ferromagnetic system on the c plane. (a) Sublattices A, 8, and C
are shown on the plane, where arrows al and a2 are primitive
vectors for this unit cell. (b) The corresponding first Brillouin
zone for the magnetic unit cell, in which primitive vectors on
the reciprocal lattice are indicated by arrows K and K~.
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FIG. 2. Neel structure in the three-sublattice structure for
the triangular antiferromagnetic system. (a) The 120' structure
on the c plane, which is well confirmed in the case where the an-
isotropy is of the easy-plane type (TLAF-PL). (b) The de-
formed 120 structure on the ac plane for the case of the easy-
axis-type anisotropy (TLAF-AX). The angle 0 is larger than
2m /3.

II. MODEL

1 Dcos8= ——1—
2 2Jz

(2)

for the number z (=3) of NN's for sublattices. It is
noteworthy that 0 is greater than 2~/3 because of the
effect of D As for tho. se for D &0 (TLAF-PL), the 120
structure on the c plane [shown in Fig. 2(a)] is well
known and has been discussed by several authors.
In fact, in the discussion, the comparison with charac-
teristic features in TLAF-PL is made. In Sec. VI, we ex-
tend our study to quantum effects in layered TLAF,
where the six-sublattice structure is adopted in considera-
tion of interlayer antiferromagnetic exchange interaction.

III. SPIN-WAVE IN THE EXPRESSION
OF HOLSTEIN-PRIMAKOFF TRANSFORMATION

For TLAF-AX, the Holstein-Primakoff formalism
transforms the Hamiltonian (1) into

&=E "'(1+1/S)+ QXg&I,Xg
k

(3)

in the linearized form, where Xk is the following column
vector:

X„=[az,b„,c~,a „,b g, c g ]

We discuss the following Hamiltonian for magnetic
moments of spins in the present three-sublattice struc-
ture;

&=2J g (S;.SJ) Dg (S )— (1)
(i j )

where (i,j ) takes nearest neighbors (NN's) for A —B,
B —C, and C —A as shown in Fig. 1(a). Situations of
D & 0 and D &0 in Eq. (1) correspond to TLAF-AX and
TLAF-PL, respectively. The Neel structure is the de-
formed 120 one on the ac plane for D )0 (TLAF-AX) as
shown in Fig. 2(b), where angles 8 between S~ and S~
(Sc ) are determined by

k
&q =2zSJ—

in which Cz and V& are the following complex matrices:

I U+fk U+f
U+f„Q V+ ff
U+ f~ V+f„Q

and (7)

U fg U fl,
W V f„'

U ft V ft
In the components of these matrices, fz is the complex
function (I/z)Xp exp(ik p) .of wave vector k-with dis-
tance vectors p for three NN's. In Eq. (7), functions I', Q,
U, V, U+, V+, and 8'are written as

I' = —2 cos8+2(D/2Jz),

Q = —( cos28+ cos8)+(D/2Jz)(3 cos 8—1),
U = —( 1 —cos8) /2,
V = —(1—cos28)/2,

U+ =(1+cos8)/2,

V+ =(1+cos28)/2,

W= —(D/2Jz)sin 8 .

As for TLAF-PL, the Hamiltonian matrix is presented
in Ref. 3. In this case, 6& and V& are permutation ma-
trices reQecting the spiral symmetry of spin structure. In
contrast, for TLAF-AX, rnagnons bk and ck are no
longer equivalent to magnon ak. There remains only the
inversion symmetry of bk and ck.

IV. NUMERICAL APPROACH
TO THE CANONICAL TRANSFORMATION:

DIAGONALIZATION OF MAGNON HAMILTONIAN

As for TLAF-PL, the canonical transformation for the
magnon expression introducing three kinds of boson cor-
responding to three sublattices has already been obtained
analytically by Oguchi as mentioned in Sec. I. Further-
more, Shiba has suggested that it can be also derived us-

ing the helical magnon method. This method has also

Here, the summation is taken over the magnetic Brillouin
zone shown in Fig. 1(b). In Xk, a, b, and c are Bose
operators for A, B, and C sublattices, respectively. In the
Hamiltonian (3), E '" is the Neel energy of the following
expression:

E "'= 2zNJ—S (2cos8+ cos28)

,'D—NS—(1+2cos8),
where X represents the total number of spins. Further-
more, the magnon Hamiltonian matrix 5'k in Eq. (3) is
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been recently adopted by Welz.
In general, for TLAF, the transforination Sk from Xk

of Eq. (4) to Yk for boson basis

Yk [~k Pk 1 k ~—k'P —k') —k]

is written as

[Yk,&]=(/+kgb„')Yk .

Considering that the left-hand side is

[ Yk,&]= QQk Yk,

we can write

(19)

Yk=4'kXk . (10) &Ak= &&k~k ~ (20)

We should determine the expression of Sk, which diago-
nalizes &k, that is

(4k ) &kSk —
—,Qk,

under the condition that Sk is the canonical transforma-
tion given by

(12)

Here, the diagonalized matrix Qk is

E'
k

(13)

and 0 is the diagonal matrix

As a result, we obtain numerical values of ek, ek, and e$
as eigenvalues of Xk without the knowledge of Sk. Con-
sequently, b,E in Eq. (15) can also be estimated numeri-
cally.

Here, it should be noted that the matrix Sk is not
determined uniquely as a result of numerical diagonaliza-
tion for the non-Herniitian matrix Xk. the coefficient of
each row remains indefinite, while magnon excitations
have already been uniquely obtained. Thus, we are faced
with the problem of how to obtain the canonical transfor-
mation. Hereafter, we discuss the method of selecting
the exact solutions for the canonical transformation nu-
merically as the central aim of the present work; we con-
struct the canonical transformation using Eq. (12), deter-
mining any coeScient under the condition that commuta-
tion relations for bosons hold ak, pk, and yk, i.e.,

[+k ~k'] ~k, k' [Pk Pk'] ~k, k'

[P„,)'„.]=0,

where 2 is the 3X3 identity matrix. Consequently, we
can obtain the magnon-excitation energy as

&=EN"'+DE+ g [ekaktak+efPtkPk+e$ytkyk] . (14)
k

Here, hE is the energy shift for zero-point fluctuations of
magnons written as

(15)

[rk ~k]=0
etc. As long as we can determine consistent values for
these coefficients, we claim that we numerically obtain
the exact solutions for the canonical transformation. The
mathematical discussion of this method will appear in the
general theoretical study in another publication by the
present authors. " Accordingly, a quantum effect ex-
pressed by Sk, for example b,S, is calculated numerically
in cases where the analytical expression for 4k is un-
known.

If we can find the analytical form of 4'k by using the sym-
metry of the system, we can discuss quantum effects using
analytical expressions. In such cases, 4k is conventional-
ly called Bogoliubov transformation. Indeed, TLAF-PL
is a typical example of such cases.

In contrast to this, we have not found the analytical ex-
pression of Sk in the present case of TLAF-AX because
of the low symmetry of the spin structure as mentioned at
the end of Sec. I. However, we can obtain values of ek,
ef, and e( numerically by the inethod proposed by White,
Sparks, and Ortenburger. ' The equation of motions is

ifiXk=[Xk, &]=jkXk .

Here, it should be noted that Xk written as

Xk=2QA'k

(16)

is not, in general, Hermitian. Inserting (10) into (16), we
obtain

V. NUMERICAL RESULTS OF MAGNON DISPERSIONS
AND QUANTUM EFFECTS

We show the dispersion of magnons in Fig. 3 for both
the cases of TLAF-PL and TLAF-AX. These figures
have already been reported by several authors. ' ' In
particular, the calculation of two-magnon Raman scatter-
ing has been performed by the present authors. As for
the dispersion in TLAF-PL [Fig. 3(a)], ' the sticking to-
gether of three modes at K reflects the symmetry for 120
rotation of spins on the c plane. On the other hand, the
sticking together appears at K for only two modes in
TLAP-AX [Fig. 3(b)], because of the symmetric proper-
ty of the exchange between Sz and Sc.

The calculated energy shift AE for zero-point quantum
fluctuations of magnons is shown in Fig. 4, where the
dependence on D/2J is illustrated. It should be noted
that hE in TLAP-AX has a minimum at
D/2J=0. 66+0.01. We remark that the derivative at
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D/2J=1. 5 is not continuous for TLAF-AX because the
spin state changes from the noncollinear structure to the
collinear one. Furthermore, the dependence of E "' and

Eg E +5E on X) /2J is also shown in Fig. 4. The
discontinuity of the derivative at D/2J = l. 5 is also seen
in the behavior of E .

In comparison with hE, the zero-point spin reduction
AS is seriously affected by characteristics of magnon
dispersion around k=O. In fact, Fig. 5 shows the depen-
dence of AS„(=bS~ = b,SC ) in TLAP-PL and
bS„,ESs (=AS&) in TLAF-AX on D/2J. The value
for any b,S becomes 0.26 at D/2J =0, which agrees with
the result in Refs. 2 and 3. The discontinuity of deriva-
tives at D/2J=1. 5 is also seen in b,Ss and b,S& corre-
sponding to that of hE. It should be pointed. out that the
value of spin reduction is essentially dependent on sublat-
tices, as expected from the spin configuration without the
spiral symmetry. In detail, b.S& ( =b.SC) is significantly
larger than b,S„in the region of 0&D/2J 5 1, because
fiuctuations of Sz (=Sc) are promoted more than those
of S„dueto the competition between J and D. In con-
trast, b,S~ ( =b,Sc ) becomes smaller than b,S„for
D/2J ~ l. 3+0.05, refiecting the precursor of collinear
structure for D/2J ~ 1.5. In the collinear structure, we
would like to point out that the spin reduction makes no
contribution to the total magnetization, i.e.,
4S~ =AS~+ASc. The characteristic behavior of 4E
and AS, in TLAP-AX discussed here can be obtained by
introducing the method proposed in the preceding sec-
tion.

FICx. 3. Calculated dispersions of magnons for ~D~ /2J =0. l.
(a) The dispersion in the first Brillouin zone illustrated in Fig.
1(b) for TLAF-PL (D/2J = —0. 1). Discussions on properties
of modes a, P, and y have appeared in previous papers (Refs. 2
and 8). (b) The dispersion for TLAF-AX (D/2J =+0.1). The
character of each mode has been reported in our previous study
(Ref. 5).

VI. SIX-SUBLATTICE STRUCTURE

In this section, we adopt the present method to the in-
vestigation of quantum effects AE and hS; in the six-
sublattice structure, which is formed in layered TLAF
with the interlayer antiferromagnetic exchange interac-

TLAF—

~ E/(JSNz/2)
02-

I

0
D/2J

FICs. 4. Calculated energy shift AE for zero-point quantum
fluctuations of magnons shown by the thin line. The unit is
JSNz/2. Furthermore, Neel energy E '" is shown by the
dashed line, the unit of which is JS Nz/2. The sum of these
two values is shown by the thick line of Eg/(JNz/2), where we
use S =1.

D/2J

FIG. 5. The zero-point spin reduction hS; shown for each
sublattice for both cases of TLAF-PL (D/2J &0) and TLAF-
AX (D/2J &0). For TLAP-PL, AS; has the common value of
S&, S&, and Sz. Such behavior has been reported by several au-
thors (Refs. 2 and 3). For TLAF-AX, b,S~ has a different value
from AS& ( =hS&). The behavior of each b,S; for TLAF-AX is
reported for the first time.



3404 Y. WATABE, T. SUZUKI, AND Y. NATSUME 52

I ~ I I IIII]

RATN
I ~ ~ I IIIII ~ I I ~ III ~

I
I I I I III ~

I
I I I I I ~ IIIQA

I

C'
0.6

'C

ENhe
—1

0.4

0.2

$ Q
2 10' 30

2J'/2J
0 I I ~ I I ~ ~ Il ~ ~ I I ~ ~ I ~ I I I I III ~ II I I I ~ IIIII

10 g Q2

2J'/2J

~ -......... ~ SA
B C

~ I I I ~ ~ I ~ I I ~ I IIII ~

FIG. 6. The dependence of AE /( JSNz /2) and
E "'/(JS Nz/2) for a six-sublattice structure on 2J'/2J are
shown by solid line for D/2J=O and by dashed line for
D/2J = 1.0. Furthermore, the ratios of hE/( JSNz/2) to
E "'/(JS Nz/2) obtained using S =1 are illustrated by solid
(dashed) lines for D/2J =0 (1.0) in the upper part of the figure.
The value of 10 for 2J'/2J corresponds to the three-
dimensional system. The six-sublattice structure for the layered
TLAF is schematically illustrated in the inset.

FICz. 7. The zero-point spin reductions hS& =AS& =ASc for
six-sublattice structure vs 2J'/2J are shown by the solid line for
D /2J =0. Furthermore, b S& and b,S& =b,S& for D /2J = 1.0
are shown by the dotted line and the dashed line, respectively.
Furthermore, crosses indicate expected values of hS& for VBr2,
VC12, CsNiBr3, and CsMnI3, while closed circles indicate those
of AS& ( =hS&) for the same compounds. Values of D/2J for
those compounds are described in the text, which are deter-
mined from experimental reports (Refs. 6, 7, 12, and 13).

tion 2J'. The Hamiltonian discussed in this section is de-
scribed as

&=2J g (S Sj)+2J' g' (S S))—D g(S )
(i,j) (i,j )

(21)

for spins S„,S~, Sc on a layer and S~., S~, Sc on the
adjacent layer. The schematic illustration of the six-
sublattice structure is given in the inset of Fig. 6. Here,

means the summation for interlayer NN's, i.e.,
2 —A', B—B', and C —C'. The calculation for this
six-sublattice structure is the natural extension of the dis-
cussion in Secs. II, III, and IV; directions of spins S~,
S~., and Sc. are opposite to those of S~, S~, and S~, re-
spectively.

As a result of the numerical calculation, Fig. 6 illus-
trates the dependence of b,E and E "' on 2J'/2J, where
D/2J is fixed to be 0 or 1.0. Near 2J'/2J =1.0, where
the system becomes the perfect three-dimensional antifer-
rornagnet, AE has a maximum. In the region of the one-
dimensional antiferromagnet, i.e., 2J'/2J &)1, bE de-
creases quite rapidly with increasing 2J'/2J. This is the
characteristic quantum effect for a one-dimensional sys-
tern.

In addition, we show characteristic features of AS, in
Fig. 7. It is easily seen that AS„.=hS~, AS~ =bS~, and
ESc =b.Sc. In this figure, b,S& ( =hS~ =b.Sc ) is shown
for D/2J=O by the solid line. This line indicates b,S
both for layered TLAF-PL and layered TLAF-AX. As
for the case of D/2J =1.0, ES„andb,S~ =b,Sc are also
illustrated by dotted and dashed lines, respectively, i.e.,
values of spin reduction for layered TLAF-AX are calcu-
lated. Values for hS; in the two-dimensional region for
2J'/2J « 1 show marked decrease with increasing
2J'/2J. However, this becomes logarithmic increase, as
2J'/2J increases in the one-dimensional region
2J'/2J )&1. As a result, this rapid enhancement of AS;

for 2J'/2J &) 1 reflects the well-confirmed' quantum
effect in one-dimensional magnets.

The corresponding values for AS; in magnetic com-
pounds are also indicated in Fig. 7; two-dimensional tri-
angular lattices VBr2 (Ref. 6) [VC12 (Ref. 7)] have values
of 2J'/2J =0.0125 (0.006) and D/2J =0.014 (0.00227)
for spin= —,'. On the other hand, the one-dimensional an-
tiferromagnet CsNiBr3 (Ref. 12) has 2J'/2J =54.8 and
D/2J=1. 05 for spin= 1. Furthermore, 2J'/2J=226. 19
and D/2J= l. 19 are reported for CsMnI3 (Ref. 13) for
spin =

—,'.
In order to understand quantum effects in connection

with the dimensionality of compounds on the basis of the
unified picture obtained systematically by the proposed
method, measurements of AS, by neutron scattering' are
desirable.

Quite recently, experimental study of magnetic phase
transition in mixed compounds Rb] K NiC13 has been
reported by Tanaka, Hasegawa, and Nagata. ' In this re-
markable system, a mixture of S =1 Heisenberg antifer-
romagnets on a deformed triangular lattice (DTLAF) is
realized with the easy-axis and easy-plane types of anisot-
ropy. Values of 2J'/2J are reported to be 125.26 [in de-
tail, 2J'=23. 8 K, 2J =0.38 K, and D =0.024 (Ref. 16)]
for x =0 and 1071.4 [2J'=15.0 K, 2J=0.028 K, and
D = —0.86 (Ref. 17)] for x = 1. Measurements have been
made of susceptibilities and torques for O~x ~0.78. In
the context of our theoretical work, it should be noted
that the phase transition from DTLAF-AX to DTLAF-
PL appears at x =0.38 with increasing x. On the basis of
our results, the splitting of spin reductions among sublat-
tices is expected at around x =0.38. We look forward to
measurements of hS; by neutron-scat, tering experiments
in this system.
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