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Dechanneling of a particle moving swiftly in a low-index direction of a crystal is caused by its
interaction with its environment, viz. , the electrons and phonons of the crystal. At temperatures
which are not too low the relaxation of Huctuations in the environment is rapid enough that the
environment may be regarded as a quantum heat bath. In this case the Heisenberg equations for
the system yield in a semiclassical limit a Fokker-Planck equation describing the dynamics of the
particle prior to dechanneling. The transverse diffusion coeKcient may be written compactly as
a time-averaged force-force correlation function. This viewpoint of dechanneling suggests how the
conventional theory may be modi6ed to describe the low-energy regime, as well as highlighting
the dechanneling problem as a prototypical example of a particle-heat bath system with nonlinear
dissipation. The problem thus has wider relevance to the study of particle-environment systems in
general.

I. INTRODUCTION

When a well directed beam of particles is aligned with a
low-index axis or plane of a crystal, its penetration depth
is found to be much larger than for random crystal ori-
entations. In these low-index orientations the trajectory
of a particle through the crystal avoids direct passage to-
wards atomic centers. Instead the impact parameter re-
mains sufIiciently large that weak scattering off successive
atomic centers gives rise to a guiding and focusing effect
that maintains the net forward motion of the particle for
many lattice spacings. This phenomenon is referred to as
channeling, and has found a number of practical applica-
tions, including its utilization in crystal structure analy-
sis, and in the diagnostic technique known as Rutherford
backscattering, amongst others. Basic theoretical work
on channeling is concerned primarily with calculations
of the effective transverse confinement potential holding
the particle in the channel, and of the friction forces act-
ing on the particle from the surroundings. ' Prom these,
other quantities of interest in the channeling efFect may
be computed. More recently, the channeling effect has
been investigated in bent crystals, where the possibility
is opened, for example, of measuring magnetic moments
of the channeling particles.

A channeling particle does not remain indefinitely in
its state of forward motion, but at some point may sufFer
a collision strong enough to remove it &om the channel.
This is called dechanneling. Since dechanneling causes
a decrease in the number of channeling particles, it in-
fIuences the quantitative interpretation of channeling ex-
periments. As such, the study of dechanneling has also
attracted considerable interest. In the classical theory of
dechanneling due to Lindhard, the channeling particle
is assumed to suffer a succession of small random defIec-
tions transverse to the channeling direction. As a result,
a phenomenological difFusion equation may be written

for the distribution function of the particle's transverse
energy. Dechanneling occurs when the transverse energy
exceeds the effective confinement energy of the channel.
Beloshitskii and Kumakhov, and Bonderup et al. later
gave more rigorous interpretations of the Lindhard the-
ory by showing that it can be derived, under suitable
approximations and still in a classical framework, from
a Fokker-Planck description of the scattering processes
within the channel. Quantum-mechanical considerations
were introduced into the problem by Ohtsuki, and a
dechanneling theory based on these ideas was presented
by Kitagawa and Ohtsuki. In this approach, the par-
ticle is treated semiclassically, but its interactions with
the crystal are described in quantum-mechanical terms.
For a heavy channeling particle the classical and quan-
tum approaches are equivalent under certain conditions.
However, the quantum approach permits a deeper study
of the physical processes afFecting the problem. Both the
classical and the quantum-mechanical approaches have
steadily been improved and refined.

In the present work a theory of dechanneling motivated
from the quantum heat-bath viewpoint is presented,
and it is shown that this gives a more complete descrip-
tion of the problem than conventional theories which are
recovered in limits of this new description. The basic
premise is that the particle motion along a channeling
direction in the host crystal is in many ways equivalent
to the dynamics of an irreversible system, e.g. , the mo-
tion of a Brownian particle. The host crystal acts in two
ways on the itinerant particle, presenting both a friction
force on it slowing it down, as well as a random force
causing diffusive behavior. The particle for its part dis-
sipates kinetic energy to the crystal, energy which for a
large crystal has a vanishing probability of returning to
the particle. (In reality the crystal is finite, but because
the crystal also exchanges heat with its surroundings, the
net effect is the same as taking an infinite crystal. ) It is
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clear that the crystal has a much more dominant effect
on the particle than the particle has on the crystal. In
the limit where the equilibrium properties of the crys-
tal are barely affected by the presence of the particle,
we may regard it as a heat bath. This results in a con-
siderable computational simplification which is used in
constructing the theory.

Since the work of Caldeira and Leggett, the most
popular method of handling heat-bath problems in
which dissipation is an important consideration has been
through the use of Feynman's path integral. In this
method the density matrix of the particle-environment
system is written as a path integral (in either real time
or imaginary time depending on the problem at hand),
following which the environment variables are traced out
by performing the relevant functional integrals over cyclic
paths, leaving just the reduced density matrix for the
particle alone. Since only Gaussian functional integrals
can be evaluated explicitly, the type of heat baths that
are normally used are restricted to those that can be ex-
pressed as a sum of simple harmonic oscillator degrees
of &eedom. However, this idealization is not always pos-
sible, as in the dechanneling problem where the envi-
ronment is very complicated. Although a path-integral
treatment may, in principle, be possible for this prob-
lem, quantities of interest can be obtained directly &om a
Fokker-Planck equation, and this Fokker-Planck equation
is obtained more straightforwardly by alternative means.

A major complication in the analysis is that the dy-
namics of the channeling particle does not permit linear-
response arguments to be invoked, except at very low
particle velocities where, in fact, treatment of ionization
effects becomes problematic. Indeed, in a region of great
interest, the Bethe-Bloch regime, the friction force act-
ing on the particle is proportional to v, which is clearly
nonlinear. The difficulty in handling nonlinear quantum
systems in general prevents a complete and rigorous so-
lution to the dechanneling problem. However, the more
modest objective of obtaining a Fokker-Planck equation
is attainable, ' and a derivation of such an equation
is sufficient for the further study of dechanneling. The
overall strategy employed in this particular work will
be to write the Heisenberg equations for the system of
particle plus environment in the form of a generalized
Langevin equation assuming a heavy channeling particle
and high temperatures, and then to transform to an ap-
proximate Fokker-Planck description assuming that the
crystal acts as a heat bath. The Heisenberg equations
at the starting point of the analysis form a complete
quantum-mechanical description of the particle together
with its interactions with the crystal environment. The
Anal Fokker-Planck equation is a contracted description
for an essentially classical particle undergoing stochastic
motion according to macroscopic &iction and diffusion
coefficients. These latter parameters are expressed as ex-
pectations of quantum-mechanical operators associated
with the underlying quantum heat bath. The nonlinear-
ity of the problem is manifested through the inapplica-
bility of the usual Auctuation-dissipation theorem to the
Fokker-Planck description.

The study of dechanneling is thus formulated in terms

of a particle in a heat-bath problem. The correspond-
ing Fokker-Planck description is possible for a heavy
particle in a high-temperature limit where memory ef-
fects in the environment are largely suppressed. Similar
Fokker-Planck equations have been derived before, but
the method used here is different. The theory reduces to
the conventional Lindhard energy diffusion equation in
the Bethe-Bloch regime, and the analysis clarifies some
of the implicit assumptions made in the Lindhard the-
ory, such as in the treatment of the environment. Mem-
ory effects in the environment can be introduced into
the theory perturbatively, but the resulting differential
equations are considerably more difficult to solve. The
particle in a heat-bath approach also suggests a possible
method by which the conventional dechanneling theory
can be modified to describe very low-energy particles.
At very low energies, ionization effects are important,
and this has hitherto precluded any reliable analysis of
dechanneling in this regime.

In Sec. II, the inQuencc of the crystal on the chan-
neling particle is expressed in terms of a quantum force
operator. Using a Markov approximation for this force,
dynamical equations governing the time evolution of the
particle and force are written. In Sec. III, a semiclas-
sical approximation for the particle is used to obtain a
Fokker-Planck description of the particle-crystal system.
Regarding the crystal as a heat bath, projective tech-
niques are applied to eliminate the force variable &om
the problem resulting in a reduced Fokker-Planck equa-
tion with a diffusion coefficient expressed as the time av-
erage of a force-force correlation function. In Sec. IV,
the total force operator is expanded to low orders in the
interaction potential, and explicit expressions obtained
for the stopping power and diffusion coefficient. In Sec.
V, the equivalence of the present theory to the conven-
tional quantum formulation of dechanneling is demon-
strated, and the force-force correlation function is used to
write down the plasmon, phonon, and core electron con-
tributions to the diffusion coefficient. Finally in Sec. VI,
a method of extending dechanneling theory to the low-
energy regime (where the Lindhard theory is not valid)
is suggested, and the relevance of the analysis to wider
particle-environment problems is discussed. Mathemat-
ical details of the projective techniques used in Sec. III
are given in the Appendix.

II. PARTICLE-ENVIRGNMENT SYSTEM

In this section we define the Hamiltonian for the prob-
lem, and write down the Heisenberg equations for the
particle operators. The influence of the environment on
the particle is expressed in terms of a quantum force op-
erator. A separation of time scales argument is advanced
to isolate slowly varying and rapidly Quctuating compo-
nents of this force. The particle Heisenberg equations
then resemble the Langevin equations for a Brownian
particle in a potential. The Mori-Zwanzig projection op-
erator formalism is used as a stepping stone to obtain a
linearized relaxation equation for the Quctuating compo-
nent of the force in a high-temperature, Markov limit.
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The resulting equations allow us to obtain a Fokker-
Planck description of the problem subsequently in Sec.
III. Finally, we comment on the validity of the separa-
tion of time scales argument.

The q = 0 component in the summation in Eq. (2.4) is
omitted since the crystal is charge neutral in absence of
the particle.

The total Hamiltonian for the system is

A. Heisenberg equations for particle
H = Tp+ H~+ TV, (2.5)

Consider a charged particle moving at fast but nonrel-
ativistic speed. s along a low-index direction of a perfect
unstrained crystal with no external applied fields. The
total Hamiltonian of the system comprises the particle,
electron, and lattice terms together with the respective
couplings. Forces acting on the particle are due to inter-
actions with the electrons and the lattice. These include
the force from the periodic crystal potential (or chan-
nel potential) arising from elastic particle-electron and
particle-lattice scattering, and the &iction and random
forces arising &om inelastic scattering. We wish to ex-
press these forces in terms of the above interactions, and
thereby elicit dynamical equations governing the system
evolution.

The particle-electron interaction is

H = Hp+HE+ 0;, (2.6)
~h

where Hz ——T„+U depends only on particle operators.
Note that U is defined to be that part of W independent
of electron or phonon operators, [U, H~] = 0.

rh

With the Hamiltonian H, the Heisenberg equations for
the particle operators are

where T„=p /2m, m and p are the mass and momen-

turn of the particle, and HE is the Hamiltonian for the
environment and can be written solely in terms of elec-
tron and phonon operators. 8 will contribute to both
elastic and inelastic scattering of the particle. Denoting
these contributions as U and H, , respectively, we rewrite
H as

2e
(2.1)

iMir(t) = [r(t), H], r(0) = r", (2.7a)

where r is the position of the particle, and its charge
is assumed to be +e. The summation extends over the
positions of all electrons in the crystal. The particle-
lattice interaction is

imp(t) = [p(t), H], p(0) = p,

where in the Heisenberg representation

iHt/s iHt, /s—

(2.7b)

(2.8)

Wr, = ) UL, (r —R,;), (2.2)
etc. , and Bq denotes a time derivative. Evaluating the
commutators in Eq. (2.7) gives

(2.3)

Further denoting the scalar product of l'z and (z as

4z . (z we have

W = W, + Wl, = ) C~ (~e*~'.
qgO

(2.4)

where UL, (r) is the particle-nucleus potential, and the
sum is over all lattice nuclei positions. A monatomic ba-
sis is assumed since a more complex basis does not change
the basic arguments. In Eqs. (2.1) and (2.2) the electrons
and nuclei in the crystal appear in separate sums. How-
ever, since only the more weakly bound electrons of any
particular lattice ion will generally be able to interact
strongly with the charged particle, in practice the sum
in Eq. (2.1) can be restricted to include only these latter
electrons, and the potential UL, (r) in Eq. (2.2) modified
to suit.

It is convenient to replace the two interactions above by
a single particle-environment interaction. Writing Vq ——

4me /q and Uz as the qth Fourier components of the
Coulomb potential and UL, (r), respectively, and p~

e '+'& and qz
——P . e '+'

& as the electron density
2

and lattice density operators, we introduce the vectors

B,r(t) = p(t)/m, (2.9a)

(2.9b)

F(t) is defined as the force operator, which we may write
as

F(t) = F (t) + F (t) (2.10)

where F' = —ih i [p, U], and F'" = —ih i [p, H, ]. If
any p dependence of U or H, is negligible, we may write
F = —B,U —B,H;. The force operator F(t) is itself gov-
erned by a Heisenberg equation. We could of course try
to solve approximately the heirarchy of Heisenberg equa-
tions. However, a more physically appealing approach
lends itself if we notice that by replacing t9,H; by a sum of
friction and "random" components, the above equations
resemble the Langevin equations of a Brownian particle
in a potential U. We argue that O, H; can indeed be writ-
ten this way. Stochastic methods then lead to tractable
evolution equations in a limit where the particle is treated
semiclassically.

Application of stochastic methods invariably en-
tails the use of the Mori-Zwanzig projection operator
formalism. i ' For the force operator F(t), this results
in a generalized Langevin equation with a &iction force
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comprising v(t) convoluted with a complicated memory
term, where v = p/m is the particle velocity and we
will use v for the magnitude of the semiclassical veloc-
ity. The friction force, or stopping power, for a heavy
particle is generally a complicated function of the par-
ticle velocity. ' For very low velocities a linear de-
pendence of stopping power on v is observed. For fast
particles the stopping power exhibits the characteristic
Bethe-Bloch v dependence arising from inelastic scat-
tering with electrons. At intermediate velocities there is a
crossover region between the above two limits. At much
higher velocities, relativistic corrections become impor-
tant. How this complete velocity dependence may be
extracted &om the generalized Langevin equation is not
obvious.

Other methods also exist for obtaining Langevin equa-
tions for a quantum system. Schmid used a path-
integral approach to obtain a generalized Langevin equa-
tion. However, the problems with path-integral ap-
proaches have been mentioned already in the Introduc-
tion: it is not clear how the general Hamiltonian of Eq.
(2.5) should be handled by this method. Ford, Lewis, and
O' Connell showed that a generalized Langevin equa-
tion can be written rather directly from the Heisenberg
equations when the interaction part of the Hamiltonian
can be written linear in terms of time-dependent oper-
ators. Indeed, Hu and O' Connell used this approach
to study a system of electrons and phonons interacting
with a "center-of-mass" coordinate ("particle" ), bearing
much resemblence to the system under study here. How-
ever, their treatment of phonons is simpler than here, and
the Hamiltonian they used is not sufIicient to recover all
known results on dift'usion coefIicients. Applying their
methods to the Hamiltonian of Eq. (2.5) leads to diffi-
culties since it is not clear how to manipulate the more
general form of the phonon operators.

Rather than proceed by one of these methods, we will
separate the force operator into systematic and random
components directly by a difI'erent method. The Mori-
Zwanzig procedure will be utilized subsequently to mo-
tivate a study of the random force, which has somewhat
simpler properties than the full force F(t).

B. Quantum force operator

brational motion at a level above its quantum-mechanical
zero-point motion (excluding any possible activated dif-
fusion, etc.). The amplitude of this vibration is smaller
the more massive the particle. The nonequilibrium state
of interest corresponds to the particle in forward motion.
Now, in addition to the random force, the particle ex-
periences a friction force due to inelastic scattering &om
electrons and phonons, which drives it back towards a
state of nominal rest.

In what follows, we denote the expectation of an oper-
ator A as

(A(t)) = Tr poA(t)l po = pzppt (2.11)

Taking the expectation of Eq. (2.12),

~(~ (t)) = (F (t)) (2.13)

where v = (v(t)) is the semiclassical velocity of the parti-
cle. Equation (2.13) tells us that the total particle energy
is infIuenced only by F'". Hence F'" can only arise &om
inelastic-scattering processes as originally intimated. On
the other hand, the particle kinetic energy operator gives

where po is the density matrix of the system at time
t = 0, p@ = e ~ H/Tre ~ H, and p„ is the initial den-
sity matrix of the particle. For simplicity we assume the
particle to enter the crystal in a momentum eigenstate
~Ko), so p„= ~Ko)(Ko~, although this initial condition is
readily generalized. In the analysis to follow in later sec-
tions, we will consider only the motion of a heavy chan-
nehng particle. The wave packet associated with such
a particle has finite extent (is "small" ), and a semiclas-
sical approximation may be made. In other words, we
will approximate quantum-mechanical operators associ-
ated with the heavy particle, such as its position and ve-
locity, by their corresponding expectations. Prom Eq.
(2.10) we see that the total force operator has compo-
nents arising from elastic-scattering processes and from
inelastic-scattering processes. We therefore examine the
efI'ect of these components on the motion of a semiclassi-
cal particle as defined above.

Consider the commutator of the total particle energy
operator II„(t) with II:

]Hp(t), H] = 2'tli (i(t) F (t) + P' (t) . v'(t)) . (2.12)

Before continuing it is useful to consider an anal-
ogy with a simple example from nonequilibrium
thermodynamics. When a quantity Q is in equilibrium,
the 8uctuations bQ it exhibits about its equilibrium value

Q may be ascribed to the influence of a random force,
e.g. , from a heat bath. Away from equilibrium, Q still
feels the random force, but in addition experiences a fric-
tion force which drives it back towards Q. In the linear
regime this description is embodied in the I angevin equa-
tion, and is one particular motivation for the use of the
Mori-Zwanzig approach. In the present context of a par-
ticle in a crystal, the equilibrium state is one in which the
particle is nominally at rest, i.e. , (v) = 0, in the crystal at
a finite fixed temperature. In this state, the particle is in-
fIuenced by random thermal forces which maintain its vi-

~ (T.(t)) = (F (t)+ F'"(t)) (2.14)

F'"(t) = -S.(t) + f(t). (2.15)

Since S„(t) is dependent on the velocity, we see that it
should have some relation to the friction force (this is
shown below), and f(t) will be any remaining contribu-

Since we expect the particle kinetic energy to be afFected
both by inelastic processes and by the crystal potential
(interaction with which is elastic), (F '(t)) may be iden-
tified as the force arising from the crystal potential.

Further, we separate F'"(t) into two components, S„(t)
arising by virtue of the net forward motion of the particle,
and f(t) being completely independent of this motion:
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tion to F'"(t). A simplification of the problem is possible
if we can separate the time scales of variations in S„(t)
and f(t). We discuss in Sec. II D under what conditions
this may be achieved. f(t) turns out to be rapidly vary-

ing, whereas Sz(t) varies much more slowly with time.
Assuming this separation of time scales, we define the
time average over a time interval e as

and (2.19) are identically equivalent. A further term (the
frequency matrix) is absent from Eq. (2.19a) due to the
Hermiticity of f(t). Here M(t) is the memory function
(matrix), and (t(t) has the appearance of a stochastic
quantity. The Kubo scalar product of quantities A and
B (scalar or vector) is defined

t+r/2
A(t). = — dt'A(t'). (2.i6)

(A(t)B(t'))Ic = p
—' dp(A(t —imp)B(t'))

0

-(A(t)) (B(t')). (2.20)

The time s is sufficiently long that the average of f(t) van-

ishes over this interval, f(t), = 0, but short enough that
the mean particle velocity does not vary significantly, so

S„(t) = S„(t). Then we have F'"(t), = —Sz(t).
Using Bt, ——v . O„and averaging Eq. (2.13) over s,

(S„(t))= B,E, — (2.i7)

C. Dynamical equation for random force

The random force f(t) is effectively F'"(t) evaluated
for the state of equilibrium defined by (v(t)) = 0, and as
such should exhibit only equilibrium Huctuations. This
permits a very useful approximation to describe the dy-
namics of f(t). We use Mori's analysis to rewrite the
Heisenberg equation that governs f(t), viz. ,

ia9, f(t) = [f(t), II], (2.is)

as the generalized Langevin equation

t
l9gf(t) = — dt'M(t —t')f(t') + (f (t),

0
(2.19a)

(fg(t)f(0))~ = 0,

Kt()6(')) ™(— ')( (o) (o))

(2.i9b)

(2.19c)

with the initial condition f(0) = f. Note that Eqs. (2.18)

where E = (H„(t)) is the total energy of the particle
once we have smoothed out any rapid Huctuations aris-
ing from the force f(t). Therefore D,E is the net rate
of change in particle energy with displacement, which is
just the stopping power. Denoting the magnitude of this
stopping power as S„, we write (S„(t)) = uS„(there is
no minus sign here because E decreases with r), with
u = v/v being a unit vector pointing in the direction of
motion of the particle. Thus we call Sz(t) the friction
force operator, and f(t) the random force operator. In
principle, we could also expect a rapidly varying com-
ponent of force arising from elastic-scattering processes.
However, Lindhard shows that for a sufficiently fast mov-
ing particle this is not so. In Sec. IV we obtain an expres-
sion for (Sz(t)) which we show in Sec. V to be identical
to the usual expression for stopping power.

If A and B are vectors then AB is the outer prod-
uct. Equation (2.19c) is an expression of the fluctuation-
dissipation theorem for the random force Huctuations.
The angular brackets appearing in Eq. (2.20) are expec-
tations as defined in Eq. (2.11).

There are two features of Eqs. (2.19) that make an ex-
act solution of the problem very difficult. These are the
Kubo scalar product, and the memory function M(t),
neither of which can be evaluated exactly. However, we
argue below that at "high" temperatures the Kubo scalar
product simplifies to an ordinary correlation function,
and M(t) becomes efFectively a 8 function. These re-
sult from the main consequence of the high-temperature
condition, that is that the thermal energy 1/P = kr3T
becomes large compared to other energy scales, and cer-
tain quantum processes in the environment become sup-
pressed (short lived). As one example, in metals, quan-
tum corrections to the conductivity tend to zero at tem-
peratures above 4 K, at which point the bulk macro-
scopic condictivity is given by just the classical Drude
formula. As another example, in superconducting ma-
terials, superconductivity is quenched above the critical
temperature. Thus, at sufficiently high temperatures, in
practice exceeding only a few Kelvin, all such quantum
coherence eKects in the environment are largely domi-
nated by thermal Huctuations.

Considering only high temperatures of course means
that the emerging theory will only be applicable at these
temperatures, but this is not a problem since channeling
experiments are not usually conducted at extremes of
temperature. In any case, energy dissipated by the chan-
neling particle will presumably cause local heating suffi-
cient to smear many of the quantum e6'ects in the envi-
ronment in the immediate vicinity of the particle, even at
extremely low temperatures. Thus the high-temperature
condition may actually be valid at lower ambient crystal
temperatures than the arguments below imply.

The force fiuctuations f(t) arise fram the local environ-
ment of the moving particle. The arguments above show
that coherent excitations in the environment, by which
we mean Huctuations in the electron or lattice density
operators, are very short lived at the sort of tempera-
tures under consideration. In this case, imagine the en-
vironxnent to be divided into identical blocks (or cells)
of coherent regions, with the force f(t) on the particle
being due to blocks lying on or near the trajectory of the
particle. The size of a block will depend on the charac-
teristic "coherence length" of the Huctuations. At rela-
tively high temperatures this will be of the order of the
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interatomic spacing. Assume that the coherent fluctu-
ations within these blocks have a characteristic lifetime
wp, which is dependent on the temperature through scat-
tering rates of excitations within the block. Two impor-
tant points are evident regarding these coherent excita-
tion Buctuations. First is that fluctuations in spatially
separate blocks are uncorrelated, since the Quctuation is
spatially confined to within a block. Second is that tem-
porally consecutive fluctuations within the same block
are also uncorrelated, since the fluctuation is also tem-
porally confined. to within a time duration 7p. Since
different fluctuations are uncorrelated, we see that over
sufBciently long time scales the Buctuations develop a
Markovian behavior, meaning that one Buctuation be-
comes independent of previous fluctuations for a sufB-
ciently long time interval between them. We will use this
observation below.

Consider one particular block lying near the trajectory
of the particle. As the particle moves past this block, it
experiences a force Quctuation for a duration of time 7 p
due to a coherent excitation Huctuation (i.e., electron or
lattice density Huctuation) within the block. If the parti-
cle is moving so rapidly that it leaves the vicinity of the
block within the time 7-p, then the actual force Quctua-
tion it feels only has a significant magnitude for a time

which is less than 7p. If however 7p is suFiciently
small, then the particle will feel this force for the dura-
tion ~ = ~p. Thus v. is the effective time duration
over which the particle feels the force due to a coherent
excitation Quctuation within a block. Because of this,
and recalling the arguments of the previous paragraph,
the random force f(t) felt by the particle for times much
longer than to + T becomes independent of (i.e. , uncor-
related to) the force at time to, so the "memory" of the
random force goes to zero M(t) ~ 0 for t )) w . In other
words, over time scales much longer than v the particle
does not see the full details of the memory effects but
only the efFective memory function

uct are those for which 1/P hcu. Since P & P, the
integrand in Eq. (2.20) may therefore be approximated
by its P = 0 limit, which leads to

(f(t)f(0)) = (f(t)f(0)).
—= (f(t)f(0)) —(f(t)) (f(0)). (2.23)

(f(t)f(0)). = (f(0)f(0)) (2.24)

Such behavior is characteristic of an underlying Ornstein-
Uhlenbeck process,

B,f(t) = —Af(t) + ((t), (2.25a)

This is the high-temperature limit of the Kubo scalar
product. Another way of viewing this would be to con-
sider the lifetimes of coherent excitations in the environ-
ment. These lifetimes are dominated by the strongest
scattering mechanism operative in a particular temper-
ature range, and may be expressed in the form 7.

p oc

T " for some power d, and some temperature range.
Generally d & 1 for scattering mechanisms in three
dimensions ' so 7 p will decrease more rapidly with
temperature than does P. Since w & w~, we see that for
sufficiently high temperatures, the inequality ~ & hP
should approximately hold. Now P & P in the integrand
of Eq. (2.20), so w & hP; and since Eq. (2.22) is applica-
ble over times t » v, we obtain the condition t )) hP.
Inserting this into the expression for (f(t)f(0))rc gives
again Eq. (2.23) as above. In fact, Eq. (2.23) also follows
from Eq. (2.20) upon taking 5 ~ 0, suggesting a classical
limit. However, this is not a true classical limit, since the
expectations are still of quantum-mechanical operators,
and may be referred to instead as a classical approxima-
tion.

Collecting the above results together, we have for the
high-temperature behavior of the second moment of f(t),

M(t) = 2Mb(t), t » ~ . (2.21) (j(t)f(0)). = o, (2.25b)

This constitutes a Markov approximation for the random
force fluctuations. Additionally, the very short lifetimes
of the coherent excitation fluctuations imply that the real
part of M becomes very large, dominating the imaginary
part. Thus putting Re M = A, Eqs. (2.19) and (2.21)
together then give

(f(t)f(0))K = (f(0)f(0))Jc' "' (2.22)

which represents the long-time relaxation behavior of the
second moment of f(t). The parameter A gives a measure
of the degree of correlation between coherent Quctuations
at different times.

A further simplification arises in the high-temperature
limit of the Kubo scalar product defined in Eq. (2.20).
Recall in this limit that the thermal energy 1/P becomes
large compared to other energy scales, i.e. , 1/P )& he@

where her represents the characteristic energy scale of
quantum processes in the environment. Thus, the typical
energies contributing strongly to the Kubo scalar prod-

(j(t)j(t')). = 2A(f(0) f(0)).~(t —t') (2.25c)

where t —t' )& w, and ((t) is a Gaussian white noise
source. Equation (2.25) describes the small "equilib-
rium" Quctuations of the force operator when we con-
sider the channeling of a fast particle at not too low tem-
peratures. An analogous equation governs the long-time
velocity diffusion of a Brownian particle, for example.

D. Separation of time scales

The above analysis shows under what conditions the
separation of time scales we alluded to earlier arises. At
high temperatures and for a fast moving particle, the
force (f(t)) felt by the particle fluctuates over a time 7

On the other hand, because the friction force felt by a fast
moving particle is comparatively weak (proportional to
v in the Bethe-Bloch regime), the mean particle veloc-
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ity only changes signi6cantly in an interval many times
the duration v . Thus whereas (f(t)) changes over a time
scale w, (S„(t)) changes over a time scale much longer
than this. We define s in Eq. (2.16) to lie somewhere
between these two limits.

to a semiclassical approximation for the particle. 24 We
also replace the force operators and (~(t) by their expec-
tations. From the discussion in the previous section, we
may write (F&i(t)) = —U'(r~), and

(3.2)

III. FORMULATION OF DECHANNELING

B~r~ (t) = p~ (t) /m, (3.la)

B|pz(&) = F~(&) —Sg(&) + fg(&), (3.1b)

Bif~ (t) = —Af~ (t) + (i (t), (3.1c)

(3.1d)

where D~„= (f„(0)f„(0))„and t —t' )) v
Although it appears that we may go directly now to a

Fokker-Planck equation, the fact that none of r~, p~, or
f~ commute with one another makes a suitable distribu-
tion function dificult to de6ne, although it should reduce
to something resembling a Wigner function after "inte-
grating out" the force fg. Rather, we proceed as follows.
We assume a heavy channeling particle. The wave packet
associated with this particle will have little extent, and
we can replace the operators r~ and p~ by the classical
variables r~ and p~, which are the mean position and
momentum of the particle wave packet. This corresponds

The Heisenberg equations for the particle operators r
and p provide a real-space descri. ption of possible tra-
jectories the particle may follow. If we confine ourselves
to initial conditions resulting in particle motion along a
low-index direction of the crystal, the problem at hand
is to 6nd the probability of the particle dechanneling at
any particular time or depth. We will show that from
the dynamical equations for r", p, and f derived in the
previous section, suitable approximations yield a Fokker-
Planck equation &om which quantities of interest may be
calculated. .

When the forward momentum of the particle is much
greater than its transverse momentum, the I indhard con-
tinuum potential is applicable, 4 and we may separate the
motion of the particle into components parallel and trans-
verse to the channeling direction, with no coupling be-
tween the two. Dechanneling then requires us to study
the transverse component of the particle motion. De6ne
n~ to be unit vectors perpend. icular to the channeling di-
rection. For planar channeling, the index p takes only
one value, and n„ is the direction normal to the plane.
For axial channeling, p can take two values. The cor-
responding vectors are orthonormal, n„n = 8„, and
span the plane normal to the channeling axis. Projecting
Eqs. (2.9) and (2.25) in the direction of n„, and denoting
the vector with components r"„as r~ (and likewise for

p~) f~) etc.):

where the initial momentum of the particle is po ——hKO,
and the forward momentum is taken to be much larger
than p~. With (f~ (t) ) = f~ (t) and ((~ (t) ) = (~ (t), we
obtain Rom Eq. (3.1) the Fokker-Planck equationsi for
the distribution function P(r~) p~) f~):

B,P = (I + L; + ALg)P,

pp~ + U,'(r~),pg |9 0
fA Brg Opz

(3.3b)

8I; = —fg.
Bpg

(3.3c)

0 ( )9).
I
&i+Dr

)9f~ ( )9f~ )
(3.3d)

(3.4)

More general situations can be handled by continued use
of the diffusion tensor.

We next introduce the heat-bath concept into the prob-
lem. Till now we have regarded the particle as a sub-
system interacting with its environment (the crystal),
the particle and environment comprising the total sys-
tem. Now, the kinetic energy of the particle is negligible
compared to the internal energy of the crystal. Further,
the relatively high temperatures we assume imply corre-
spondingly large relaxation rates for density Huctuations
(large w~), in addition to significantly decreased corre-
lations between the fluctuations (large A). So energy
lost by the particle is distributed rapidly amongst the
many degrees of freedom of the crystal. Consequently,
we see that the equilibrium properties of the crystal
are only slightly d.isturbed by the action of the parti-
cle, whereas the particle is markedly inHuenced by the
crystal. The crystal thus has a property resembling that
of a heat bath: it drives the particle towards an equilib-
rium ("rest") state, but is in turn affected negligibly by
the particle.

The force Quctuations on the particle arising &om this
heat bath are just given by f~. The equilibrium distri-
bution function for f~ is described by the steady-state
equation

(3.5)

glvlng

For simplicity, we approximate the crystal as being
isotropic about the channeling direction, and write the
force difFusion coefficient as (no summation over the re-
peated indices)
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(3 6) D„= lim dte' ' „ t „0
Assuming the crystal to be a heat bath requires that
the distribution of the force Huctuations remains approx-
imately p,q(f&) irrespective of the presence of the par-
ticle. In this approximation, we may eliminate the en-
vironment variable f~ from the problem altogether by
projecting the evolution of the system onto a state in
which the f~ distribution is always p,q(fi). 2 s4 The
large A limit implied by the high temperature we have as-
sumed further allows this projection to be implemented
as an expansion in A . To lowest order in A, the
evolution equation for the reduced probability density
o.(r~, p~) = Jde P(r~, p~, f~) is (see Appendix):

PJ ~
U/( )(Ot m Or~ ' Op~ )

8 ( 0
~
pp~+ D„~o, (3.7a)

Bp~ )

where

(3.7b)

This expression is valid for time scales much longer than
although the equation itself is independent of time.

Equation (3.7b) follows from Eq. (3.8) upon using Eq.
(2.24). The equivalence of Eq. (3.8) for the difFusion
coeKcient to the expression given by the Ohtsuki-Nitta
theory is demonstrated in Sec. V.

Equation (3.7) as it stands is still complicated to solve.
In most channeling problems, the velocity of the channel-
ing particle is high (in the Bethe-Bloch regime) and the
friction coeKcient p is quite small. This is equivalent to
the underdamped (i.e., low &iction) limit of Brownian
motion, and corresponds to when the energy of the par-
ticle changes slowly. In this case, Eq. (3.7) may be sim-
plified by transforming the difFusion in r~, p~ space into
a diffusion in the space of the transverse particle energy.
This reduction was studied originally by Kramers by
transforming the equation to action-angle variables, and
then averaging over the angle variable. Stratonovich3
has also studied this problem. In the context of channel-
ing, the transformation to an energy variable was stud-
ied by Beloshitskii and Kumakhov. Their result is the
energy diffusion equation written by Lindhard. In prin-
ciple, the underdamped limit also describes the case for
very 1ow channeling particle ve1ocities, where the friction
coeKcient can also be quite small.

In the limit A -+ oo, higher-order corrections to Eq.
(3.7a) may be ignored.

Equation (3.7a) represents the Fokker-Planck equation
for an essentially classical particle. It is only valid at
"high" temperatures as discussed in Sec. II C. The pres-
ence of the heat bath manifests itself in the appearance
of diffusion and friction terms, which are expressed as
thermal averages of quantum-mechanical operators asso-
ciated with the environment. The semiclassical nature of
the description is evident in the presence of classical ("lo-
cal") variables describing the particle, and quantum vari-
ables describing the infj.uence of the environment on the
particle. Equation (3.7a) is analogous to Kramers' gen-
eralization of the Liouville equation to include stochastic
effects, corresponding to the Fokker-Planck equation
for a Brownian particle in a potential U, (r~). The dif-
ference is that p and Dz are not related simply through
the Einstein relation, reflecting the fact that Eq. (3.7a)
does not emerge &om usual linear-response arguments.
Note that because (~(t) in Eq. (3.lc) is just a white noise
source, the above equation can be obtained in the limit
A -+ oo by the direct elimination of f~ in Eq. (3.1) using
the steady-state condition B~f~(t) = 0, and then trans-
forming to a Fokker-Planck equation, giving again the
above. Higher-order corrections when A is large but 6-
nite may be found as shown in the Appendix.

Fokker-Planck equations of the above form have ap-
peared before in dechanneling theory ' '~ although the
above has been obtained by altogether different means.
We regard U (r~) as the continuum potential well known
in channeling theory. ' The diffusion coefBcient may be
written more in the form of a transport coeKcient as

IV. EXPANSION OF FORCE OPERATOR

The analysis in Sec. II left us with the quantities
U, (r~), Sz, and D„ for which we did not obtain explicit
expressions. Our aim in this section is to approximate
these quantities by constructing a perturbation expan-
sion of the force operator to low orders in the interaction
potential W. For the stopping power this is a reason-
able procedure since a fast particle couples only weakly
to the environment, so the Born approximation should
be valid. Reasoning along Quctuation-dissipation lines,
we may expect Dz to also be adequately expressed in a
Born approximation, since D„ is the zero-frequency com-
ponent of the spectral density of force fIuctuations, and
S~ represents the dissipation. (Note, however, that the
usual fIuctuation-dissipation theorem does not apply to
fast channeling particles. ) This expectation is justified a
posteriori by the good agreement observed between the-
ory and. experiment.

A perturbation expansion of the expectation of the
force operator is readily developed. For convenience we
consider the time evolution of the particle-crystal system
from the in6nite past and use the interaction

By using this form of interaction we ignore any transient
effects as the particle enters the crystal. We have also in-
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troduced an expansion parameter g into Eq. (4.1) to help
us keep track of powers of the coupling coeKcients in the
interaction. We will later set this equal to 1. The in-
teraction here is expressed very generally, and when per-
forming explicit calculations later in Sec. V, we will find
it more useful to write the interaction in specific forms
appropriate for the actual processes under consideration.

Equation (4.1) allows the force operator to be written

where r = (r), and (. .)a denotes a thermal average with
respect to the environment density matrix pE. We may
show that this corresponds to the unperturbed crystal
potential acting at the point r by using a cumulant ex-
pansion of ((z)@. Denote the Bravais lattice vectors by
R~. (which coincide with the mean lattice ion positions
for the simple lattice assumed), and consider the density
operator

P(t) = S'(t)E(t)S(t), (4.2) —iq R~ —iq s~
q (4 8)

with the S matrix defined

S(t) = T exp
I

ih ' —dt'W„(t') I, (4.3)

where s~ denotes either an electron position relative to
Rz, or a lattice ion displacement, and the sum is over
all electrons and lattice ions. The expectation of e
may be evaluated by a cumulant expansion:

where T is the Wick time-ordering operator, and the
overbar denotes an operator in the interaction picture:

(e ' ")g = e = exp ) —,G„(q)

(~q i (Tp+H~) t/h~ i (Tp+H g )4/hj (4.4)
where G (q) are the cumulants (with X = iq s~)—

Noting that the force operator may be written E(t)
B,W„(t) w—hich is first order in g, we see that the ex-

pectation of the force may be found from
(4.10a)

(4.5)
(4.10b)

A compact diagrammatic expansion of this expecta-
tion is possible using the Keldysh method404i (with a
few simplifying assumptions concerning the environment
Hamiltonian HE to ensure that Wick's theorem works
smoothly). Although we have recourse to this, the fact
that we are interested only in low orders of the expansion
in R'„affords a simplification which avoids any further
complications. To this end we expand the S matrix to
first order in g, S(t) = 1+gSi(t), obtaining

W„(t) = gWi'l + g Wi l = W„(t) + 2 Re[W„(t)Si(t)].

(4 6)

This gives directly the low-order expansion of E(t) that
we require, since from this we can extract expressions for
U,'(r), S„, and D„.

We consider the matrix elements of W„(t) with respect
to the environment states ln), where II~ln) = Ru ln).
Diagonal matrix elements of W( ) give no change of en-
vironment state, and so should contribute only to the
crystal potential. To verify this, we find the expectation
of W~ l (putting g = 1):

(4.7)

G (q) = (X )@ —3(X )@(X)@+ 2(X) (4.10c)

and so on. 42 The quantity W(q) comprises expectations
of operators, and is independent of the index "j," so

w'(g) )
C

(4.11)

f'"(t) = —). In)(nl~. W (t)ln')(n'I.
ngn'

(4.12)

Although this does not contribute to f(t) = (f(t)) di-

rectly, fi l(t) affects the time evolution of f(t) through
the strength of the fluctuations in ((t). Note that the
above expression is not to be interpreted as a solution to
the Langevin equation, Eq. (2.25), which it clearly is not,

where G is a reciprocal-lattice vector. Thus (W~il) may
be written as a sum over only reciprocal-lattice points,
and must correspond to the unperturbed crystal poten-
tial at a point r. This is the lowest-order contribution to
U, (r).

The off-diagonal matrix elements of lV( ) do not con-
tribute to the trace, and so do not contribute to any
expectation values. However, these matrix elements do
contribute to the diffusion coefBcient D„, and hence give
the random force operator to lowest order in g:
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but as yielding the Born approximation for D„when in-
serted into the force-force correlation function, Eq. (3.8).
We use Eq. (4.12) to explicitly evaluate the difFusion co-
efficient in the next section.

We will ignore off-diagonal matrix elements of the
second-order term W~ ~, since these are higher-order con-
tributions to D„. Instead we look at the expectation,

(W~ l) = 2 Re Tr poW„(t) Si(t)
t

= —2 Rei 5 ) p dt'(Ko~(n~W„(t) ~n')
nn'

x(n'IW (t') ln) IKo) (4.13)

As before, the n = n' term in this can arise only from
elastic processes. Excluding this term leaves the inelastic
&iction force,

(5.2)

with Eq. (4.12) defining the random force operator

f~(t) = x) )—q~e'"" "In)H„„(q)
q ngn'

i(i r( (~ iHot/—s (5.3a)

H„„(q) = (n~@~ (~~n'), (5.3b)

fusion tensor. For dechanneling studies it turns out to
be more useful to de6ne a "transverse" diffusion coeK-
cient D~ which is the sum of the diagonal components
of the diffusion tensor, since this enters directly into the
Lindhard theory. is Thus from Eq. (3.7), to lowest order,

S„=—(u . ol, W ~ i );„, (4.14)

where u = v/v, and "in" indicates that we exclude the
n = n' term in the averaging. We show in the next
section that Eq. (4.14) is equivalent to the stopping power
formula in the Ohtsuki-Nitta theory. The components of
—((9,W~ l);„orthogonal to u contribute to the random
force f(t).

OO

Dg ——— dt ) qL q~@~C'~
qq'

xK;„(q, —q') J(q, q'), (5.4a)

where Ho ——T„+H~. Inserting this into Eq. (5.2) gives

V. DIFFUSION COEFFICIENTS
(5.4b)

In this section we show that the force-force correlation
function given in Eq. (3.8) reduces to the Ohtsuki-Nitta
expression for the diffusion coefficient in a simple limit.
The Ohtsuki-Nitta expressions are the standard expres-
sions of the conventional quantum theory of dechannel-
ing, and have been shown to reduce under certain condi-
tions to the classical expressions of the Lindhard theory.
Using the force-force correlation function we then derive
the plasmon, phonon, and core electron contributions
to the diffusion coeKcient. Finally, we show that Eq.
(4.14) reproduces the correct stopping power formula in
the Ohtsuki-Nitta theory. To facilitate the analysis, we
assume that interactions between the valence electrons,
phonons, and core electrons can be neglected, so the en-
vironment state vector can be factorized as

(5 1)

where ~@) is a many-particle state for the valence electron
population, and ~P) and ~g) are the corresponding states
for the phonon gas and the core electron population.

J(q, q') = (Ko~e'~' ' e' '~ ~Ko), (5.4c)

where

(t) iHst/s( iH@t/s— (5.4d)

-
(t) iTpt/s- iTpt/s— (5.4e)

The scalar product 4~ (~ is implicit in the above.
K;„(q,—q ) is a density-density correlation function, and

( .),„ is defined

(5.5)

K;„(r+ a„r' + a, ) = K;„(r,r'), (5.6a)

with p = e ~ "/Tre ~ s being the statistical weight
of an environment state ~n), and Hg~n) = her ~n). Writ-
ing K;„(q,—q') in real space as K;„(r,r'), we note that
it has the following invariance properties:

A. Correspondence with Ohtsuki-Nitta theory
(Refs. 12 and 13) K;„(r+ ag, r' + ag) = K;„(r,r'), (5.6b)

Instead of the diffusion coefBcient Dz, we consider the
difFusion coefFicient per unit length D = D„/v, where v
is the semiclassical velocity of the particle. The v arises
when we substitute t in the Fokker-Planck equation by
z, the distance traveled along the channeling direction,
with v = dz/dt. D is a diagonal component of the dif-

Iq~+q& ——I, q +q, =0, (5.7)

where a is an arbitrary vector pointing along the chan-
neling direction (recall the continuum potential), and a~
is a lattice vector pointing transverse to the channeling
direction. With q = (q~, q ) and q' = (q&, q'), Eqs.
(5.6) give
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(5.8)

where g is a reciprocal-lattice vector such that a, g = 0.
This notation is appropriate for axial channeling, but is
easily modified to describe planar channeling. Now

Tp(K) = EK~K), EK = h K /2m

B. Plasmon contribution

Approximating the valence electrons by a homoge-
neous free-electron gas we write

for an arbitrary particle state ~K). Inserting a decom-
position of unity into Eq. (5.4c), and with e'~'~K)
~K+ q),

H- (q) = —(@-IV~&~l@- )

V~ = 4vre /q,

(5.15a)

(5.i5b)
J( t) g i(E000 E~—)t/rtq, q& —& e

x(K [K+ q)(K+ q)e'g'(Ko). (5 9) ~q, J 4+go
ko.

(5.15c)

Using the semiclassical substitution r" ~ r, the difFu-
sion coefBcient may then be written,

1 d Q ) 5 qg (qg —g)I'(q, A)e's',
2v (2vr) s

&

(5.10a)

where the ~@„) are many-particle (Fock) states of the
electron gas, and c& and ck are creation and annihi-
lation operators for states with momentum k and spin
cr. For a homogeneous system only the g = 0 term con-
tributes to the g summation in Eq. (5.13), so the trans-
verse diffusion coefIicient is given by

2~
I'(q, 0) = —) p„H„„(q)H„„(—q+ g)

x 8(hB —Ru„„), (5.10b) where

Di = — qiV S(q, (u),
1 d q

2V 2'7l
(5.16)

where the g summation has been approximated by an
integral, ~ „=u —u, and hO = EK, —EK, z is
the energy lost by the particle. Finally, taking the zero-
temperature limit of I'(q, O), i.e. , p ~ 8 0, making a
change of variables g ~ —q + 2g, and approximating
the g summation by an integral gives Nitta's expression
for the difFusion coefficient,

D~ ——— 5 (q~ —-g )
1 dq dg

2v (27r) s (2m) 2

x ) S„(q—2g, q+ ~g)e's',
n+p

(5.11)

where

S„(Q,Q') = —Hp„(—Q)H„p(Q')b(50 —hcu„p) (5.12)

is Ohtsuki's inelastic-scattering factor. ' I'(q, 0) is the
finite-temperature equivalent of this inelast;ic-scattering
factor summed over n.

Note that from Eq. (5.10) we may also write the diffu-
sion coefIicient in the alternative form,

S(tt, te) = f ftte' '(pe(t)pe(0)) (5.17)

0 = Kpv = q.~, hq (( &Ap (5.18)

The summation in ( .);„has been extended to include
n = n' since (@ ~pz~@ ) = 0, so the angular brackets
in Eq. (5.17) denote an ordinary thermal average. Also
the momentum transfer in the scattering process, hq, is
assumed to be negligible compared to the initial momen-
tum of the particle, hKp.

Approximating S(q, u) by its zero-temperature, long-
wavelength limit; where the contributions to the polariza-
tion of the crystal are solely from plasmon excitations,

'(q Ldp
S(q, u)) = "b((u —(d„), (5.19)

where u„ is the plasma frequency. Inserting this into Eq.
(5.16) with (t) = (bv,

is the dynamic structure factor at finite temperature, and

S~ (tt, tt) = f te'~'((S(t)jt (0));„ (5.i4)

becomes the usual dynamic structure factor for density-
density correlations, S(q, 0), when g = 0 and (. .);„ is
replaced by an ordinary thermal average. This forms a
more convenient starting point for some of the calcula-
tions below.

1 d qD = — ) q . (q —g)C)
&

x S;„(q,0)e'g', (5.i3)

where

q — —" ln +1, 520

where q, = ur„/v~ is a wave-vector cutoff, 4s with v~ being
the Fermi velocity. This formula was derived originally
by Kitagawa and Ohtsuki. The plasmon contribution to
the difFusion coeKcient is generally not significant and is
usually ignored.

C. Phonon contribution

In the harmonic approximation, the lattice ion dis-
placement u; = R; —R; is expanded to lj.near order in
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II- (q) = (&-IU~~~I&- ) (5.21a)

phonon creation and annihilation operators. Thus
W~ = ) lq ei,gl coth -pkui, g,4%M~kg

(5.26b)

(t) ) —iq R~ —iq ui(t)

2

(5.21b) 2W(q, q —g) = ) yi, q cosh~i, q(2Ph —it), (5.26c)

ui(t) = ).l NM I eix(oiwe
h

2NM~i, p )
hq ei,g(q —g) e„"„

gkX =
2NMui, i, sinh 2Pkuk~

(5.26d)

icogyt q ik R& (5.2lc)

dt e'"'(q, (t)q,', (o)). (5.22)

where N and M are the number of ions in the crystal and
their mass (a monatomic basis is assumed), and a&& and

ak& are creation and annihilation operators for phonon
states of wave vector k, mode A, energy Lukp, and polar-
ization ei,p. lP ) are Fock states for the phonon system.
The polarization vector satisfies ek&

——e
Recall that the definition of the diffusion coeKcient

D~ involves only oR'-diagonal matrix elements. This cor-
responds to the inclusion of only inelastic processes in
the evaluation of S;„(q,w). However, it turns out to be
easier to first compute S(q, w), and then And S;„(q,w) by
subtracting off the elastic-scattering contribution. This
means we do the calculation with diagonal matrix ele-
ments initially included, and then subsequently subtract
out their contribution.

Thus we start by finding

Wz is the Debye-Wailer factor, and W(q, q) -+ W~ when
tm0.

Now using a standard trick in the Einstein
approximation

e"' '" = ) e" I„(y), (5.27)

where I (y) is a modified Bessel function of the first kind,
gives

S(q, (u) = 27rNe ' ' 'e~" ~-

). I (yi x)~(~ —n~i x).
kA ~=—~

(5.28)

The term proportional to 8(m) in this expansion, i.e. , the
n = 0 term, is the elastic-scattering contribution, and
must be subtracted off to obtain S;„(q,w). For a large
crystal N —+ oo, so ykp -+ 0. Now

Inserting Eq. (5.21b), the density-density correlation
function in Eq. (5.22) becomes

( /2) n+ 2v'

I„(y) = )
v=0

(5.29)

K(q, q —g) = )
jl

~( —ig u~(t) i(ti —g) u((0)) (5.23)

so as y ~ 0, retaining only the r = 0 term in the expan-
sion)

(5.3o)
We use the Einstein approximation wherein each lattice
ion is assumed to vibrate independently of all others.
Anharmonicities may be treated by using a cumulant
expansion of the expectation in Eq. (5.23), although to
lowest order this just gives the Einstein approximation
again. ' lf we neglect anharmonic effects from the out-
set, we may evaluate K(q, q —g) as follows. For op-
erators A and B which both commute with [A, Bj, the
Baker-Campbell-Hausdorff formula reduces to

S(q, ~) = 27rNe &b(~), (5.31)

The larger the n, the faster this tends to zero. This
shows that for large crystals only processes involving a
small number of phonons (i.e. , small n) are important.
Since the phonon energies are negligible compared to the
energy of the channeling particle we may therefore make
the replacement h(ur —nui, p) b'(w). Then using Eq.
(5.27) again,

A B A+B IA) B]/2 (5.24) from which

In the Einstein approximation u~ (t) and u~ (0) are easily
shown to satisfy the requirement for Eq. (5.24) to hold.
Then Eq. (5.24) together with S;„(q,ur) = 2vrN e ~ —e

kA

Io(yk), ) b(~)

(ug&u~~) =~»~» (e """—1) ' (5.25) (5.32)

gives

(q q g ) N e Wc t Wp —g +2 W (Q P I) (5.26a)

For N ~ oo we have Io(yi, g) ~ 1. Inserting S;„(q,w)
into Eq. (5.13), changing variables q + —q + 2g, and-
doing the q, integral,
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N dqp2

2v t 27') .«~ —
4& )U-~ +g»U~ +si2

g
—~/+8/2 g QJ +S/2 (5.33)

D. Core electron contribution

Vfe describe the core electrons as a Slater determinant
of single particle Hartree-Fock orbitals lo.). In a tight-
binding approximation, the overlap of orbitals centered
on adjacent atoms is ignored. The core electron density
operator is

which is Nitta's result. Nitta, and Ohtsuki and
Nitta show that this expression reduces to the Lind-
hard formula for single phonon scattering when lr~l is
large, and to the Kitagawa-Ohtsuki formula when lr~l
is small. The preceding analysis is diH'erent &om that
usually given, and reveals additional steps required to
justify the final result.

ticular limit, this expression reduces to the Lindhard for-
mula for the contribution of close electron scattering.

E. Stopping power

1
lim

g —+0+ Cd —Z'fj

1= 'P + i,—xh(~), (5.38)

where P denotes the principle part, allows Eq. (4.14) to
be written as

1 dt) v. qC~C~ K;„(q,—q') J(q, q').
Iqq

(5.30)

&;„(q,—q') and J(q, q') are defined in Eq. (5.4). The
arguments leading to Eq. (5.10) then give

Here we express Eq. (4.14) for S& in a form recognizable
as the stopping power. The identity

N N,
—iq-(R +sg)

j=l L=1
(5.34) ) hv . qI'(q, A)e's',

v 27r
(5.40)

, ) q~ (q~ —q)V~V ~+g2'U 27l

xh l~'"~'-" +, l~ )e"'~(fl), (5.35)

where "in" denotes that only ofF-diagonal matrix ele-
ments are taken. The ground state lyo) may be written
as the Slater determinant

(ri». "Ixo) = 1

N '.
detl(r. I~) I (5.36)

whence

where the j and l summations are over the lattice ion
and core electron positions, N and N are the number
of lattice ions and the number of electrons on a lattice
ion, and sL is the position of the lth electron relative
to the lattice ion position K~. Since the core electron
excitation energies are generally large compared to the
thermal energy P but small compared to the energy
of the channeling particle, we approximate ly„) by the
ground state lyo), and put b(O —u„„)= h(A). Then the
di6'usion coeKcient may be written

hv . q = 50 = h((u —(u„), (5.41)

whence in the zero-temperature limit, and putting E
Lu„,

cL

g n+0

xS„(q —2g, q+ zg)e's' (5.42)

which is the formula for the stopping power in the
Ohtsuki-Nitta theory S(Q, Q. ') is Ohtsuki's inelastic-
scattering factor defined in Eq. (5.12). The similarity
in structure between the formulas for D~ and S„[Eqs.
(5.10) and (5.40)] suggests that some form of fluctuation-
dissipation result should hold, but this will not be of the
usual form since we are not in the linear-response regime.
We do not examine this point further here.

VI. CONCLUSIONS

with I'(q, Q) as in Eq. (5.10b). From Eq. (5.18) we may
write for a fast particle

xV i V i ) f (g)—qw+ 2g qx+ 2g

) f p( qJ + g)fp (q& + g) e (5 37)
nP

where f p(q) = (nle '&'IP) is the Compton scattering
factor. Nitta, Ohtsuki, and Kubo show that in a par-

A formulation of dechanneling theory based on a par-
ticle in a heat-bath approach has been presented. Rather
than considering a density matrix as has been done in the
past, we started instead from the Heisenberg equations
for the particle position and momentum operators. This
has the great utility of allowing ready visualization of the
problem in the semiclassical limit of these equations. It
was argued that the force operator could be separated
into a component arising from the crystal potential, a
friction component arising by virtue of the particle mo-
tion, and a random component independent of the parti-
cle motion. It was further argued that at high tempera-
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tures and for a fast particle, the Heisenberg equation for
the random component effectively becomes a Langevin
equation. A Fokker-Planck equation was then obtained,
&om which the force variable was eliminated by regard-
ing the crystal as a heat bath. The resulting reduced
Fokker-Planck equation allows various quantities of in-
terest in dechanneling theory to be calculated.

This Fokker-Planck equation is valid only for a heavy
particle, and at temperatures typically above a few
Kelvin, where coherent quantum processes in the envi-
ronment have very short lifetimes. Much of the quantum-
mechanics in the initial Heisenberg equations is not
present in the final theory. For a heavy channeling
particle, quantum-mechanical corrections to its behav-
ior are small, so a semiclassical approximation allows the
particle to be treated essentially classically. The high-
temperature condition simplifies the otherwise unsolvable
particle-environment interaction, allowing only an efFec-
tive Markov limit of this interaction to be retained. This
limit also allows explicit reference to the environment
to be removed &om the problem altogether. The final
contracted description of the problem thus achieves an
effective decoupling of the dynamics of the particle &om
that of the environment. The dynamics of the particle is
governed by an essentially classical stochastic equation,
which is what we are primarily interested in. However
the environment is still governed by quantum dynam-
ics, and although the corresponding equations do not ap-
pear explicitly in the final theory, the quantum nature
of the dynamics is nevertheless implicit in the parame-
ters describing the inQuence of the environment on the
particle, namely the &iction and diffusion coefficients. In-
deed, these parameters are expressed in terms of thermal
averages of environment operators [see Eqs. (5.10) and
(5.40)], clearly showing the continued quantum dynam-
ical nature of the environment, despite the appearance
of the parameters in a classical equation. The heat-bath
approximation tells us that we are in effect neglecting the
inQuence of the particle on the dynamics of the environ-
ment which is assumed to be in a state of equilibrium
always.

The point of view used in this work has led to some use-
ful insights into the dechanneling problem. The analysis
clarifies how the Lindhard theory treats the environment.
In particular, only the Markov limit of the quantum prop-
erties of the environment are retained: the electron and
lattice ion density Quctuations are assumed to have an in-
finitesimal lifetime, and memory effects are ignored. The
transverse diffusion coefficient in this limit may be writ-
ten in a very compact form as the zero-frequency compo-
nent of the spectral density of random force Quctuations,
clearly showing the neglect of memory information. An
expansion of the force operator to low orders is sufficient
to yield expressions for both the stopping power and the
diffusion coefficient that are finite-temperature general-
izations of standard expressions. We also remark that the
damping coefficient in the reduced Fokker-Planck equa-
tion obtained here is related very simply to the stopping
power S„,which should be expected on physical grounds.
In other theories, such a relationship is much less trans-
parent.

There are several points we d.id not touch upon in the
analysis. Since the arguments have assumed a strongly
localized (semiclassical) channeling particle, the theory is
generally only valid for heavy ions, ignoring ionization ef-
fects. Delocalization of the particle wave packet, such as
would occur for electrons or positrons, is usually treated.
within a density-matrix &amework, although then we
lose the physical picture of particle trajectories, so use-
ful in the above analysis. Such delocalization might, for
example, lead. to quantization of the transverse motion
of the particle, which will introduce modifications to the
theory. Since our effort has been spent in developing a
particular viewpoint of the dechanneling process, we have
also not expanded the discussion to include the very low-
energy regime, where ionization processes are important,
or to the very high-energy regime, where relativistic con-
tributions are important. However, we expect the under-
lying heat-bath concept to be valid in these limits too.

For relativistic energies, the only significant modifica-
tion we expect is an additional contribution to the trans-
verse diffusion coefficient due to photon emission. The
low-energy regime is more difficult to analyze since the
Born approximation is not applicable to low velocity par-
ticles. This has hitherto precluded any reliable exten-
sion of the Lindhard theory to this regime. However,
the analogy to Brownian motion that we have consis-
tently utilized. offers a possible way forward. At low en-
ergies the stopping power is linear in velocity, given by
Firsov's phenomenological expression. For linear dissi-
pation, postulating a Quctuation-dissipation theorem to
hold (although we have not proved this) allows us imme-
diately to express the transverse diffusion coefficient in
terms of the friction coefficient using Einstein's relation.
As a complication, we cannot easily neglect random elas-
tic scattering at low energies as we did when discussing
the quantum force operator in Sec. II. Such scattering
is caused by the deviation &om the continuum Lindhard
potential of the efFective potential felt by the particle, and
its effect may be approximated by an additional contri-
bution to the transverse difFusion coefficient. These ob-
servations allow us to write a Fokker-Planck equation for
low-energy channeling particles entirely in keeping with
the heat-bath concept. We will not discuss this procedure
or its validity further here.

The environment used in this work is considerably
more complicated than those found in typical heat-
bath problems. There is no obvious way of expressing
the particle-electron and particle-lattice interactions in
a form suitable for exact functional integration. This
makes the general problem of a quantum particle inter-
acting with a quantum environment difficult to solve.
However, in the semiclassical limit we have shown that
progress can be made in a rather straightforward manner
&om the system Heisenberg equations, provided a sepa-
ration of time scales argument can be applied to isolate a
rapidly Quctuating component of the force acting on the
particle. Without this rapidly Quctuating force, we have
simply the Ehrenfest equations. For the dechanneling
problem, a separation of time scales is possible at high
temperatures and when the &iction force on the parti-
cle changes only slowly. In this case the system Heisen-
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berg equations can be written in the form of tractable
Langevin equations.

From these equations, it is of course possible to write
down a pat¹integral representation of the probability
density function. This will only describe a semiclassical
particle in the Markov limit of the original environment.
In standard path-integral treatments with idealized heat
baths, phenomenological parameters are often introduced
to make contact with experiment. By contrast, in the
treatment presented here, details of the original environ-
ment appear in the microscopic definitions of the &iction
force and diffusion coeKcient. The friction force deter-
mines the dissipation present in the particle-environment
interaction, and may be either linear or nonlinear. The
analysis suggests that the high-temperature Markov limit
of a complex environment may be described by an effec-
tive heat bath of simple harmonic oscillator degrees of
freedom (boson heat bath) with parameters determined
from the original environment parameters. Such a de-
scription is much simpler than the path integral for the
full density matrix obtained &om the original particle-
environment interaction, and makes the present analysis
relevant to the study of very general particle-environment
systems.

+dbl rJ- ~) P a( r&) f dra9(v rJ- &) (A2)

P lim e b

t —+oo
(A3)

P is now readily shown to satisfy

[P, L ]=0, (A4a)

ALgt ALbtg

It is convenient to transform Eq. (Al) using

P(q, f&, t) = e " "P(q, f~, t).

(A4b)

(A5)

Taking the time derivative of P(q, f~, t), and using Eq.
(Al) gives the evolution equation,

A useful representation of P may be obtained Rom the
Fokker-Planck equation Bqp(f~, t) = L(,p(f~, t) T.his has
an operator solution p(f~, t) = e "p(f~, 0) . Ls is dissipa-
tive (it has only negative eigenvalues), so p(f~, t) decays
to an equilibrium distribution p,~(f~) as t -+ oo. Using
this, together with 'Pp(f~, O) = p,q(f~), gives the opera-
tor identity

P(g, fi,—t) = 'L + L; (t) j P(rj, f~, t), (A6)
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APPENDIX: ELIMINATION
OF BATH VARIABLE

The object is to eliminate the force variable f~ &om
the Fokker-Planck equation

0
BtP(g, f~, t) =—(L + L; + ALg) P(ri, f~, t), (Ala)

P(ri, f~, 0) = p,q(fg)o. ()7, 0), (Alb)

with L, L(„and L, given in Eq. (3.3), and rI denot-
ing (r~, p~). Also p,~(f~) is the equilibrium force dis-
tribution given in Eq. (3.6). The crystal is taken to
be in thermal equilibrium before the entry of the par-
ticle, so the initial condition assumes the factorized form
shown. We want to obtain a reduced evolution equa-
tion for the particle distribution function rr(rj, t). A
number of elimination schemes designed to handle such
a reduction are available, including Laplace transform
methods, ' ~ a Chapman-Enskog expansion, and cu-
mulant expansions, ' amongst others. In the present
case a cumulant expansion of the reduced evolution op-
erator is readily developed, and is used below.

To effect the reduction we use the projection operator
p 0

with T being the time-ordering operator. Applying the
projection operator P to both sides of Eq. (A5), and
using Eq. (A4) gives

a(q, t) = p.~(f~)
' f dr~P(g, f~, t) (A8)

whereupon from Eq. (A7) and the initial condition Eq.
(Alb),

o.(g, t) = Texp
~

L t+ dt'L;(t')
~

cr(rI, O), (A9)) y

where for any operator A(f~),

(A(f~))g = f dr~A(r~)p. q(f~). (AIO)

Although we can now proceed directly with the cumu-
lant expansion of the expectation appearing in Eq. (A9),
evaluation of the cumulants is eased by a change of repre-
sentation. Denote the eigenstates of Lp and its adjoint I b
as [P ) and (@ ~, respectively. The ~P ) and (g ~

form
a biorthogonal set with (vP ~P ) = b . The explicit

where L, (t) and L; are related through the similarity
transformation L;(t) = e "+' L;e"+' Thus, . the over-
bar denotes a quantity in an "interaction" representa-
tion, by analogy with the interaction picture of quantum-
mechanics. The solution to Eq. (A6) may formally be
written using a time-ordered exponential,

(
P(g, fg, t) = T exp

~

L.t + Ct'L;(t')
~ P(g, f~, 0),

o

(A7)
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forms of the n = 0 eigenstates are ~$0) ~ p,~(f~) and
(@0~ -+ 1. This allows the expectation in Eq. (A9) to be
written (A)f = (vPO~A~Po). Further, putting U = e" ) D"

consider the similarity transformation

OO

cr(q, t) = T exp ) dtiE„(ti) o(g, O),
n=i

where

(A17a)

where

L~ ——UI gU = —B~B,c~

f„O+V fgf2 Dy

(All)

(A12a)

t2

P„(t,) = dt2 dts . . dh„
0 0 0

(~(t )~(t ) .~(t )).

4(t) = L-+ LI(t)

(A17b)

(A17c)f„BB„= —QDy (A12b)

[B„,Bt] = b„„, (A13a)

For planar channeling, the indices )M in Eqs. (All) and
(A12) can be ignored. For axial channeling, p can take
two possible values and the convention of summation over
repeated Greek indices is used. L~ is self-adjoint, L& ——

L &, and its eigenstates are the harmonic oscillator states
~n) = U~P ) and (n~ = (g ~U i, with (m~n) = 8 . B
and B~ have the properties, (~(ti)). = (1)

(&(ti)&(t2)). = (») —(1)(2)

(A18a)

(A18b)

and the subscript c in Eq. (A17b) denotes a cumulant
average (often called "ordered" cumulants to distinguish
them from other types of cumulants). Such expansions
in the context of stochastic processes have been studied
in detail by Kubo, van Kampen, and Fox. A gen-
eral prescription for expressing these cumulants in terms
of ordinary moments has been given by van Kampen.
Thus, for example, the first three cumulants are

ln) = ~n+ 1~n + 1),

B„~n) = v n~n —1), B~ )0= 0,

(A13b)

(A13c)

((jan(ki )Q(C2) $(t3)) L
——(123) —(12) (3) —(13) (2)

—(l)(23) + (1)(2)(3)+ (1)(3)(2),
(A18c)

and are the creation and annihilation operators for the
harmonic oscillator. For axial channeling the ~n) are two-
dimensional harmonic oscillator states, and we require a
further index t(t on the n (which we have suppressed).

A A

Thus, introducing factors of unity, 1 = U U, inside
the expectation, Eq. (A9) may be written equivalently as Ei(t) = L, (A19a)

where (12) = (0~$(ti)P(t2) ~0), etc. For cummutating op-
erators, the above reduce to the rules given in Eq. (4.10).

Utilizing the above rules, the first four terms of the
expansion in Eq. (A17) are

t
e(0, t) = ( ~Tex0p

~

L t+ dt'Lr(t')) ~0)e(rr, 0),
0

(A14)

F2(t) = A 'n„n„(1 —e "'),

Es(t) = A n„[L,n„] 1 —(1 ~ At)e

(A19b)

(A19c)

where

(t) U
—AL(rtL AL(rtU. —1

E,(t) = A-'n„[L. , [I...n„]] 1 —(1+At+ —,'A't')e

(A19d)

B„t +B„' t (A15)

and n„= QDf8/Bp„The explici. t time dependence

of the operators B„(t) = e "+0tB„e"+' and B (t)
e +' B'~ e b is found most simply Rom the corre-
sponding "Heisenberg" equations with initial conditions

B),(0) = B„and B„(0)= Bt, giving

Here we continue using the convention of summation over
repeated Greek indices. We do not study the properties
of the sum of terms E (t), but we expect the series to
be asymptotic in large A due to a cluster property of the
cumulants. In this large A limit, and retaining only the
first two terms, the time derivative of Eq. (A17) gives the
desired equation,

Il(t) = n„(B e "'+Bte—'). (A16) —o(g, t) = (L + A 'n„n„) o(g, t). (A20)

With this change of representation, Eq. (A14) may be
rewritten in terms of a cumulant expansion,

This equation is valid over time scales much longer than



52 QUANTUM HEAT-BATH THEORY OF DECHANNELING 3399

D. S. Gemmell, Rev. Mod. Phys. 4B, 129 (1974).
Y. H. Ohtsuki, Charged Beam Interactions with Solids
(Taylor Er; Francis, London, 1983).
V. G. Baryshevskii and A. O. Grubich, Yad. Fiz. 37, 1093
(1983) [Sov. J. Nucl. Phys. 87, 648 (1983)].
J. Lindhard, K. Dan. Vidensk. Selsk. Mat. Fys. Medd. 34,
No. 14, 1 (1965).
V. V. Beloshitskii and M. A. Kumakhov, Zh. Eksp. Teor.
Fiz. 62, 1144 (1972) [Sov. Phys. JETP 85, 605 (1972)].
E. Bonderup, H. Esbensen, J. U. Anderson, and H. E.
Schigtt, Radiat. Eff. 12, 261 (1972).
Y. H. Ohtsuki, J. Phys. Soc. Jpn. 84, 473 (1973).
M. Kitagawa and Y. H. Ohtsuki, Phys. Rev. B 8, 3117
(1973).
H. Nitta, S. Namiki, and Y. H. Ohtsuki, Phys. Lett. A 128,
501 (1988).
E. Fuschini and A. Uguzzoni, Radiat. Eff. B9, 113 (1983);
Lett. Nuovo Cimento 40, 209 (1984).
Y'. Yamashita, Phys. Lett. A 104, 109 (1984).
H. Nitta, Phys. Status Solidi B 131, 75 (1985).
Y. H. Ohtsuki and H. Nitta, in Relativistic Channeling,
edited by R. A. Carrigan and J. A. Ellison (Plenum, New
York, 198?).
A. O. Caldeira and A. J. Leggett, Physica A 121, 587
(1983); ibid. 130, 374(E) (1985); Ann. Phys. (N.Y.) 149,
374 (1983); ibid. 158, 445(E) (1983).
G. Y. Hu and R. F. O' Connell, Phys. Rev. B 36, 5798
(1987).
G. W. Ford, J. T. Lewis) and R. F. O' Connell) Phys. Rev.
A 37, 4419 (1988); J. Stat. Phys. 53, 439 (1988).
H. Mori, Prog. Theor. Phys. 83, 423 (1965); 84, 399 (1965).
R. Zwanzig, Phys. Rev. 124, 983 (1961).
H. A. Bethe and J. Ashkin, in Experimental Nuclear
Physics, edited by E. Segre (Wiley, New York, 1953), Vol.
1.
J. Lindhard, M. Scharff, and H. E. Schi@tt, K. Dan. Vi-
densk. Selsk. Mat. Fys. Medd. 38& No. 14, 1 (1963).
A. Schmid, J. Low Temp. Phys. 49, 609 (1982).
G. W. Ford, J. T. Lewis, and R. F. O' Connell, Phys. Rev.
Lett. 55, 2273 (1985).
L. D. Landau and E. M. Lifshitz, Statistical Physics Part 2

(Pergamon, Oxford, 1980), Chap. 12.
K. Gottfried, Quantum Mechanics (Benjamin/Cummings,
Reading, MA, 1966), Chap. 2.
S. W. Lovesey, Condensed Matter Physi cs: Dynamic
Correlations (Benjamin/Cummings, Reading, MA, 1980),
Chap. 3.
R. Kubo, J. Phys. Soc. Jpn. 12, 570 (1957).
The arguments used here are analogous to those used for
example to explain the effects of temperature on weak local-
ization through the introduction of an inelastic-scattering
length (or Thouless length). A review of the latter phe-

nomenon is given by P. A. Lee and T. V. Ramakrishnan,
Rev. Mod. Phys. 57, 287 (1985).A broader review of quan-
tum electron transport, in which more of the relevant ideas
behind the arguments given in the text are expounded, is
given by C. W. J. Beenakker and H. van Houten, Adv.
Phys. 44, 1 (1991).
M. Kaveh and N. Wiser, Adv. Phys. 88, 257 (1984).
B. K. Ridley, Quantum Processes in Semiconductors
(Clarendon, Oxford, 1988).
C. W. Gardiner, Handbook of Stochastic Methods (Springer-
Verlag, Berlin, 1985).
M. C. Wang and G. E. Uhlenbeck, Rev. Mod. Phys. 17, 323
(1945); reprinted in Noise and Stochastic Processes, edited
by N. Wax (Dover, New York, 1954).
U. M. Titulaer, Physica A 91, 321 (1978).
S. Chaturvedi and F. Shibata, Z. Phys. B 35, 297 (1979).
U. R. Steiger and R. F. Fox, J. Math. Phys. 23, 1678
(1982).
H. A. Kramers, Physica 7, 284 (1940).
R. S. Nielson and M. W. Thompson, Philos. Mag. 8) 1677
(1964); 9, 1069 (1964); J. Lindhard, Phys. Lett. 12, 126
(1964); C. Erginsoy, Phys. Rev. Lett. 15, 360 (1965).
R. L. Stratonovich, Topics in the Theory of Random Noise
(Gordon Jk Breach, New York, 1963), Vol. 1, Chap. 4.
N. Matsunami and L. M. How'e, Radiat. Eff. 51, ill (1980).
K. Gartner, K. Hehl, and G. Schlotzhauer, Nucl. Instrum.
Methods Phys. Res. 216, 275 (1983).
L. V. Keldysh, Zh. Eksp. Teor. Fiz. 57, 660 (1964) [Sov.
Phys. JETP 20, 1018 (1965)].
J. Rammer, Rev. Mod. Phys. 68, 781 (1991).
E. Meeron, J. Chem. Phys. 22, 1238 (1957).
Note that de6nitions of diffusion coe%cient can differ by a
factor -'.
K. Okamoto, T. Ichinokawa, and Y. H. Ohtsuki, J. Phys.
Soc. Jpn. 30, 1690 (1971).
G. D. Mahan, Many Particle Phy-sics (Plenum, New York,
1981), Chap. 5.
D. Pines and P. Nozieres, The Theory of Quantum Liquids
(Benjamin, New York, 1966), Vol. 1, Chap. 4.
S. W. Lovesey, Theory of Neutron Scattering from Con
densed Matter (Clarendon, Oxford, 1S84), Vol. 1, Chap. 4.
G. D. Mahan, Many Particle Phys-ics (Ref. 45), Chap. 4.
H. Nitta, Y. H. Ohtsuki, and K. Kubo, Phys. Rev. 8 34,
7549 (1986).
O. B. Firsov, Zh. Eksp. Teor. Fiz. 36, 1517 (1959) [Sov.
Phys. JETP 36, 1076 (1959)].
J. L. Skinner and P. G. Wolynes, Physica A 96, 561 (1979).
R. Kubo, J. Phys. Soc. Jpn. 17, 1100 (1962); J. Math.
Phys. 4, 174 (1963).
N. G. van Kampen, Physica 74, 215 (1974); 74, 239 (1974).
R. F. Fox, J. Math. Phys. 16, 289 (1975); 17, 239 (1976).


