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Ultrafast dynamical phenomena in an electronic system coupled to the atomic vibrational degrees
of freedom of a condensed matter environment are shown to be revealed in time-delayed nondegen-
erate optical four-wave mixing (OFWM) experiments. We perform a numerical multiple integration
and obtain both the time-dependent and time-integrated signal intensity as a function of the time
interval 7, between the two excitation light pulses. In contrast to the Markovian relaxation case
where the vibrational degrees of freedom simply play the role of a thermal reservoir, our analy-
sis, which takes into consideration the nonequilibrium dynamics of the vibrational system, shows
that the time-dependent signal intensity is asymmetric with respect to the positive and negative
o8-resonance frequency Oz of the second excitation pulse, even when the first excitation pulse is
on resonance. It is also found that the time-integrated intensity measured as a function of ~„
shows a delayed peak which becomes more pronounced as Oz is decreased. These phenomena are
manifestations of the nonequilibrium atomic vibrations generated by the optical excitation and the
electron-vibration interaction. It is emphasized that time-delayed nondegenerate OF&M is the most
direct and eKcient tool for investigating ultrafast dynamics of optically generated nonequilibrium
states.

I. INTRODUCTION

Transient optical four-wave mixing (OFWM) experi-
ments, such as the photon echo and the spatial paramet-
ric effects, enable us to investigate ultrafast relaxation
dynamics in various kinds of condensed materials.
Phase relaxation (dephasing) is one of the most impor-
tant processes which provides us with information on
the interaction between the relevant electronic systems
and vibrational degrees of freedom (thermal reservoir)
of condensed phases. It is well understood that the de-
phasing phenomenon arises from the random motion of
the thermal reservoir, which rapidly modulates the elec-
tronic transition &equency and therefore causes degrada-
tion of the phase coherence of the quantum superposition
between the electronic ground and excited states. For
materials in which the interaction between the relevant
system and the thermal reservoir is strong, the dephasing
time T2 becomes short. When we consider extremely fast
relaxation processes in the femtosecond time regime, we
should pay special attention to the fact that phase relax-
ation can no longer be properly described by T2. That
is, non-Markovian effects due to thermal reservoir mem-
ory play an essential role in transient nonlinear optical
phenomena. This was analyzed in Ref. 3.

For an ultrashort time region comparable to the corre-
lation time 7 of the thermal motion of the reservoir, the
effect due to the reservoir cannot simply be regarded as
a random frequency modulation, and the dynamical (not
stochastic) motion of the reservoir is reflected in transient

nonlinear optical effects such as the photon echo, the spa-
tial parametric effect, pump-probe spectroscopy, and so
on. This statement is quite general and is not restricted
to a localized-electron phonon system. It is applicable to
various kinds of materials, such as inorganic and organic
semiconductors, the large molecules embedded in liquid
solvents or glasses, disordered systems, and so on. Non-
Markovian relaxation manifests itself not merely in the
nonexponential decay of the signal intensity, but also in
the oscillatory dephasing which directly reQects the dy-
namics of the reservoir motion. It should be noted that
this oscillatory dephasing cannot simply be interpreted
as quantum beats. This is because the dephasing and
the oscillation are caused by the same degrees of freedom
of the reservoir, so that the phenomenon should be in-
terpreted as the non-Markovian effect &om the unified
viewpoint. When we consider the non-Markovian effect
associated with the nonlinear optical process, we should
note that it is not possible to represent the relaxation
behavior by invoking either a distribution of T2 s or by a
time- or energy-dependent T2. This is because one must
take into account the correlation between different time
intervals, which are separated by the radiation-matter in-
teraction vertices (see Figs. 2 and 3). When the system-
reservoir interaction is very strong, this correlation effect
gives rise to photon-echo-like phenomena.

Although the 6rst non-Markovian theory of transient
OFWM allowed for a pulse of arbitrary shape and dura-
tion, the calculation for a localized-electron phonon sys-
tem was confined to the limiting situation in which the
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excitation pulse was short (white spectrum). s

In the present paper, we extend this analysis to the
more general case in which time-delayed nondegenerate
OFWM is generated by excitation pulses of arbitrary
pulse duration. In condensed matter where extremely
fast relaxation occurs, the absorption spectrum is of-
ten significantly broadened because of the strong system-
reservoir interaction. Therefore, the dependence of the
transient OFWM response on the optical excitation fre-
quency provides us with direct and detailed information
on the dynamical behavior of optically excited condensed
matter. In what follows we analyze the OFWM process
taking into account both the excitation time resolution
as well as its spectral composition.

Exponential Dephasing

Oscillatory dephasing

Photon Echo

II. SHORT-PULSE LIMIT (REVIEW)

Before going into a detailed analysis, let us briefl. y re-
view the major results of the earlier non-Markovian the-
ory of transient OFWM. Let us consider transient four-
wave mixing caused by a sequence of two laser pulses
applied at times 0 and 7; with wave vectors ki and k2,
respectively. For a suKciently short excitation pulse the
intensity of a response along 2k2 —ki is given, aside from
the multiplicative factor, by

I ' (t) = exp —4S„(t—~.) —4„S(~.) + 2S„(t), (2.1)

where
t

S, (t) = Re dti dt2 (V (ti) V (t2))
0 0

(2.2)

1(s) (t) e
—(2/T~ ) t

We should here remark that the dephasing time T2 prop-
erly describes the phase relaxation phenomena only when

is the real part of the second cumulant. The opera-
tor V(t) in the interaction picture is responsible for the
change of the optical transition &equency caused by the
system-reservoir interaction, and ( . .) denotes the quan-
tum statistical average. In deriving Eq. (2.1), the higher
cumulants are neglected; the validity of this approxima-
tion will be discussed later. Formula (2.1) generally de-
scribes the exponential dephasing, the oscillatory dephas-
ing, and the photon-echo behavior in the unified manner
as is briefly remarked below (see Fig. 1 and Ref. 3). This
expression was re-derived by stochastic theory in Ref. 12.

Let us first consider the conventional Markovian case
where simple exponential dephasing occurs. The time de-
pendence of V(t), which is caused by the reservoir with
many degrees of &eedom, is usually very rapid and ran-
dom. If the correlation function (V(ti) V(t2)) decays
much faster than the observation time t, the double in-
tegral in Eq. (2.2) becomes approximately linear in t,
and we obtain S„(t) t/T2 with the dephasing time

T2 = ((V ) 7 ), where v„ the so-called correlation
time, is the measure of the decay of the correlation func-
tion. Substituting the above equation in Eq. (2.1), we
find the w'ell-known result

FIG. 1. Qualitative sketch of the transient optical
four-wave mixing response in three typical time regions, which
are expressed by Eq. (2.1) in the unified manner.

is essentially zero. In other words, the dephasing shows
exponential temporal decay only on a time scale much
longer than ~ .

The formula expressed by Eq. (2.1) describes the gen-
eral transient four-wave mixing process in condensed
matter where w can no longer be regarded as being sufB-
ciently short. If the interaction strength between the rele-
vant system and the reservoir is increased, the dephasing
becomes fast, and therefore the observation time scale
becomes short. If the time scale is comparable with w,
the frequency modulation by the reservoir can no longer
be regarded as a fully random process. The dephasing
therefore becomes nonexponential, reHecting the memory
efFect of the reservoir. It should be stressed that when we
consider the ultrafast dephasing phenomena in the fem-
tosecond time scale, this non-Markovian e8'ect should be
always taken into consideration, and the dephasing time
T2 becomes meaningless. In such non-Markovian dephas-
ing phenomena, we should also consider the fact that the
reservoir system cannot literally be regarded as a thermal
bath which always stays in thermal equilibrium; that is,
the reservoir is also excited to nonequilibrium states by
the coupling with the relevant system under the optical
excitation. This eKect cannot be analyzed by stochas-
tic theory in which the frequency modulation is merely
treated as a stationary random process which is indepen-
dent of the motion of the relevant system. A typical phe-
nomenon due to the nonequilibrium motion of reservoir is
the oscillatory dephasing in a localized-electron phonon
system. The phonon system in this case contributes not
only to the phase degradation of the relevant electronic
system, but also to its dynamic level shift due to the
nonequilibrium lattice motion.

Next let us consider the case where the system-
reservoir interaction is extremely strong, and therefore
the decay of induced polarization is much faster than w, .
In this case, the motion of the reservoir is so slow com-
pared to the decay of induced polarization that the time
dependence of modulation of optical transition frequency
can be neglected. In this extremely short time scale,
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(V(tq)V(t2)) is approximated to (V ), and so S„(t) de-
fined by Eq. (2.2) approximately becomes quadratic in t
as S,(t) = 2 (V ) t S.ubstituting this into Eq. (2.1), we

find

tz t) t

e g

I( ) (t) = exp ——(V ) (t —2t, ) (2.4)

The above expression indicates that the photon echo is
formed at time 2v;, which was predicted in Ref. 11, and
was re-examined by a stochastic model in Refs. 12, 13.
Expression (2.4) implies that the very strongly interact-
ing systems is similar to the inhomogeneously broad-
ened systems with the static distribution of transition
frequency. For example, in strongly coupled localized-
electron phonon systems such as E centers in alkali
halides, the assembly of the vertical Prank-Condon tran-
sitions in the conGguration coordinate space plays the
role of an inhomogenous spectral distribution. The re-
sult given by Eq. (2.4) is quite general, and this kind
of photon-echo phenomena is expected to be observed
in various materials with strong interaction, even when
the conventional inhomogenous broadening due to spatial
crystalline Geld inhomogeniety is absent.

III. ANALYSIS AND RESULTS

Ho = lg) HQ (gl+ le) H. (el
= Hg + le) (s+ V) (el.

(3.1)
(3.2)

Here, it is assumed that the two levels are well separated
so that the direct transition between the two states due
to the interaction with the reservoir is neglected. In the
above equation, H~ and H are not the energy eigenvalues
of the two-level system, but the operators which include
dynamical variables of the reservoir. In Eq. (3.2), s and
V are defined by

~ = ({a.—s,)),
V:—H —Hg —e.

(3 3)

(3.4)

Here and henceforth,

(" ) = T (.) (".p.~) (3.5)

denotes the quantum statistical average over the reservoir
states in thermal equilibrium, where

Let us consider a two-level quantum system composed
of ground and excited states lg) and le), which interacts
with a thermal reservoir composed of many degrees of
&eedom. Here, it should be noted that the term "thermal
reservoir" is used in the wide sense where the Gniteness of
correlation time (i.e. , the memory efFect) and the reaction
&om the relevant two-level system are included. The
Hamiltonian of this system is given by

to t3

g

tO t3 tZ ti t

tq t3 t2 t&

FIG. 2. Diagrams for the third-order nonlinear optical pro-
cesses which contribute to (el p )(t) lg). The thin and thick
lines are associated with the excited and ground tates of the
relevant system, respectively.

p., —:lTr(, )(e ~H)
l

e ~~ (3.6)

H (t) = H, + II, (t), (3.7)
H~ (t) = —lg) I (el &* (r, t) —le) v' (gl & (r, t), (3 8)

where E (2, t) is the c'omplex amplitude of the radiation
field, and p is the transition moment which is assumed
to be independent of reservoir variables (Condon approx-
imation); their vector notation is omitted for simplicity.
In the above expression, the rotating-wave approxima-
tion is used.

Expectation values of observables associated with the
third-order optical nonlinearity are obtained by the third-
order perturbation term for the statistical operator (den-
sity operator), which has the form (here and henceforth
we set 5= 1)

is the equilibrium statistical operator for the reservoir in
the ground. -state manifold, and the thermal population in
the upper level le) is assumed to be negligibly small. The
operator V defined by Eq. (3.4) describes the change of
the energy separation between lg) and le) which is caused
by the interaction with the reservoir. The Hamiltonian
of this matter system interacting with the coherent radi-
ation is given by

p(s) (t)
t t2

dt's dt2 dtse ' ' ' ' L] (t])e ' '(" " I (t ) e ' ' " ' L] (ts) p(to).
0 tp tp

(3.9)
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Here, the Liouville operators L() and Li(t) are defined
by Lp = [Hp, ] and Li(t) . = [Hi(t), . ], respec-
tively. The above equation implies that matter interacts
with radiation 3 times at tq, t2, and t3.

The nonlinear polarization is given by the ofF-diagonal
element of p( )(t) as

&"(~) = T (I lg)(el + p' le)(gl) p" (~)
W

= pTr(, ) e p(') t g +c.c. (3.10)

Figure 2 shows the schematic representation of
(e~ p( )(t) ~g). It is assumed that the system starts out
at tp in the ground state ~g). The pair of upper and
lower lines corresponds to the two states associated with
the matrix element of p(t), respectively. For example, the
Grst diagram in Fig. 2 describes the following third-order
nonlinear optical process: The initial element (g~ p( &

~g)
is transferred to (g~ p(ii ~e) at t3, it is transferred to
(e

~

p(2) ~e) at later time t2, and finally it is transferred to
(e~ p( i ~g) at time ti. The reason for the opposite direc-

I

tion of the time arrows for upper and lower lines is that
the roles of the excitation operator St—:~e)(g~ and the
deexcitation operator S = ~g)(e~ are interchanged when
operating on ket and bra spaces; that is, for example,
both St ~g) = ~e) in the ket space and (g[ S = (e~ in the
bra space correspond to the excitation process.

The electric Geld representing two excitation pulses
separated by v, is given by

E( t) E (t) (A.'—n t) + E (t ) ( —n )

(3.11)
I et us focus our attention on the signal emitted along

the direction 2k2 —kz, which is represented by the dia-
grams shown in Fig. 3. When we consider the case for
which the two excitation pulses are temporally well sep-
arated, i.e. , when the overlap between Ei(t) and E2(t)
can be neglected, then the contribution of the Grst and
second diagrams can be neglected. Because in many con-
densed materials the induced polarization decays much
faster than the lifetime of the excited state, the third and
fourth diagrams can be combined to yield

t t Min(tg, t2 }
(e~ p (t) ]g) = ip(p*) dti dt2 dtsE (r, ti) E (r, t2) E* (r, t3)

tp tp 'tp

—%He (t—t1)e
—&Hg (t1—t3) &He (t2 t3) tHg (t t2)

peq&

With the use of the formula for the time-ordered exponential

(3.12)

iH t —i(Hg +V) (t—tp ) —i H tp
exp+ —z 4(

tp
(3.13)

with V (t) = exp(iHst) V exp( —iHgt), the average of the product of the four exponential operators in Eq. (3.12) can
be evaluated by the cumulant expansion to yield

ln e ' & e g e & e g & 3 —~~ t —S& —&2+&3 +S S —S3 —S
—S(t, —t, )* —S (t —t, ) —S (t —t, )*+S (t, —t, )*.

Here

(3.15)

is the second-cumulant (the higher-order cumulants have been neglected) and J(w) is the power spectrum (the
interaction spectral function) defined by

z(~) = / dte' '(v(t) v (0)). (3.16)

The second-cumulant approximation expressed by Eq. (3.15) is generally valid as long as the coupling between the
two-level system and the reservoir is suKciently weak. Ke should, however, remark that, irrespective of the coupling
strength, Eq. (3.14) is exact for a linearly coupled system where V is a linear function of the vibration amplitudes for
reservoir variables, as in the case of a linearly coupled localized-electron phonon system. In many cases the quadratic
and higher-order coupling is much weaker than the linear one. It follows that (3.14) may be widely applicable to
various kinds of materials.

Prom Eqs. (3.10)—(3.15), we obtain the expression for the nonlinear polarization generated by the two-pulse exci-
tation:

t Min{t1,tg)

(t) = t ~p~ e "' dti dt2 dt3E( 2)tiE( 2Q)tE(ti3)* exp [i(s —&&)(ti+ t2) —i(s —Oi)t3]
tp tp tp

x exp S (t —t3)* —S (tz —t3)* —S (ti —t3)*] exp [—S (t —ti) —S (t —t2)* + S (t, —tz)*] + c.c., (3.17)
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and the time dependence of the signal intensity is given
by

1(s)(t) —/(s) (t) (3.18)

For extremely fast phenomena, the observable quantity
of interest is the time-integrated signal intensity

(3.19)

kl
I

I

k2
I

I

which is to be calculated as a function of w, .
We are now in a position to perform the numeri-

cal integration in Eqs. (3.17) and (3.19) for a specific
model. In order to confine our attention to the transient
OFWM response associated with the extremely fast vi-
brational relaxation behavior found in condensed mat-
ter at low temperatures, we consider a two-level elec-
tronic system which is interacting with many vibrational
degrees of freedom; a typical example is the localized-
electron phonon system. We model the power spectrum
(3.16) by

. 4.
Ts

. 2-

. 0-2 0

FIG. 4. The time dependence of the signal radiation in-
tensity for several values of the time interval 7; between two
excitation optical pulses. The average vibrational frequency
cu and the width p„of the vibrational frequency distribution
are, respectively, set to 0.1 and 0.01 in units of 8 = 1 [see Eq.
(3.21)].

t3
~7l S 2 (ld —&r)J ~ = ut exp

)
(3.2O)

m
I I

kl k2

where 8 is the dimensionless coupling constant, u„ is the
average vibrational frequency, p„ is the width of the vi-
brational frequency distribution, and p„ is the measure
of the correlation time ~,. At finite temperatures, the

T =4

2
I

I

V

I I

V

kl k2

2
I

I

I

kl
FIG. 3. Diagrams associated with the four-wave mixing sig-

nal light with the wave vector 2k' —kq. A down and up
arrows in the diagrams are, respectively, associatd with the
factor exp(ik r) and exp( —ik r), which correspond to the
photon absorption and emission processes for the upper-side
lines (with right arrows); note that the meaning of absorption
and emission is interchanged for the lower-side lines (with left
arrows .

. 06-

. 04-

. 02-

. 00-
4 10

FIG. 5. The time dependence of the signal radiation inten-
sity for several values of frequency Oz of the second excitation
optical pulse. The average vibrational frequency ~„and the
width 7„ofthe vibrational frequency distribution are, respec-
tively, set to 0.1 and 0.01 in units of b = 1 [see Eq. (3.21)].



52 ULTRAFAST VIBRATIONAL DYNAMICS BY TIME-DELAYED. . . 3371

Ej 2(t) ocexp( —b t ). (3.21)

quadratic electron-vibration interaction produces weak
peaks in J(ur) around 2tu, 0, and —2u as is shown in
Ref. 3. The middle peak near zero &equency is respon-
sible for the long-time exponential tail in the OFWM
signal. However, the quadratic electron-vibration inter-
action has a negligibly small effect in strongly interact-
ing electron-vibration systems where the ultrafast vibra-
tional dynamics predominates the OFWM phenomena.
The temporal profile of the excitation pulses is assumed
to be Gaussian,

In the following numerical examples, we set b = l. When
we calculate the OFWM signal intensity in condensed
matter with wide absorption spectra due to a strong
system-reservoir interaction, the integrand in Eq. (3.17)
is highly oscillatory even in the resonance case. The con-
ventional numerical integration method therefore does
not work well. In the present work, we use the special
numerical integration method based on the Chebyshev
series expansion developed by Hasegawa and Torri.

The time dependence of the signal intensity, Eq. (3.17),
for several values of pulse separation is displayed in Fig.
4. The first pulse is applied at time 0, and the second

(a) Q, =0 (b) Qi =3

. 8- . 08-

. 4 . 04.

. 0-2 0 2
. 00-2 0 2 4 6

Ts

(c) Q) =5

5

. 002-

. 001-

. 000-2 0 2

S

FIG. 6. The dependence of the time-integrated signal radiation intensity on the time interval 7. between two excitation
optical pulses for several values of the frequency 02 of the second excitation optical pulse. The average vibrational frequency

and the width p„of the vibrational frequency distribution are, respectively, set to 0.1 and 0.01 in units of b = 1 [see Eq.
(3.21)].
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pulse is applied at 7;. In order to investigate the strong
coupling case, the dimensionless coupling constant S in
Eq. (3.20) is set at 100, a typical value for I' centers in
alkali halides. The incident photon energies Oi and O2
for the first and second excitation pulses are measured
from the electronic excitation energy e, and so zero en-

ergy corresponds to exact resonance. From this figure,
we find that in a strongly coupled system the photon-

(a) Resonant excitation

Energy
)(

Lattice distortion

(b) Off-resonant excitation

Energy

Lattice distortion

FIG. 7. Schematic representation of the optical excitation
process in the configuration coordinate space in the resonance
and o6-'resonance cases. Two parabolic lines represent the
adiabatic potential curves associated with two levels ~g) and
~e). The bell-shaped dashed curves represent the vibrational
wave function. The vertical lines with an arrow indicate the
optical transition by the first excitation pulse, and the arrow
along the potential curve implies the movement of the wave
function after the excitation.

echo-like phenomenon arises without the requirement for
"inhomogeneous" broadening in the conventional sense as
was mentioned in the previous section. For the present
model expressed by Eq. (3.20), the shortest time scale
for reservoir motion is u„, and the echo phenomenon
disappears in the time region longer than u„. The echo
decay and the deviation of the echo peak kom t = 2v;
provide us with direct information about the nonequilib-
rium reservoir dynamics. The time dependence of the sig-
nal intensity for 7, = 4 and for several values of the mean
frequency O2 is shown in Fig. 5. We should note that the
profile is highly asymmetric with respect to the positive
and negative O2, even though the first excitation pulse
is exactly resonant (Oi ——0). Because the transient four-

wave mixing signal in the direction of 2k2 —A:i directly
traces the coherence of the system, the above fact im-
plies that the initial coherent polarization associated with
the Franck-Condon state with energy e is transferred to
lower electron-vibration (vibronic) states in configuration
coordinate space, as schematically shown by the down-
ward arrow in Fig. 7(a). This should be contrasted to
the so-called spectral difFusion (cross relaxation) which
is simply described by the incoherent rate equations for
the occupation probabilities (populations).

Nonequilibrium reservoir dynamics in condensed
phases, such as the lattice relaxation in a localized-
electron phonon system, usually arises in the femtosecond
time scale, so that it may be dificult to directly observe
it by tracing the time dependence of the signal intensity.
It should be emphasized that time-delayed nondegener-
ate OFWM enables us to obtain information on ultrafast
vibrational relaxation by looking at the time-integrated
intensity I;„(r,) as a function of the pulse separation w„
for several values of the frequency O2 of the second exci-
tation pulse, as is shown in Figs. 6. Figure 6(a) shows the
case for which the first pulse is on resonance (Qi ——0).
We then find that I;„(r,) is larger on the negative side
of O2. We also find that with decreasing O2 the peak
of I;„(7,) shifts to larger v;. These results are similar
to those in Fig. 5 if we replace the real time t with the
time interval w„and they reBect the dynamical motion
of the reservoir which results in the coherence transfer of
the optically induced polarization to the lower vibronic
states in the excited-state manifold associated with ~e).
It should be noted that optically generated coherence of
matter is partially preserved during the vibrational re-
laxation as mentioned before. The above-mentioned peak
shift of I;„(r,) with decreasing 02 can be more clearly ob-
served in the case where the first excitation pulse excites
upper vibronic states (Oi ) 0), as shown in Fig. 6(b).
This delayed generation of' coherent polarization should
be contrasted with conventional OFWM where the in-
tegrated intensity I;„(7;) is a monotonically decreasing
function of 7, . It should be emphasized again that this
&equency dependence is the distinctive advantage of the
nondegenerate transient four-wave mixing over that for
the short-pulse limit in which the excitation light fre-
quency is uncertain.

When Oq is further increased, a double-peak transient
response appears, as shown in Fig. 6(c). This interest-
ing transient phenomenon can be explained as follows. In
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the case of off-resonance excitation, the following two op-
tical transitions are predominantly induced by the first
excitation pulse [see Fig. 7(b)]. The first predominant
transition is to the Franck-Condon state A with the ex-
citation energy e which has the largest transition dipole
moment (i.e., the maximum wave-function overlap with
the ground state). Because this transition is significantly
off resonant, the excited state promptly (i.e., within the
very short time (30m„) ] returns to the ground state to
satisfy energy conservation, as indicated by the down-
ward arrow &om A. This is called the virtual transi-
tion. As a result, the excited state can be occupied only
during the optical excitation, and therefore the polar-
ization of the system temporally follows the excitation
pulse profile. The first peak in Fig. 6(c) arises &om
this virtual excitation to the Franck-Condon state. In
contrast to this, the second predominant transition is to

the resonantly excited state Bwith the excitation energy
e + 30&v„. The second peak in Fig. 6(c) is caused by this
real transition which is followed by the dynamical mo-
tion of reservoir variables mentioned in previous figures.
With increasing the off-resonance &equency, the ratio of
the first prompt component to the second one increases.
The above-mentioned intriguing phenomenon associated
with the virtual and real transitions is closely related to
the competition between scattering and luminescence in
transient resonant light scattering.
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