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A general theory of the time dependence of nuclear resonant forward scattering (spatially coher-
ent) as well as 4s scattering (incoherent) is presented for a system where resonant nuclei are moving
diffusively. As in Mossbauer absorption spectroscopy the diffusive motion is taken into account by
employing the Van Hove correlation function. However, in the case of scattering the role of correla-
tions turns out to be more complicated. The general formulas are obtained and used to analyze the
case of free difFusion.

I. INTRODUCTION

It was immediately realized after the discovery of the
Mossbauer effect that it provides a new opportunity to
explore the dynamics of atomic motions. The high energy
resolution of Mossbauer spectroscopy allows it to detect
very slow motion, unattainable by other techniques. It is
especially applicable to a diffusive motion which occurs
in liquid and solid materials. The analysis of Mossbauer
spectra affected by diffusion is based on early work by
Singwi and Sjolander. The p-ray absorption cross sec-
tion for a single nucleus difFusing in a system contains the
p-ray phase factor exp (ik ~ v ), (k is the p-ray propaga-
tion vector, 7' is a position of the absorbing nucleus) and
the self-correlation function G(v', t). This function de-
scribes the probability for finding the absorbing nucleus
at a position v at time t, if it was at the origin at time
t = 0. The phase of the incident wave seen by a nucleus
is sensitive to the nuclear motion v (t). The explicit form
of the self-correlation function has to be found in each
particular case of diffusive motion. This might be an.
isotropic and quasicontinuous process as in liquids or a
unisotropic jumpy motion &om one site to another as in
solids. The motion might be spatially unlimited (free) or
might be confined to a certain region. In the latter case it
is decribed as bounded diffusion within a cage. Diffusive
motion might be both translational and rotational.

In any case difFusion manifests itself in the profile of
the Mossbauer absorption spectra through the broaden-
ing and changes in a shape of the resonance lines (for
a review, see Refs. 2—5). As for &ee difFusion it is a
simple broadening of the Lorentzian line. In the case
of bounded diffusion a superposition of different broad-
ened lines may be expected. ' Such spectra are especially
characteristic for biological samples.

Today a new powerful technique for studying nuclear
p resonances is rapidly developing, namely, the spec-
troscopy in time domain with the use of nuclear scat-
tering of synchrotron radiation (SR). A wide range of
nuclear and solid-state parameters can be explored by
studying the time dependencies of the intensity of the

delayed products of nuclear deexcitation.
The goal of the present work is to develop the theory

of resonant scattering of SR by a system where resonant
nuclei are moving diffusively. The new elements of the
theory are related to the character of the scattering pro-
cess. Regarding the process of scattering one has to take
into account both the process of nuclear resonant absorp-
tion and the process of emission. In addition, because
of the interference of the wavelets scattered by different
nuclei the spatial correlation of the excitation over the
ensemble of nuclei should also be considered.

The advantage of the use of SR is that one is able
to detect both a coherent signal in the forward direc-
tion and an incoherent signal into 4'. The incoherent
channel should be especially informative about the pres-
ence of intensive diffusive motion. The latter leads to
strong broadening of nuclear resonance which cannot be
revealed by the usual Mossbauer spectroscopy.

In Sec. II the basic wave equation is presented with
accounting for diffusive motion in the general form. As
an example we consider the most simple case of &ee dif-
fusion. In Sec. III the time dependence of the forward
scattering is evaluated for the general case and in par-
ticular for the model of free difFusion. In Sec. IV the
time dependence of the 4m scattering intensity is found.
Section V presents the results of computer simulation of
the time dependence of the intensity of forward and 4m

scattering and their analysis.

II. WAVE EQUATION FOR THE TRANSMITTED
BEAM

To decribe the electromagnetic Geld of p radiation in-
side the matter we use Maxwell's wave equation. In
terms of a space and time Fourier component of the
electric-field vector X(k, u), which presents the ampli-
tude of a plane monochromatic wave having the wave
vector k and &equency u, this equation can be written
in the form
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I
k2 —K j X(k, ~) —k (k ~ X (k, ~) ) = j (k, (u), j„(k,te) = J dt) exp( —ek ~ e +i|et)

a

x(@.(t) Ii (k) I @-(t)) . (2)

where K = u/c, c is the light velocity in the vacuum,
j (k, u) is the Fourier component of the induced cur-
rent density which is a quantum-mechanical average of
the current density operator. It has contributions from
both the electronic and the nuclear subsystems. The nu-
clear part is directly related to the nuclear transition cur-
rent which has the form of an oscillating multipole. The
Fourier component of the nuclear current is determined
by the following expression:

Here (@ (t) I j (k) I @ (t)) is the time-dependent current
density for the ath nucleus with @ (t) as the wave func-
tion in the transition state, that is the superposition of
the excited and the ground states, and j (k) as the cur-
rent density operator in Ic space; summing is performed
over the nuclei in a unit volume.

The current density for an individual nucleus in the
first nonvanishing order of perturbation theory is equal
to

t

(@-(t) I j (k) I @-(t)) =—,„). «"xp{'(-~.a+'I'p/2~) (t —t'))(g
I j (k) Ie)(e I

V-(t')
I g)

ge

Equation (3) presents the convolution of the excitation and deexcitation processes, with t' and t ) t' as the excitation
and deexcitation times, respectively. Here

I g) and
I e) are space parts of the wave functions of the ground and excited

states of a nucleus; summing over transitions between the hyper6ne levels of the ground and the excited states is
performed; I0 is the nuclear spin in the ground state; ~,g is the resonance frequency of the corresponding transition;
r0 is the natural energy width of the nuclear level. The time-dependent Hamiltonian of the interaction of the ath
nucleus with the p ray, V (t), is defined in a standard way where the Coulomb gauge with a zero scalar potential is
used so that the vector potential A(u) = —ic~ iX(~). In order to evaluate j (k, u) the operator V (t') should be
presented in the form of the expansion of the current density operator and the vector potential over their space and
time Fourier components

d ' dIC'
V (t') =——— dr j (r —v ) A(v, t') =i, exp(ik'. v —iur't') j*(k') X(k', (u').

C 2m(u' (2m') s (4)

Substituting (4) in (3) and then (3) in (2) yields

ges'

x dtexpi u —cu' t dt 6 ~ ~g, t t EA:, Ie

where the indexes s', s d.enote the polarization states of
the wave 6eld before and after scattering and

E(k, k', t, t') = ) exp{—ik v (t) +ik'. v (t')). (6)

Here the time dependence of a nuclear position is taken
into account in the explicit form. The following notations
are used in (5) and below:

I

where the positions of difkrent nuclei are not correlated
in space (liquids, glasses, amorphous metals, etc.). The
motion of nuclei may be decomposed into the fast mo-
tion near the mean position (thermal vibrations) and the
slow motion of the mean position due to diffusion, as
compared to the lifetime of the excited state of the nu-
cleus. The account of the fast motion yields the Lamb-
Mossbauer factor. As for the slow motion let us consider
first the very slow one so that v' (t') v (t) during the
lifetime of the intermediate excited state. In this case we
can use the well-known random-phase approximation

e ((u, t) = exp{i((u+iI'p/26) t) .

Before proceeding to develop this outline one must
evaluate the sum over nuclear positions in (6). The result
of this evaluation depends on the particular system con-
sidered. In this paper we restrict ourselves to the most
simple system, namely, the irregular nuclear ensemble

) exp{-i(k —k ) . v ) = NEIL, — b(k —k ),
(2~)s

0

where N = 1/Vp is the number of nuclei in the unit
volume, V0 is the target volume corresponding to one
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nucleus, LI,I, is the delta symbol which differs kom zero
only for k = k', h (k —k') is the delta function. In (8) the
standard transformation from summing to integrating is
used.

This formula shows that the coherent scattering of p
rays by the irregular nuclear ensemble exists only in the
forward direction. We shall keep the result concerning
the spatial structure of the coherent field also in the
case where the characteristic time of difFusive motion is
comparable with the nuclear lifetime and consider only
k = I'. Then

27r 3

E(k, k', t, t') = 8(k —k') f&M(k)E(k, t, t'), (9)
0

E(k, t, t') = —) exp( —ik[z. (t) —z (t')]), (10)

accounting for the slow motion.
Thus, in this approximation we have the following ex-

pression for the current density:

where fr,M(k) is the Lamb-Mossbauer factor accounting
for the fast motion of nuclei and the function

j„'(k, (u) = ddt E'(k, ~') fr,M(k) ), ' dt exp(i(~ —u')t) dt'e(~' —~,g, t —t')E(k, t, t'). (ll)I&;.(k) I'
27' Ru' 2Ip ~ 1 Vp

ge

Here we assume additionally that the polarization state
is conserved in the forward scattering. As a consequence
of our assumption the "fast" and the "slow" nuclei mo-
tions are factorized and enter in a different way into the
nuclear current density. Later we shall see how the slow
motion will affect the time dependence of the scatter-
ing intensity. The function (10) describes the correlation
between the positions of one and the same particle at
different times averaged over all particles in the unit vol-
ume. This averaging is equivalent to the thermodynamic
averaging of the motion of one particle.

In the following we shall assume that the function E
depends only on the time difference t —t', so that F =
E,(k, t —t'). This function can be associated with the
well-known Van Hove function~~ G, (z, t) (see also Ref.
1) in the following way:

P.(k, t) = jdre '"'"G.(v, t),

G.(~, t) = '"'E (k t)
(2~) s (12)

This assumption is appropriate when there are no cor-
relations between the positions of different particles so
that the mean position is the same at all times. A quite
difFerent situation arises when all nuclei of the system are
vibrating in unison. ~ In this case the assumption is not
correct.

Using the approximation E(t, t') = E, (t —t') one can
immediately deduce that the frequency is conserved in
the scattering. This result follows &om the fact that the
integral over t' does not depend on time [see (16)]. Then
the integral over t equals 2zr 8(u' —w). As a consequence
E'(z', t) and j'(z', t) have the identical time dependen-
cies. Finally, &om (ll) we arrive at the following relation
between the nuclear current density and the field:

goo (k ~) = z —).Boo(ge) rp (k, ~ —~.g),
ge

B"(ge) =
i

t
' (k) i'V, (2I, + 1) I', (14)

where we introduce the universal function y (k, ur) which
takes into account the diffusive motion. It is defined by

y(l'e, ~) = f dt epx( (~~'+ ~TO/25)(t —t'))P, (kt —t),'

where rp ——e /mc is the classical radius of electron, a,
is the total cross section of electonic inelastic scattering.

Thus, the diffusive motion is described in our theory by
the function y(k, ~). This function can be rewritten in a
more simple form by changing the variable of integration
t" =t —t', t" Mt

p(k, ~) = dt exp (i(ut —1 pt/2h) E, (k, t) .
0

Actually it describes the resonant factor averaged by the
correlation function. In order to see it we expand the
function E,(k, t) in the Fourier integral

The factor goo represents the nuclear resonant suscep-ss(n)

tibility which is closely related to the scattering ampli-
tude.

We note here that the electronic current density is
given by Eq. (13) as well by means of replacing the res-
onant susceptibility gpp (k, w) by the nonresonant one.
The total susceptibility for scattering into the forward
direction is the sum of the two contributions

ss(n)goo(~)= goo (~) + &op

('-= V~'VpK g K

2 2

j„'(k, (u) = . gop~"l(k, ~) E'(k, (u),

where

E, (k, t) = e ' 'E, (k, ~),2'
P, (k&) = f dt e ' ' P.(k, t ),,
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then we put F, (k, t) in (16) and perform the integration
over time. The result can be written in the following
form:

E, (k, t) = exp ( Dk t), —t ) 0.

Substituting this expression in (16) we immediately ar-
rive at the following result:

Z

()() k, (d
ur + il' /2h + iDk2 (20)

In Refs. 1 and 6 the real part of this expression is em-
ployed to describe the Mossbauer absorption spectra.

As for the spectral function F,(k, w), its determination
via the Fourier transformation requires also the knowl-
edge of the function F, (k, t) in the region t ( 0. How-
ever, because F,(k, t) = F,*(k, t—) by definition (10),
one should use ~t~ instead of t. It leads to the following
well-known formulas:

F,(k, cu) = 2Dk2
(u~+ (Dk2) 2 '

t'

(47rD (t[) s&2 ( 4D [ti)

We note that only the time interval t & 0 has a physical
meaning in the case of coherent scattering but it is not
so in the case of incoherent scattering as will be shown
in Sec. IV.

III. TIME DEPENDENCE OF THE FORVTAKD
SCATTEKINC

The incid. ent radiation can be decomposed into the
plane monochromatic wave components. A typical com-
ponent with the propagation vector ko has the form

E;(r, t) = e, E'; exp(i (kp r —(dt) j. (22)

(p(k, (o) = F, (k, ~) Gp(u) —~),
27'

Z

Gp
cu + iI'p/2h

Here Gp((o) is the standard resonant scattering factor.
We conclude that the main result of accounting for dif-

fusion is the averaging of the scattering amplitude over
Doppler shifts of resonance frequency caused by difFusive
motion of nuclei. The inBuence of this motion on the
spectra is presented by the correlation function F,(k, t)
[see (16)] and can also be described with the help of
the Van Hove function G, (r, t) and the spectral function
F, (k, (o).

As mentioned above we restrict our analysis in this
paper to the case of free diffusion only. More complicated
cases will be considered later. In the present case the
Van Hove function is the solution of the simple diffusion
equation BG, /Bt = D r))' G, with the diffusion coefficient
D The s. ubstitution of the Fourier expansion (12) in this
equation allows us to find the correlation function F, (k, t)
satisfying the boundary condition F, (k, 0) = 1

Let this radiation fall on a slab of matter with the surface
perpendicular to the Z axis and placed at z = 0. In (22)
e, is a unit vector of the wave polarization and E, is
the scalar wave amplitude. Let the vector ko be oriented
along Z where Z is a unit vector of the Z axis. The
solution of the wave equation (1) with the current den-
sity (13) is given by the same exponent function as the
plane monochromatic wave. However this function has
the complex wave vector kp ——kp + (e/2) Z, where e is
a small complex and. frequency-depend. ent correction due
to the refraction eKect. Because of the very small magni-
tude of the interaction between the p ray and the target
we can account for the correction e only in the linear ap-
proximation. Using the explicit form of the vector ko we
easily obtain from (1) and (13) that e = Kgpp(kp, w).
Assuming that the polarization state is not changed in
scattering we shall omit below the polarization indexes.
Thus, the solution of the wave equation in the case of for-
ward scattering has the form of an incident plane wave
but with a slowly variable scalar amplitude as the func-
tion of depth

. KE (z) =exp e —gee(e)z) E
2

(23)

In the case of incident monochromatic wave with the
spectral density Ip(u) the transmitted beain has the in-
tensity

I(~, z) = Ip(~) exp( —V(~) z) ~(~) = It'gp'p(~) (24)

E(z, t) =- E„.(z)
lQJ

exp (—iwt)
27r

x exp i—gee (z') z)
.K („)

where the function E, (z) has the modulus

(Ip/b, w) 2 exp (—p,,z/2), p = Kypp, and Ip is the
intensity of SR within the frequency band Lu as deter-
mined by a monochromator system. As follows from (25)
the complex function p(w) (via gp(p ) mill enter in the ex-
pression for the intensity entirely.

According to (23) the interaction with electrons influ-
ences all spectral components equally contributing only
a constant factor to the wave packet (25). So in consider-
ing the frequency and time dependence of the transmitted
intensity we deal with

where g" is an imaginary part of g. It can be verified di-
rectly that (24) contains only the real part of the function
(p (~) [see Eq. (14)].

I et us consider the transmission of synchrotron radi-
ation through a resonant; target. A short pulse of syn-
chrotron radiation can be decomposed. into the contin-
uous set of monochromatic spectral components within
the frequency interval near wo, well exceeding the width
of the resonance range. One may assume that all spec-
tral components have equal weights, i.e. , E; = E „.In
order to'find the wave packet of the transmitted radia-
tion one should integrate all spectral components of the
transmitted radiation (23)
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( ) Bpp(m) I'p/2h":() =-&- . . +,r, /2~+, Dk, (26)

where summing over 'ge' in (14) is transformed into sum-
ming over the transitions between ground and excited

states of the nucleus 'm', taking into account the selec-
tion rules (we consider only the case of free difFusion). If
a hyperfine splitting of nuclear levels is absent we arrive
at the expression for the transmitted wave packet similar
to that obtained in Ref. 13

1
E(z, z) = pl, (z, z) —q(z) —ezp) q/2z) —qlz z/4z J fzeZ„pz)z)

&p
(27)

where w = t/tp tp = h'/I p is the lifetime of excited nu-
clear state, Jq is the Bessel function, and E„,(z, w)

E„,(z) exp (—i(uptp~),

2hD kp2p„=K) Bpp(m) = 1V0'p g fzM, q = 1+
I'p

(28)
Here op is the nuclear cross section at the resonance. The
enrichment by resonance isotope g & 1 is also taken into
account. For the forward scattering intensity one has

Ip
IFs(z, 7) = exp( —p, z)L~tp

x exp (—q7) J~ (gp„z w),4t (29)

It follows Rom (29) that the broadening caused by dif-
fusive motion results only in a faster decay of the expo-
nential factor. It happens because dephasing the spec-
tral components emerging from the target proceeds faster
due to a broader spread of their &equencies. The latter
yields the additional destroying the coherent signal. It
is of interest to mention the faster decay is described ex-
actly by the correlation function I", (k, t) [see (19)] as a
multiplier. At the same time the effective dimensionless
target thickness p z stays the same; therefore both the
initial intensity and the dynamical beats (expressed by
the Bessel function Jq) are not changed. Just the same
situation took place in the study of coherent scattering
in crystals excited by vibrations when all nuclei were vi-
brated in unison. It was found that the effective target
thickness stayed just the same as in the case without vi-
brations.

IV. TIME DEPENDENCE OF THE 4m
SCATTERING

A full picture of scattering includes both spatially co-
herent and incoherent channels. Along with the directed
coherent beams of p radiation the 4' shine of p rays,
electrons, and Huorescence x rays appears around a tar-
get due to incoherent scattering of the primary radiation.
In this section we shall regard the inHuence of the diffu-
sive atomic motion on this channel.

There are many paths of scattering into 4'. We con-
sider here the channel where the Huorescence radiation is
generated. Each atom being excited by the coherent field
propagating through the target [see Eq. (27)] becomes a
source of a secondary radiation. In particular, due to the
internal conversion and photoeffect an electron is ejected
from the atomic shell. The subsequent filling a hole is
accompanied by the emission of Huorescence radiation.

In the process of nuclear resonant scattering of SR the
two possibilities should be distinguished: the first stage
of nuclear scattering, p-ray absorption (excitation), can
proceed both with and without recoil (see also Refs. 15
and 16). We begin our analysis with the recoilless channel
which shall be denoted as the A channel.

The internal conversion happens at the second stage
of the scattering process and it brings the standard ex-
ponential time dependence in the whole process with the
stationary probability amplitude B,~. More complicated
time dependence of the scattering amplitude by a sepa-
rate nucleus is determined by the amplitude of the nu-
clear excitation, so that the total amplitude has the form

t
A g, (t) = ——B,g dt' exp(i( —w, ~ + il'p/2h) (t —t'))(e

~

V (t')
~
g). (30)

The interaction potential for a nucleus with number
'a', V (t), has just the same nature as that for the coher-
ent channel [see Eq. (4)] but now considering the inco-
herent channel we shall assume the incident radiation in
the form of plane wave with the variable amphtude (23),

V (t) = ij '*(kp) exp [ikp r (t)] exp( —i~t)
d~ . E'(z)
2'

(31)

Substituting (31) in (30) and changing the order of inte-

t
x dt'e(w' —w, g, t —t )

x exp [ikp r (t')], (32)

where C', and e (w, t) are defined by (7). The phase fac-
tor exp [ikp . v' (t)] accounting for the motion of scatter-

gration one has for the time-dependent amplitude of the
incoherent scattering

A g, (t, z) = C',B,g, exp (—i~'t)
d~' E (z)
27r
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ing nucleus (the difFusional one included) explicitly en-
ters the scattering amplitude. When the nuclei are at
rest, v (t) =const, one can calculate the integral over t'
directly. As a result one obtains

C*B gA g, (t, z) = ' exp(ikp v )

~

~
~

d(d E z
x exp( —iur't)

2vr (u' —~,g + il'p/2h

(33)
P(t, z) = (2Ip+ 1) ) ~

A (t, z)
~

age
(34)

the amplitude of the probability of nuclear excitation is
proportional to the sum over all &equency components
of the field with the weight that is a resonance factor for
a given nuclear transition.

The probability of the incoherent scattering of the
transmitted radiation at the depth z as a function of time
can be found as the square modulus of the amplitude
which is summed over all nuclei in the unit volume and
over all excited states and averaged over ground states

Here we took into account that near the resonance ~' =
cu and the factor 1/ur does not influence the re-

sult of integration, therefore it can be taken out of the
integral. This formula has a simple physical meaning:

When the nuclei take part in a diffusive motion the prob-
lem becomes more complicated because we have to ac-
count for the correlation between the positions of nuclei
at difFerent times. Substituting (32) in (34) we obtain

) ~
Cg, B,g ~

E exp( —i~'t) E'„ex p(iur"t)fz,M(kp) dw' . , d~"
2~

ge
t t

x dt' dt" e ((u' —(u,g, t —t') e '(u)" —(u, g, t —t")F(kp, t", t'), (35)

where the correlation function E(kp, t", t') is determined by (10). We have to notice that in incoherent scattering the
correlations arise only in the intensity but not the amplitude.

As before we can replace F by F, (kp, t" —t'). Introducing the Fourier expansion of the correlation function (17) we

can perform the integration over time. Finally we pass from the probability P to the intensity of secondary radiation
I4 for a depth interval from zero to d. Here the index A refers to the nuclear recoilless interaction. As a result we
obtain the following expression:

d

I4 (t) = ) ~Cg, B,g ~

dz F( k, p)~~D, g(t, z, ~)
~

Vp 2Ip+ 1 p 27r
ge

(36)

where

d~ E (z)D,g (t, z, u) = exp (—iwt)2' (d —& —Qf~g + zI p 2A
(37)

We note that Eq. (37) represents the time response of the separate nucleus having resonance frequency w, g + u
shifted due to difFusive motion [compare with (33)]. The integral over u in (36) leads to averaging the relevant time
dependencies.

Let us consider once again the simple case when hyperfine splitting is absent. Then Eqs. (36) and (37) can be
written in the explicit form

Ip I e
I4 (w) =

&
Nap gfLM

A~tp h

d ao W dm exp( —in') ( . p, z
dz exp —p, z exp i-

Cv2+. W2 2m (u) —6+ i/2) ( 2 (2to+ iq))
(38)

Here and below we use dimensionless variable m = (dtp

and W = (q —1)/2, I', is the nonradiative (inter-
nal conversion) part of the width of nuclear level I', =
I'po!/(1 + a) where n is the conversion coefficient.

When D = 0 (q = 1), the difFusive motion of nuclei is
absent and one can obtain from (38) a more simple ana-
lytical expression for the intensity of recoilless incoherent
scattering in the form

IoI (r) = N Op g fLM exp( —~)4 a~tp h

d

x dz exp —pz Jp p zr (39)

where Jp is the Bessel function of order zero. Please note
that the time dependence of recoilless incoherent scat-
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I4 (7) =Noo—I",
0

Gcdph
4Pph dzIFs (z, r),

(40)

where ((cu~h) is the normalized weight function of a
phonon spectrum. The first term in (40) is character-
ized by the natural decay time, while the second term
has just the same time dependence as the forward scat-
tering intensity. We note that the second term is of order
(I'o/hcuLi) smaller than the first one where wii is Debye
frequency, and we shall neglect it in calculations.

The last contribution to the 4vr scattering (C chan-
nel) is related to the scattering of the coherent field by
the electronic shell. ' In considering it we shall assume

tering at a fixed depth in the target [Eq. (39) without
the integration] is much different from the time depen-
dence of the coherent Beld intensity at the same depth
[see Eq. (29)]. But in Ref. 15, simply the integration
of the coherent Geld intensity over the sample thickness
was performed to get the recoilless incoherent scattering
intensity. In this way the resonance nature of the nuclear
incoherent scattering was not taken into account.

Now we turn to the nuclear resonant scattering of the
transmitted radiation by a nucleus with recoil. This pro-
cess is described by the same formulas (36) and (37).
However now we must replace the transition energy w ~
by u, g + mph where wzh is a phonon frequency and in-
tegrate over the phonon spectrum. We suppose that the
spectrum of SR is wide enough to include these pro-
cesses. In principle, the two frequency intervals must
be distinguished while integrating (38) in order to get
the time-dependent result. In the frequency range where
u = ~,g+uph a nucleus is resonantly excited. In this fre-
quency range we can neglect the &equency dependence of
the amplitude E (z) because utah is much larger than I'0
and the characteristic scale of the difFusive broadening.
In the frequency range w w, g+w, on the contrary E (z)
is strongly dependent on &equency, while the denomina-
tor in (37) is practically constant and equals —w~h with
good accuracy. As a result we have the following two
contributions into the nuclear scattering intensity with
recoil:

I4 (7 ) = —~ o'o g (1 —fLM) exp (—w)
Io I',

A~to
d

dz exp (—p, z),

5n-detector

SR
pulse

tar )et

FS-detector

FIG. 1. Possible experimental arrangement.

that the &equency region of the incident radiation is far
away from the resonance frequency for the electronic pho-
toefFect. So in this case the time dependence is deter-
mined by the intensity of forward scattering

( ) = No.pi, ~ dzIps (z) ~),
0

(41)

where O.~h is a cross section of electronic photoabsorp-
tion corresponding to the resonance &equency of the
Mossbauer efFect.

V. ANALYSIS OF THE FREE DIFFUSION CASE

We shall illustrate the theory developed in the previ-
ous sections by calculations of the time dependencies of
the forward and 4' scattering for a simple model system.
We assume that the very small particles containing reso-
nant nuclei Fe perform a difFusive motion in a viscous
medium. The arrangement af the possible experiment is
shown in Fig. 1. Let the motion be unconfined, quasicon-
tinuous, and isotropic. We shall consider the values of the
difFusion coefficient D in the range 10 is —10 i4 m2/s
causing the nuclear p resonance broadening up to 10 nat-
ural linewidths. To single out the efFect of broadening we
assume that the Lamb-Mossbauer factor stays constant
while the diffusion coeKcient is changing.

The forward scattering intensity as well as the B and
C channels of 4' scattering were calculated directly by
means of Eqs. (29) and (38) —(41) . For calculation of
the A channel the integral over frequency in (38) was
transformed into the integral over time, so that

I() I d6 R"
I4 (r) = ' No.oi1 fr, M exp( —~) dz exp( —p, z)

Deuto h 0 vr m2+ TV2

T 2

x 1 — dr' exp (—Wr' + i ivr') Ji (gp zw' )
0 4~I (42)

The results of direct numerical calculations are presented
in Figs. 2—4. In every Bgure the time dependencies are
shown illustrating the evolution of SR scattering into the

spatially coherent (Fig. 2) and incoherent (Figs. 3 and
4) channels for the three magnitudes of the parameter of
broadening q = 1, 4, and 10 corresponding to the val-
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Log„( I(t)/I (()) )2- Loki„( l(t)/I (&) )

50 100 150 200 250 300

time (ns)
FIG. 2. Forward scattering intensity, p d = 10.5.

-12—
l r & i II I I I I I I I ! I I

50 100 150 200 250 300

time (ns)
FIG. 4. Incoherent scattering intensity, p

~ ~

d = 10.5 Pro-
cess C (electronic scattering).

1.0-
I ( t)/ I (Ij )

.8-

.6-

ues of the difFusion coefficient (0, , ) 2/ .2 6~ 10 m,~s. It is
seen in Fig. 2 that the increase of the diffusion coefficient

th gressive acceleration of the co erent signa
decay. At the initial stage the decay follows close y to e
exponential law exp [ ~(1.+2—IiDk /I'o+p, „d/4) ]. There
are two difFerent physical reasons for the faster decay
of the coherent signal. One reason is the speed-up o
the nuclear deexcitation which is related to the effect o
en ancehancement of the radiative channe . ' The relevant

proportional to the target thickness.
Another reason for the dropping down of the coherent

signal ls di usiona ro1 d ff 1 b adening of the nuclear resonance
which leads to more rapid dephasing of the spectral com-
ponents of the forward scattered radiation. The relevant
acceleration is e ermine1 d t ined by the exponential index term

We note that the diffusion coefBcient variation does
not inHuence the initial forward scattered intensity an
produces no effect on the position of the dynamical beat-
ing minimum. is is e. Th ' because the effective dimensionless

thickness of the target p„d stays the same irrespective of
th d. ff on state. The time-integrated intensity of t e
forward scattering is a decreasing function of the i u-
sion coeKcient.

Regarding the A contribution to the 4' scattering (Fig.
3 one can notice the two clearly distinguished stages of

ones. One can also notice that the duration of the initial
stage is close to the characteristic duration of the coher-

al ~Fi . 2&~. From this observation and from the
42 it is ossiblecorresponding analysis of Eqs. (29) and (42) it is possi e

to deduce that at the initial stage the decay of separate
nuclei excited by the prompt part of the transmitted wave
packet [b function in Eq. (27)] proceeds under strong
inHuence of the delayed part of the coherent radiation
(which plays the role of external radiation for the down-
stream nuclei). At a later stage when the coherent signa
is vanishing the nuclei are deexciting spontaneously in ac-

d nce with the natural decay law exp (—~). T e more
intense the diffusive motion the shorter the initla s age.
In the limit of very large diffusion coeFicient D, w ere
th b dening reaches several hundreds, the initial stagee roa
is neg igi e an1' 'bl d nuclei radiate into 4' spontaneous y or
almost all times.

This conclusion can be also derived from the approx-
ofE . 38.imate analytical expression for the integra s o q.

Indeed, expanding the resonant exponent in a power se-

theorem one can obtain the integrand over z in the form
of an expansion over the parameters = p
g = W7. as follows:

I I I I I I I I0 I
I

I I I I I I I I

100 200 300

time (ns)

d

(&) = & «exp( —y,,z) exp( —~) I' (z, W)
0

FIG. 3. Incoherent scattering intensity, p
~ ~ ~

d = 10.5 solid
lines: Process A (nuclear recoilless scattering& .or q-= 1 4

~ ~10, dotted line: Process B (nuclear scattermg with recoi ) or
q= oo. where

+ exp( —qv) G(z, W, r)
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Io I ~ o0 '9 fLM~A~to

F(z W) =1 —h+ —h ——Ii +3 2 5

4 12

G (~, z, W) = h ——h (1+2g)

h [1 + 2g (1 + g) ] —. . (44)
5

12

This expression is valid for all times when p„d/4W (
1 and only in the time interval w ( 4/p d in the
opposite case. In particular, it coincides well with the
direct numerical results for q = 10 and approximately
for q = 4. As for the case with D = 0 it is described by
the formula (39).

It is obvious that the nuclei excited with recoil (the B
contribution) are not afFected by the coherent (recoilless)
radiation and therefore they are decaying spontaneously
(dashed line in Fig. 3) for all times. The time depen-
dence and the time-integrated intensity of the B contri-
bution are not dependent on diffusion. The time depen-
dence of the A contribution in the limit of large D is the
same as of the B contribution, i.e., exp( —v). The time-
integrated intensity of the A contribution approaches a
definite limit. The ratio between the time-integrated in-
tensities of the A and B contributions is determined by
the Lamb-Mossbauer factor.

The time dependence of the C contribution (Fig. 4
and the dotted line in Fig. 3) is a weakened image of
the coherent radiation intensity integrated over the tar-
get thickness. While the difFusive mobility is rising, the
integrated intensity of this contribution is falling down.

VI. CONCLUSION

The wave equation for the transmission of a plane
monochromatic wave (as a component of an arbitrary
wave packet of p radiation) through a medium contain-
ing resonant nuclei is formulated for the case of difFusive
motion of nuclear particles [Eqs. (1) and (13)]. Under
these conditions of motion the nuclear resonant suscepti-
bility of the medium is not dependent on time [Eq. (14)].
However it contains the nuclear temporal response av-
eraged over the time correlation function E, (k, t) [Eq.
16]. On the other hand the effect of difFusive motion
can be described with the aid of the spectral function
E,(k, ~) [the Fourier image of E, (k, t)], which presents
the Doppler shift distribution of the nuclear resonance
frequency caused by the difFusive motion of the nuclei.
Therefore we think that it is possible to extend the results
of the theory to any case where the resonance shape dif-
fers from a Lorentzian and where the width is increased,
for example, due to inhomogeneous distribution of chem-
ical shifts or hyperfine fields in the sample.

The formulas for the time dependences of the coherent
forward and incoherent 4' scattering are obtained for

the case where the broadened resonance preserves the
Lorentzian shape (in particular, this happens in the case
of free diffusion). As for the coherent channel, similar
formulas were obtained earlier in Ref. 19. The resonance
broadening causes an additional acceleration of the nu-
clear decay in the coherent channel and a decrease of
the time-integrated intensity in this channel, with the
initial intensity and the dynamical beat pattern being
unchanged. The 4m channel is representative of the spa-
tially incoherent scattering of the radiation. The intensi-
ties &om individual atoms are summed up in this chan-
nel. Being illuminated by the coherent field transmitted
through the target [Eq. (27)], the resonant nucleus can be
excited both without and with recoil by the prompt part
of the coherent wave packet [the first term in (27)]. The
nuclei excited with recoil are not coupled with the coher-
ent field any longer and therefore decay spontaneously
with the natural decay rate. The intensity in this chan-
nel is proportional to (1 —fLM) the smaller the recoilless
factor, the more the natural decay is presentive in the in-
coherent channel. Obviously this channel is not sensitive
to the resonance broadening.

The resonant scattering without recoil has a more com-
plicated nature. Here the inBuence of the delayed part
of the coherent wave packet [second terxn in (27)] is of
importance. The response of the nuclei via this channel
has a characteristic two-stage time dependence where at
the first stage the coherent field causes an accelerated
nuclear response. The first stage becomes less important
with the increase of the resonance width. In the limit of
a very wide resonance the time dependence in this par-
ticular channel approaches the natural decay law.

Scattering of the coherent field by the electronic shell
reproduces the time dependence of the forward scattering
integrated over the target thickness. Its contribution to
the total incoherent intensity decreases with resonance
broadening.

Thus in the full picture of scattering the balance be-
tween the forward and the 4' scattering becomes more
and more in favor of the 4' channel when the resonance
becomes blurred. One should note that the role of the
4' channel also increases when the recoilless factor is
decreasing. The incoherent scattering of synchrotron ra-
diation delivers a good possibility to study variations of
these parameters.
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