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Strongly nonlinear response of fractal clusters
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We have developed a differential effective medium approximation (DEMA) for the efFective non-
linear response due to clustering of a strongly nonlinear conducting material of a current-field (J-E)
response of the form J = y~E~ SE (p ) 0) in a host medium, where y is the nonlinear coeFicient.
The DEMA results are compared with numerical calculations in a deterministic fractal model. As
a similar problem of a random medium, we further investigate the scaling behavior of the nonlinear
response. It is shown that by choosing a relevant scaling variable properly, the nonlinear response
function can be rescaled to collapse onto a universal curve.

I. INTRODUCTION

The transport and optical properties of nonlinear in-
homogeneous media have received much attention re-
cently because of their potential applications in engineer-
ing and physics. Established theories are available in
the weakly nonlinear case in which the nonlinearity can
be treated as a small perturbation. ' Over the past few
years, substantial progress has been made in calculat-
ing the efFective nonlinear response of random nonlinear
composites in which a small volume &action of nonlin-
ear material is randomly embedded in a host medium.
An efFective medium approximation (EMA) for weakly
nonlinear composites was proposed. Recently, the scaling
form of the weakly nonlinear response has been extracted
&om the EMA. 8

More recently, attention has been paid to a class of
strongly nonlinear conducting composite media with a
power-law nonlinearity which occurs when a sufficiently
strong field is applied to condensed matter. For this
composite system, the inclusion and the host medium
obey a local current-field (J-E) relation of the form
J = y~E~ ~E, and P ) 0. For such a nonlinear rela-
tion, the conventional perturbation method fails and we
have recently developed a variational method to obtain
the dilute-limit expressions for the effective response of
a small volume &action of spherical inclusions embedded
in a host medium, valid for P = 1.

Moreover, the approach is only valid for truly random
composites in the dilute limit. In fact, many growth and
fabrication processes may produce spatial correlations in
realistic composites. In particular, a &actal clustering
will be generated via various aggregation processes.
The &actal geometry should have an observable effect
on the nonlinear as well as the linear properties. In
this work, we aim at developing a differential effective
medium approximation (DEMA) for the efFective nonlin-
ear response of clustering strongly nonlinear materials in
a host medium, in which case a similar approximation in
weakly nonlinear systems~ cannot be applied.

The plan of the paper is as follows. In the next section,
we invoke a variational principle to obtain the dilute-
limit expression for the effective nonlinear response for a

small volume &action of inclusions embedded in a host
medium. Explicit asymptotic behaviors of the local Geld
will be obtained. In Sec. III, we develop the differential
efFective medium approximation for the strongly nonlin-
ear response of &actal clusters, by using the dilute-limit
expression. We obtain results valid for both cases when
the host is the better or poorer conductor. Then, in
Sec. IV, in an attempt to verify the DEMA results, we
perform a numerical simulation on a deterministic &ac-
tal cluster. In Sec. V, we propose scaling forms for the
effective nonlinear response in the extreme dilute limit.
The relevant scaling variables are identified and the scal-
ing behaviors are extracted in the DEMA. Possible ex-
tensions of the present approach and relevance to recent
experiments will be discussed.

II. MODEL AND METHOD

We consider a class of strongly nonlinear composite
media which obey a current-field response of the following
form

J =y/E/ ~E,

where p ) 0. The nonlinear coefficient y will take on
different values in the inclusion and in the host medium.
An external electric Geld Eo is applied. The governing
equations for electric conduction, V.J = 0 and V x E = 0,
lead to the following differential equation:

V . y(x) ~Vrp(x) ~'~V'&p(x) = 0,

where y(x) is the potential. Together with the boundary
conditions on the surfaces of inclusions, Eq. (2) forms
an electrostatic boundary-value problem, which cannot
be solved exactly. In Ref. 10, we invoked a variational
principle by minimizing the energy functional:

warp] = f J(x) E(x)dv,

where the electric field is given by E = —V'y and V is the
volume. When the minimum condition is satisfied by a
potential g&, then by using Eqs. (1) and (3), the efFective
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nonlinear response y can be obtained:

V=W= yx Ex + dV,

where p is the volume fraction of the inclusion, and Qp(b)
is given by

where E = —Vy. The trial potential function will be
taken as the solution of the linear problem. Hence,
Eq. (4) allows us to obtain the dilute-limit expression
for the effective nonlinear response.

Let us consider a problem in d dimensions, i.e., of
spherical inclusions in three dimensions (3D) and cylin-
drical inclusions in two dimensions (2D) of radius p and
nonlinear coefficient y; suspended in a host medium of

, with the application of an external uniform Geld Ep.
We choose the following trial function for the potential:

p;(r, 0) = —(1 —b)Ear cos8, r & p,

rp (r, 8) = Eo(r——bp"r ")cos8, r ) p,

(5)
(6)

where b is a variational parameter as yet to be deter-
mined. With these trial functions, the energy functional
is given by:

Wp(b) = y + py Qp(b) + py;(1 —b)
+ ~ VEO+

(7)

Qn(b) = ).q'(P)b'
i=p

(8)

Similar trial functions have been proposed in a varia-
tional treatment of weakly nonlinear composites. Due
to the progressively lengthy expressions of q; (P) for
large i, we shall present the first few terms up to i
5: q, (p) = —1, 2(1+p), (1+p)(d —l)(2+4p+d)/(2+d),
2P(1+ P)(d —2)(d —l)(4+ 8P + 3d)/3(2+ d)(4+ d),
P(1+P) (d 1)(—4—8+ 192P2 +4d+ 96Pd —208P2 d+ 32dz-
104Pd2+ 80P2 d2 —17ds+ 40Pds +3d4) /6(2+ d) (4+d) (6+
d), (P —1)P(l + P) (d —2) (d —1)(—192 + 768P2 —8d +
480Pd —928P d + 154d —580Pd + 544P d —125d +
340Pds + 45d4) /15(2 + d) (4 + d) (6 + d) (8 + d), . . . f«
i = 0, 1, 2, 3, 4, 5, . . ., respectively. The results are valid
for arbitrary P and d. One can check from the coefficients
that when P is an integer, q,.(P) vanishes identically for
all i & 2(l + p), and Qp(b) is a polynomial in b, while
for a nonintegral p, Qp(b) is an infinite series of b. When
p = 1, we recover the result for cubic nonlinearity:~o

W, (b) = y +py ~

—1+4b+ b'+ b'2(d —1)(d + 6) 2 4(d —1)(d —2)
d + 2 d + 2

'(d' ——,'d+ 2)b' + py;(1 —b)' VE04,
(d+ 2)

(9)

valid for arbitrary d.
Let us define a contrast z = y /y; between the com-

ponents. Minimizing Eq. (7) with respect to b, we obtain
the following asymptotic behaviors of b(z):2o

b(z) = b(0) —aoz ~~ + ~& + . (z « 1)

= b(oo) + a /z + (z )) 1),

valid for arbitrary P in the limits of small and
large z. These asymptotic forms have been dis-
cussed by Bergman with yet undetermined coefficients.
We should remark that in Ref. 21, a self-consistent,
Bruggeman-type effective medium approximation for
strongly nonlinear composites is derived, which is sim-
ilar to the approximation to be considered in Sec. III.
By the variational method, b(0) is unity for all P and d;
other coefficients ao, b(oo), a can be calculated explic-
itly. In subsequent discussions, we shall restrict ourselves
to P = 1. We find ao ——Qz(l)/4 = d(4+ 2d+ 3d )/3(2+
d), while a satisfies the equation Qz(b(oo)) = 0 and
a = 4[1 —b(oo)] /Qz'(b(oo)). We report numerical val-
ues as follows: In 2D, ao ——1.494, b(oo) = —0.4814, and
a = 1.457 while in 3D, ao ——1.949, b(oo) = —0.2954,
and a = 0.6568, respectively.

III. DIFFERENTIAL EFFECTIVE MEDIUM
AP PROXIMATION

Here we develop the differential efFective medium ap-
proximation (DEMA) for the strongly nonlinear response

of &actal clusters, modifying a similar approximation
for a weakly nonlinear response.

We shall use the dilute-limit expression [Eq. (9)] to
obtain an approximate expression for the effective non-
linear response of a cluster. In order to describe a &actal
cluster of type-1 embedded in a host medium of type-
2, we start with a pure type-1 inclusion of radius p, at
which p1 ——1 and pq ——0. The volume &action p2 of host
medium is increased by adding type-2 material at the ex-
pense of volume &action p1 of type-1 materials. Let the
cluster at radius L have an effective response y, (L). Ac-
cording to Ref. 17, the effective response of a cluster at
radius L + bL can be obtained by adding a volume &ac-
tion bg = —bpq/pq of host material to a medium with an
effective response y, (L). Then from Eqs. (4) and (9), we
Gnd

~X = — [Q&(b)X + (1 b)»]
P1

which is an ordinary differential equation for y, (pq). It
is more convenient; to define the dimensionless quantities
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& = x2/xi anci &. = x.x./x
equation
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must coincide with g). We identify the relevant scaling
variables y = x xf ~ and y = xf & for the S/N and
N/I limits, respectively. To confirm the scaling form, we

plot in Fig. 2 the rescaled nonlinear response x,/z as a
function of the corresponding scaling variable both for
the S/N and N/I limits; data collapse is evident for a
wide range of x and f

VI. DISCUSSIONS AND CONCLUSIONS
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FIG. 2. Rescaled nonlinear response in a DEMA plot-
ted against the corresponding scaling variable in 3D for
the S/N and N/I limits. Upper curves (N/I limit):
log~o(x, /x) is plotted against log~o(a f '

) for x
0.1, 0.05, 0.02, 0.01, 0.005, and 0.002. Lower curves (S/N
limit): logxo(x /x) is plotted against logxo(2: f ~ ) for
x = 500, 200, 100, 50, 20, and 10. Data collapse is evident
for both limits.

V. SCALING BEHAVIORS

As a similar problem of a random medium, we may
expect the effective nonlinear response to exhibit a uni-
versal scaling behavior. To this end, we propose the
following scaling forms for the nonlinear response in
the limit of f (( 1:

x. =z"4(x 'f &) (x &&1)
=x"4'(xf '~) (x ((1),

(19)
(20)

where 4 and @ are universal scaling functions and
u, v, P, and @ are exponents. By incorporating the
asymptotic behaviors [Eq. (10)] into Eq. (13), we obtain
P = Qx(1), g = Qx(b(oo)), u = v = 1 in the DEMA. The
numerical values are P = 22/3 and 67/5 in 2D and 3D,
respectively, while @ = 1.981 and 1.582 in 2D and 3D,
respectively. It should be remarked that the exponent P
generally differs from vP, indicating different scaling be-
haviors for the S/N and N/I limits. Hence a suspension
of &actal clusters is not exactly analogous to the perco-
lation problem (in which case the crossover exponent P

In this work, we report on several results of signif-
icance. The dilute-limit expression [Eqs. (7) and (8)]
is valid for arbitrary nonlinear exponent P and dimen-
sion d. With the use of its asymptotic behaviors at both
small and large contrast, we should be able to develop
various effective medium approximations, valid for arbi-
trary P and d. Although the present approach deals with
strongly nonlinear composites, with slight modifications,
the variational method can be applied to arbitrary non-
linearity as well. However, it has been recently shown
that even if one considers clustering of a weakly nonlin-
ear material in a host medium, the effective nonlinear
response can be largely enhanced ' in the extremely
dilute limit (f (& 1), and therefore, the strongly nonlin-
ear approach may be more applicable. Moreover, our re-
sults may have relevance to a recent experiment on laser-
irradiated polymers, ~ where a power-law current-voltage
characteristic of the forxn I = V (which corresponds to
P = 1/2) has been observed even in a sxnall applied volt-
age V.

In conclusion, we have developed a DEMA for the ef-
fective nonlinear response of strongly nonlinear &actal
clusters. The results are compared with numerical sim-
ulations in a deterministic fractal cluster. Very often in
experimental situations, the conductivity ratio between
the poor and good conducting components is finite. This
leads us to examine the scaling behavior of the nonlin-
ear response. By using the asymptotic behaviors of the
field distribution, we are able to extract the exponents in
the DEMA. Scaling forms for the response functions are
proposed and confirmed in numerical calculations, and
excellent agreements are found.
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