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Strongly nonlinear response of fractal clusters
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We have developed a differential effective medium approximation (DEMA) for the effective non-
linear response due to clustering of a strongly nonlinear conducting material of a current-field (J-E)
response of the form J = x|E|*’E (8 > 0) in a host medium, where x is the nonlinear coefficient.
The DEMA results are compared with numerical calculations in a deterministic fractal model. As
a similar problem of a random medium, we further investigate the scaling behavior of the nonlinear
response. It is shown that by choosing a relevant scaling variable properly, the nonlinear response
function can be rescaled to collapse onto a universal curve.

I. INTRODUCTION

The transport and optical properties of nonlinear in-
homogeneous media have received much attention re-
cently because of their potential applications in engineer-
ing and physics.'™ Established theories are available in
the weakly nonlinear case in which the nonlinearity can
be treated as a small perturbation.5® Over the past few
years, substantial progress has been made in calculat-
ing the effective nonlinear response of random nonlinear
composites in which a small volume fraction of nonlin-
ear material is randomly embedded in a host medium.
An effective medium approximation” (EMA) for weakly
nonlinear composites was proposed. Recently, the scaling
form of the weakly nonlinear response has been extracted
from the EMA.®

More recently, attention has been paid to a class of
strongly nonlinear conducting composite media with a
power-law nonlinearity which occurs when a sufficiently
strong field is applied to condensed matter.® For this
composite system, the inclusion and the host medium
obey a local current-field (J-E) relation of the form
J = x|E|?’E, and 8 > 0. For such a nonlinear rela-
tion, the conventional perturbation method® fails and we
have recently developed a variational method to obtain
the dilute-limit expressions for the effective response of
a small volume fraction of spherical inclusions embedded
in a host medium,® valid for 8 = 1.

Moreover, the approach is only valid for ¢ruly random
composites in the dilute limit. In fact, many growth and
fabrication processes may produce spatial correlations in
realistic composites. In particular, a fractal clustering
will be generated via various aggregation processes.}!”13
The fractal geometry should have an observable effect
on the nonlinear as well as the linear properties.'4"1¢ In
this work, we aim at developing a differential effective
medium approximation (DEMA) for the effective nonlin-
ear response of clustering strongly nonlinear materials in
a host medium, in which case a similar approximation in
weakly nonlinear systems'” cannot be applied.

The plan of the paper is as follows. In the next section,
we invoke a variational principle to obtain the dilute-
limit expression for the effective nonlinear response for a
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small volume fraction of inclusions embedded in a host
medium. Explicit asymptotic behaviors of the local field
will be obtained. In Sec. III, we develop the differential
effective medium approximation for the strongly nonlin-
ear response of fractal clusters, by using the dilute-limit
expression. We obtain results valid for both cases when
the host is the better or poorer conductor. Then, in
Sec. IV, in an attempt to verify the DEMA results, we
perform a numerical simulation on a deterministic frac-
tal cluster. In Sec. V, we propose scaling forms for the
effective nonlinear response in the extreme dilute limit.
The relevant scaling variables are identified and the scal-
ing behaviors are extracted in the DEMA. Possible ex-
tensions of the present approach and relevance to recent
experiments will be discussed.

II. MODEL AND METHOD

We consider a class of strongly nonlinear composite
media which obey a current-field response of the following
form:%10

J = x|E*’E, (1)

where 8 > 0. The nonlinear coefficient x will take on
different values in the inclusion and in the host medium.
An external electric field Eg is applied. The governing
equations for electric conduction, V-J = 0 and VXE = 0,
lead to the following differential equation:

V- [x(%)|Ve(x)|*Ve(x)] =0, 2)

where ¢(x) is the potential. Together with the boundary
conditions on the surfaces of inclusions, Eq. (2) forms
an electrostatic boundary-value problem, which cannot
be solved exactly. In Ref. 10, we invoked a variational
principle by minimizing the energy functional:

Wiel = [ 360 - Bixav, 3)

where the electric field is given by E = —Vp and V is the
volume. When the minimum condition is satisfied by a
potential @, then by using Egs. (1) and (3), the effective
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nonlinear response x. can be obtained:
xB5V =W = [ x(x)EGoav, (4

where E = —V@. The trial potential function will be
taken as the solution of the linear problem.!® Hence,
Eq. (4) allows us to obtain the dilute-limit expression
for the effective nonlinear response.

Let us consider a problem in d dimensions, i.e., of
spherical inclusions in three dimensions (3D) and cylin-
drical inclusions in two dimensions (2D) of radius p and
nonlinear coefficient x; suspended in a host medium of
Xm, With the application of an external uniform field Eq.
We choose the following trial function for the potential:1°

¢i(r,0) = —(1 —b)Egrcosd, r <p, (5)
Om(r,0) = —Eo(r — bpr' =% cosh, r>p, (6)

where b is a variational parameter as yet to be deter-
mined. With these trial functions, the energy functional
is given by:!®

Ws(b) = [Xm + PxmQp(b) + pxi(1 — b)**?P| VE; T,
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where p is the volume fraction of the inclusion, and Qgz(b)
is given by

Qs(t) = 3 a:(B)b. (8)

=0

Similar trial functions have been proposed in a varia-
tional treatment of weakly nonlinear composites.'® Due
to the progressively lengthy expressions of g;(8) for
large i, we shall present the first few terms up to i =
5. a(B) = —1, 2(1+4), (1+8)(d—1)(2-+48+d)/(2+d),
26(1 + B)(d — 2)(d — 1)(4 + 88 + 3d)/3(2 + d)(4 + d),
B(1+B)(d—1)(—48+1923% + 4d+963d — 2083%d + 32d? —
1043d? +803%d? — 17d® +403d3 + 3d*) /6(2+d) (4 +d) (6 +
d), (B—1)B(1+ B)(d — 2)(d — 1)(—192 + 76803% — 8d +
48083d — 92832d + 154d? — 5808d? + 5443%d? — 125d3 +
3403d3® + 45d*)/15(2 + d)(4 + d)(6 + d)(8 + d),... for
1=0,1,2,3,4,5,..., respectively. The results are valid
for arbitrary 8 and d. One can check from the coefficients
that when [ is an integer, ¢;(3) vanishes identically for
all ¢ > 2(1 + B), and Qg(b) is a polynomial in b, while
for a nonintegral 3, Qg(b) is an infinite series of 5. When

(7 B = 1, we recover the result for cubic nonlinearity:*°
J
3 2d—1)(d+6),, 4(d—1)d—2),s
Wi(b) = | xXm m| —1+4b b b
1(6) [X +rx ( tOr a1 T ary)

(d-1)

tdr2)

valid for arbitrary d.
Let us define a contrast z = xm/X; between the com-
ponents. Minimizing Eq. (7) with respect to b, we obtain

the following asymptotic behaviors of b(z):20
b(z) = b(0) — apz/(1+28) 4 ... (z< 1)
=b(00) + ae/2+ -+ (2> 1), (10)

valid for arbitrary [ in the limits of small and
large =z. These asymptotic forms have been dis-
cussed by Bergman?! with yet undetermined coefficients.
We should remark that in Ref. 21, a self-consistent,
Bruggeman-type effective medium approximation for
strongly nonlinear composites is derived, which is sim-
ilar to the approximation to be considered in Sec. III.
By the variational method, b(0) is unity for all 8 and d;
other coefficients ag,b(c0), ass can be calculated explic-
itly. In subsequent discussions, we shall restrict ourselves
to B =1. We find a3 = Q(1)/4 = d(4 + 2d + 3d?)/3(2 +
d), while a., satisfies the equation Q}(b(c0)) = 0 and
Goo = 4[1 — b(00)]3/QY (b(00)). We report numerical val-
ues as follows: In 2D, a¢ = 1.494, b(co) = —0.4814, and
G = 1.457 while in 3D, ag = 1.949, b(c0) = —0.2954,
and a., = 0.6568, respectively.

(@~ 3+ 2)b4) +pxal - b)‘*] VE,

III. DIFFERENTIAL EFFECTIVE MEDIUM
APPROXIMATION

Here we develop the differential effective medium ap-
proximation (DEMA) for the strongly nonlinear response
Xe of fractal clusters, modifying a similar approximation
for a weakly nonlinear response.”

We shall use the dilute-limit expression [Eq. (9)] to
obtain an approximate expression for the effective non-
linear response of a cluster. In order to describe a fractal
cluster of type-1 embedded in a host medium of type-
2, we start with a pure type-1 inclusion of radius p, at
which p; = 1 and p; = 0. The volume fraction p, of host
medium is increased by adding type-2 material at the ex-
pense of volume fraction p; of type-1 materials. Let the
cluster at radius L have an effective response xe(L). Ac-
cording to Ref. 17, the effective response of a cluster at
radius L + 6L can be obtained by adding a volume frac-
tion 6y = —dp1/p1 of host material to a medium with an
effective response x(L). Then from Egs. (4) and (9), we
find

op1

—p—l[Ql(b)xe + (1 - b)*xa, (11)

6Xe =

which is an ordinary differential equation for x.(p1). It
is more convenient to define the dimensionless quantities
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z = x2/x1 and z. = Xe/Xx1. Note that b is the solution
of the cubic equation

Qi(b)z. —4(1 —b)3z =0 (12)

and is a function of z./x. Upon integrating Eq. (11), we
find

|- [ G ] =S 09

where we have defined f = p; as the volume fraction of
the cluster; f decreases from unity towards zero while y.
varies from x; to X2 as the cluster size increases. It is
instructive to examine the corresponding result for the
linear problem (8 = 0), which can be derived in essen-
tially the same way:

X [‘ [ aweras b)%] =7 (14)

By using Eq. (8), we find Qo(b) = —1 + 2b + (d — 1)b?;
hence b = (z — z.)/[z + (d — 1)ze]. Equation (14) can be
readily integrated to give

d
Xe (Xz Xl) = f, (15)
X1 X2 — Xe

which coincides with the linear result of a similar approx-
imation in weakly nonlinear composites.!” Equation (13)
can usually be solved numerically; however, an asymp-
totic form can be obtained for small and large = as we
shall see below.

We should remark that the approach does not neces-
sarily assume that the cluster is fractal. If, however, the
cluster is indeed a fractal of fractal dimension df, then
the volume fraction of nonlinear fractal inclusion is re-
lated to the cluster size as

f=(L/p)~C 0. (16)

log1g(xe/x1)

-2 -15 -1 -0.5 0
logyo f

FIG. 1. Normalized effective nonlinear response x./x1 in
a DEMA (solid lines) and numerical simulations (symbols)
plotted against the volume fraction f for various ratios of
conductivity . From top and downwards in order of decreas-
ing ratio of conductivity: = = 20, 10, 5, 2, 0.5, 0.2, 0.1, and
0.05.
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We are now in a position to obtain numerical results for
the DEMA response. We distinguish two cases: (i) the
host is the poorer conductor (x1 > x2 and N/I limit)
and (ii) the host is the better conductor (x; < x2 and
S/N limit). We shall present results in two dimensions
to compare with numerical simulations in a determinis-
tic fractal cluster.?? In Fig. 1, we plot the normalized
effective nonlinear response z./x as a function of volume
fraction f of fractal for various ratios x. As seen from
Fig. 1, we confirm that as the cluster size increases and
f decreases from unity towards zero, x. varies from x;
to xa2.

IV. NUMERICAL CALCULATIONS
IN DETERMINISTIC FRACTAL CLUSTERS

We attempt numerical calculations of the effective re-
sponse of a deterministic fractal cluster (DFC) which is
constructed recursively from a simple basic unit,?? in or-
der to compare with the DEMA results. The L-shape
deterministic fractal cluster is constructed as follows. We
begin with a square of lateral size of two units and di-
vide it into four squares; the first generation is obtained
when the upper right quadrant is removed. The second
generation is obtained by putting together three units
of the first generation. In this way, at the nth genera-
tion, we obtain a fractal cluster of size L = 2™ embedded
in the two-dimensional space. The cluster has a frac-
tal dimension df =1n3/In2 = 1.585 or equivalently the
volume fraction of inclusion decreases with the increase
of generation as f = (3/4)".22 For convenience of nu-
merical simulations, we then construct a fractal network
by mapping the DFC onto a 2D square network — ad-
jacent fractal squares are assigned a type-1 bond while
the remaining squares assigned type-2 bonds; now the
volume fraction of type-1 bonds is f =~ (3/4)™ for large
n. We associate each corresponding bond with two types
of nonlinear conductors obeying a current-voltage (I-V)
response of the form

I=x;V3, (17)

where x; (¢ = 1,2) is the nonlinear coefficient and V' the
voltage across the conductors. The effective response of
the network is defined as that of a homogeneous network
of identical conductors, each of which has a response of
the form

I=x.V3 (18)

A unit voltage is applied across the top and bottom bars
of the network. The nonlinear Kirchhoff’s circuit equa-
tions for each node are solved by the relaxation method.
When convergence is achieved, the current going into the
top bar and that going out of the bottom bar will be the
same. The effective nonlinear response of the network
is used to compare with the DEMA [Eq. (13)] for the
same f. The simulation is performed up to the eighth
generation. In Fig. 1, we plot the normalized response
Xe/x1 against f. The simulation results are in excellent
agreement with the DEMA results.
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FIG. 2. Rescaled nonlinear response in a DEMA plot-

ted against the corresponding scaling variable in 3D for
the S/N and N/I limits. Upper curves (N/I limit):
log,o(ze/z) is plotted against log;o(zf '®°%%) for z =
0.1, 0.05, 0.02, 0.01, 0.005, and 0.002. Lower curves (S/N
limit): log,o(xe/z) is plotted against log,,(z~1f%7/%) for
z = 500, 200, 100, 50, 20, and 10. Data collapse is evident
for both limits.

V. SCALING BEHAVIORS

As a similar problem of a random medium, we may
expect the effective nonlinear response to exhibit a uni-
versal scaling behavior.?? To this end, we propose the
following scaling forms for the nonlinear response?® in

the limit of f <« 1:

T =z ®(z71f %)
=a:”\11(a:f_"")

(x> 1) (19)
(z < 1), (20)

where ® and ¥ are universal scaling functions and
u, v, ¢, and ¢ are exponents. By incorporating the
asymptotic behaviors [Eq. (10)] into Eq. (13), we obtain
¢ =Q1(1),% = Q1(b(c0)),u = v = 1 in the DEMA. The
numerical values are ¢ = 22/3 and 67/5 in 2D and 3D,
respectively, while ¢ = 1.981 and 1.582 in 2D and 3D,
respectively. It should be remarked that the exponent ¢
generally differs from %, indicating different scaling be-
haviors for the S/N and N/I limits. Hence a suspension
of fractal clusters is not ezactly analogous to the perco-
lation problem (in which case the crossover exponent ¢

must coincide with ). We identify the relevant scaling
variables y = z71f~% and y = xf~¥ for the S/N and
N/I limits, respectively. To confirm the scaling form, we
plot in Fig. 2 the rescaled nonlinear response z./c as a
function of the corresponding scaling variable both for
the S/N and N/I limits; data collapse is evident for a
wide range of  and f.

VI. DISCUSSIONS AND CONCLUSIONS

In this work, we report on several results of signif-
icance. The dilute-limit expression [Egs. (7) and (8)]
is valid for arbitrary nonlinear exponent 3 and dimen-
sion d. With the use of its asymptotic behaviors at both
small and large contrast, we should be able to develop
various effective medium approximations, valid for arbi-
trary 3 and d. Although the present approach deals with
strongly nonlinear composites, with slight modifications,
the variational method can be applied to arbitrary non-
linearity as well. However, it has been recently shown
that even if one considers clustering of a weakly nonlin-
ear material in a host medium, the effective nonlinear
response can be largely enhanced?®?* in the extremely
dilute limit (f < 1), and therefore, the strongly nonlin-
ear approach may be more applicable. Moreover, our re-
sults may have relevance to a recent experiment on laser-
irradiated polymers,2® where a power-law current-voltage
characteristic of the form I ~ V2 (which corresponds to
B = 1/2) has been observed even in a small applied volt-
age V.

In conclusion, we have developed a DEMA for the ef-
fective nonlinear response of strongly nonlinear fractal
clusters. The results are compared with numerical sim-
ulations in a deterministic fractal cluster. Very often in
experimental situations, the conductivity ratio between
the poor and good conducting components is finite. This
leads us to examine the scaling behavior of the nonlin-
ear response. By using the asymptotic behaviors of the
field distribution, we are able to extract the exponents in
the DEMA. Scaling forms for the response functions are
proposed and confirmed in numerical calculations, and
excellent agreements are found.
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