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We calculate the spectral shape of the displacement-displacement correlation function of a one-
dimensional chain of atoms interacting through a nearest-neighbor potential. We make use of the per-
turbation treatment developed by Maradudin and Fein. Our calculations are parallel to the correspond-
ing work done using the frequency moments method. As expected the two methods agree best at low
temperatures.

I. INTRODUCTION

The calculation of correlation functions for physical
systems with nonlinear interactions is an ubiquitous prob-
lem in statistical physics and appears in many different
contexts. In lattice dynamics the correlation function of
the greatest importance is that of the spectral shape,
which is the Fourier transform of the correlation func-
tion of the product of the displacements. For simplicity
we consider a one-dimensional crystal:

first worked out by Mori and Dupuis. ' The method
since then has been extensively used in condensed matter
theory for both quantum and classical (high-
temperatures) cases. We will briefly summarize the
essence of the moments method. Let A (t) be an invari-
ant under time-reversal dynamical variable. Usually
A (t) is the correlation function. Then its Fourier image

A (co)=I dco e' 'A (t) (2)

can be expanded into the continued fraction representa-
tion:

X J e'"'([u;(t) —u, (0)] )dt .

Here X denotes the number of atoms in the crystal. The
wave vector k is defined within the first Brillouin zone—(m/a)(k ~~/a, angle brackets denote the quantum
average. u, (t) is the displacement of the ith atom from
equilibrium at time t The pea.ks of C(k, co) describe the
phonon structure of the crystal. At su%ciently high tem-
peratures, one can relatively easily calculate the classical
thermodynamic quantities by the use of Monte Carlo
simulation (MC) or molecular dynamics (MD). However,
for the quantum case, the application of MC techniques
leads to a very large increase of the computing time. One
can try to reduce the calculation of the quantum quanti-
ties to that of classical ones through the introduction of
an effective potential due to Feynman. ' The method,
originally devised for sufFiciently high temperatures and
weakly bounded particles, became, in principle, applica-
tion to the quantum solid due to the refinement intro-
duced independently by Feynman and Kleinert and
Giachetti and Tognetti. The use of the above approach
for the calculation of the spectral shape is possible using
the frequency moments method. The applications of fre-
quency moments method to the calculation of the corre-
lation functions of time-dependent operators have been

A (co) = Re
pp

52
l CO+

l CO+

The 5„are positive algebraic functions of the even mo-
ments,

iLt2„= I A (co)co "dco,

where the first few are given by the formulas

P2

Pp

(4)
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Formulas for the first few moments are very easily de-
rived. If truncated after few steps, the infinite continued
fraction turns out to be a very convenient expression.
This is the main advantage of the frequency moments
method. Nevertheless, when applying the method, one
faces serious problems. First, the calculation of many
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moments is a formidable computational problem. Anoth-
er problem is that of the termination of the continued
fraction of the moments method, which may strongly
inhuence the final result. In the literature there are many
sophisticated termination procedures available. We will
refer to the use of molecular dynamics for matching with
the classical results of the moments method. However, a
convolution procedure must be applied for the removal of
the spiky structure generated by MD simulation.
This affects the resulting line shape, especially for small
wave vectors.

Therefore, it is worth presenting a different calculation
of the spectral shape of a crystal which leads to indepen-
dent conclusions concerning the phonon structure of the
crystal and simultaneously provides comparison with the
results of the moment method. Our article is arranged as
follows. In Sec. II we shall outline the general formalism
that we utilize to describe the spectral shape of a one-
dimensional crystal. In Sec. III we present the explicit
calculation of the spectral shape for a one-dimensional
chain. The expression for the differential cross section is
manipulated into a spectral density. We present a com-

I

piete analytic evaluation for the classical case and carry
out a partially numerical calculation for the quantum
case to any accuracy desired. Finally, in Sec. IV, we dis-
cuss our results and compare them with those of the mo-
ments method.

II. GENERAL FORMALISM

Van Hove' derived the expression for the differential
cross section per unit solid angle and unit interval of out-
going energy of the scattered neutron in the first Born ap-
proximation for coherent scattering

Q2g

dQde

Here qo is the initial wave vector of the neutron and
q, =qo —a. is its final wave vector. fico=(A /2m)(qo —qi )

is the energy transferred from the neutron to the crystal,
and ao is the scattering length of the nuclei. The ampli-
tude S(ir, to) in the one-dimensional case is defined as fol-
lows:

—PE,. E; —E
S(~,co)=Z 'pe '(E;

~ +exp[ iirR —(l)]~E )(E
~ gexp[iirR (I')]~E; )5 (0+

I,J I 1'

E; are energy eigenstates of the crystal and Z is the partition function. The position vector can be written as
R (I)=x (I)+u (I). u (I) is the displacement of the lth atom away from equilibrium, a is primitive translation vector of
the crystal, and l' is an integer,

x(l)=la .

If one takes into account the lowest nonvanishing order in the anharmonic force constants, (7) can be transformed into
the form.

—2MeS(x,a)) = +exp[ —isa�(l —I')]J dt e' 'exp[(v u (I, t)u(l', 0)) ] .
11' 00

(8)

Here e is the Debye-Wailer factor corrected for
anharmonic effects. The problem of calculating S(z, co)
becomes that of calculating the correlation function. In
the approximation of the lowest nonvanishing order in
the anharmonic force constants it turns out to be related
to the spectral shape function. If we expand the last ex-
ponent in Eq. (8) in powers of its argument and retain
first two terms, we obtain

S(a, )=a)So(l(, co)+S,(i(,a)) .

So(i(,a)) corresponds to the coherent elastic scattering
of neutrons and differs from zero only when k equals a
vector of the reciprocal lattice. The term S, (i(,a)) corre-
sponds to the inelastic coherent scattering of neutrons by
one phonon processes. It has been evaluated by applying
perturbation theory methods, when the cubic and quartic
anharmonic terms (in atomic displacements) are retained
in the crystal Hamiltonian with nearest-neighbor interac-
tions. " The calculation goes as follows. S) (i~, co) is given

by

e
—2M

Si(v, co) = g e
—(va(l —I')~2B (I I .el)

277
1, 1'

B (I, I';a) ) is defined in the following way:

B(I,I', )a=)J dt e' '(u(l, t)u (I',0)),

and is evaluated as follows:

The expression for a (v) has the form

a (V) g e2mika(l
—I')g (k)1

2Am k co(k)
(10)

2nPA . . a (co+i e) a(a) i e)——
1 e t'e~ ~—+o 2VTl
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A (k) is the Fourier coeKcient of the correlation func-
tion, k =~/2~.

F(k, u)—:(Te" (a k+al, )e " (a k+ak ))

A (k)=
v+co(k) — G (k, v)

1

and is given by

(k)=2
PA —v +to (k) —2 G(k, v)

co(k)
(12)

At this point Maradudin and Fein use an approximation
concerning the magnitude of the self-energy G (k, v).
They assume it to be very small, so that they can substi-
tute instead of this expression the following one:

(13)
—v+co(k) — G (k, v)

1

Ph
We decided not to use this approximation. In hindsight
in turns out that it influences only the low-frequency part
of S. For low temperatures the inQuence is indeed negli-
gible. For higher temperatures we obtain much better
agreement with the results obtained by MD. Our final re-
sult is as follows:

8vrRX p~ 1 k co(k)1 (k, co)S, kco= e
—2M

m 1 —e ~~
[
—co +co (k)+2'(k)b(k, co)] +[2'(k)r(k, co)]

I (k, co) and A(k, co) are defined in the relation

—lim G(k, to ic)=h(k. , co)+ir(k, co) .
v~+0 f3'

Physically they represent the broadening and the shift of the dispersion curve due to anharmonicity. m is the atomic
mass; co(k) =co ~sin(ka/2) ~, is the frequency of the normal mode, described by the wave vector k.

III. EVALUATION DF THE DISPLACEMENT-DISPLACEMENT CORRELATION FUNCTION

A. Derivation of the formula for the spectral shape

Equation (1) can be transformed as follows:

C(k, co)=—ge '"" ~' dt e' '[(u,. (t))+(uj. (0))]=1
QO

l~ J

——g e '"" ~' f dt e' '[( u, (t)u~(0) ) + ( ui(0)u;(t) ) ] . (15)
N OO

l,j
The first term di8'ers from zero only for k=O and, therefore, is omitted. In the second, we will omit the minus sign, fol-
lowing Ref. 7. So

C(k, co)=—pe '"'~' ~~f dt e' '[(u;(t)u. (0))+(uz(0)u;(t))]=C&(k, co)+C2(k, to) .
l,j

Making use of the equality

(u, (t)u, (0)) =(u, (0)u, ( —t)),
we see that

C, (k, co) =— e S,(k, co),
1 1

& Z~k'

1C (k, co)=— e S ( —k —to)N2 k'

C(k, co)= — e [S (k, co)+S ( —k, —co)] .
1 1

N 2.k
'

Now we make use of the symmetry properties:

I (k, ro)= —I (k, —co), I (k, co)=I ( —k, co), b(k, co)=b(k, —co),

h(k, co)=h( k, to), co(k)=co( ——k),
and obtain

„Pr~ ~(k)r(k, ~)C k, co = coth
m 2 [—~2+co (k)+2'(k)b(k, co)) +[2'(k)r(k, co)]

(17)

(18)
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B. Evaluation of auxiliary functions

N/2
I (k, co)=

k, k = N/—2+1

The broadening of the spectral line I (k, co) can be evaluated exactly. We will assume everywhere that k is positive
and co is non-negative. Further one should recall the re6ection formulas in the end of Sec. III A. The general expres-
sion for I (k, co) has been worked out in Ref. 11 [formula (S.Sb)] and here we reproduce it for a one-dimensional crystal:

le( —k, k„k, )l'
b( —k+k, +k2)

X [ —[n(co(k, ))+n(co(k2))+1]5(co+co(k, )+co(k2))

+[n(co(k, ))+n(co(k2))+1]5(co—co(k, ) —co(k2))

—[n(co(k, ))—n(co(k2))]5(co —co(k, )+co(k2))

+[n(co(k, ) ) —n(co(k2))]5(co+co(k, ) —co(k2))], (19)

%co
n (co)= exp kT co(k) =co sin

mk

l@(—k, k, , k2)l =
leo (k)co (k, )co (k2) .r'

N( —k, k1, k2 ) is the Fourier transform of the cubic anharmonic force term. y and 5 are the nearest-neighbor force
constants of the second and third order, respectively (Ref. 12). k1, k2 are confined to the first Brillouin zone. N is a
large even number of atoms in the crystal. We assume cyclic boundary conditions. Finally, b,(k) is the periodic
Kronecker symbol in the space of the reciprocal lattice. We transform 5 functions and replace summation over k by an
integration as in Ref. 13. In addition, we make use of the following equalities:

1 1 1 Ace

2 2 2kr
N/2

2@ink�/N
n = —X/2+1

Then, making use of
m/2

J2 +1(x)=— sin(x siny)sin(2m + 1)y dy
7T 0

we arrive at [In (19), k is an integer N/2+ 1 k—~ N/2. Here it is the wave vector]

(20)

(21)

5 oo m/2 fuu
I (k, co) = co co(k) sincot dt cos(co t sinx)sinx coth sinx dx

Sm y3 0

X g cos2pxe ' "'[J2~+,(co t) —J2~, (co t)] .
p= oo

In order to perform the summation we use a definition from the theory of Bessel functions:

Iz slllP ~ J (z)e iPP
P

(22)

and the following formula:

cos(z sinP) =Jo(z)+2 g Jzz(z)cos2pP,
p=1

(Ref. 14, p. 974) and obtain

fi 5 oo ~/2 AQ) m
I (k, co)=

&
co~co(k) dt dx slIlcot slllx cos(co~ I slIlx)cotll s111x

8m y3 —oo 0

X sin x—ka
msin co t sin x—ka

2

ka ka
+sin x+ sin cu t sin x+

2
(23)
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We can evaluate the integral over t in a straightforward manner and then apply the standard rule of the calculation of
integrals containing 5 functions. After some lengthy calculations we arrive at:

5I (k, co)=
3

co~co(k)
16 y3

X ~ 8 CO+ 2COm COS
2ka . 2ka co 1

sin +
4com«s (ka/4) ~4«s (ka/4) —co /co

'Aco + m . ka
1

co'ACO 2

4kT 2kT 4 4co cos (ka /4)

' 1/2

—sin +. 2ka
4

ka
S1Il COm

r

ficg)

&corn

. ka CO+ sin
4kT 2kT 4 4co cos (ka /4)

CO 1

4co cos (ka /4) Q4 eos~(ka /4) co~/co—~

1/2

ka ka
2co Sin - — ——co 8 co —co Sinm m

2ka
Cos

CO 1

4co sin (ka/4) +4 sin (ka/4) —co /co

fico ~~m ka coXcoth — cos 1—
4kT 2kT 4 4co sin (ka /4)

1/2
ka—

1t9 2co s1n —com 4

. 2ka
co —2co s1nm 4

2ka
COS

CO

4co sin (ka /4)

X 1

+4sin (ka/4) —co /co

fiCOm ka
coth + cos 1—

2kT 4

2
' 1/2

4co sin (ka /4)

ka 2ka+8 co sin —co cos
2 4

'Aco ~~m ka co+ cos- 1—
4kT 2kT 4 4co sin (ka /4)

X coth

CO 1

4com»n (ka/4) +4sin (ka/4) —co /co

1/2

ka ka+8' co corn sin 8 2com cos co
2

~, ka t—sin — --+
4 4co cos (ka/4)

1 %co ~~m . ka CO
coth — sin

4«s (ka/4) —co /co T 4 4co cos (ka/4)

1/2

2ka ka+8 co —2co cos 8 2co cos —co
. 2ka co—sin

4 4co cos (ka /4)

x
+4 cos ( ka /4) —co /co

%CO 2 1/2

h
fico + co . ka

1
4kT 2kT 4 4co «s (ka /4)

2co sin —co cos. 2ka 2ka

'Rco ~~m ka coX«th + «s I—

CO 1

4co sin (ka/4) +4sin (ka/4) —co /co~
1/2

(24)

Here 8(x) is the Heaviside step function. It is with the evaluation of I (k, co) for co=co(k) that we will be concerned
in the next section.

One must handle with care the calculation of I [k,co(k)]. Some terms are not defined for co=co(k) and we must apply
L'Hopital's rule. It turns out that
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kT 5I [k,co(k)]=
3

co
y3

This agrees with the result obtained by Maradudin. ' Nevertheless in his calculation Maradudin assumed the high-
temperatures limit:

1 kT
e fico/k T (25)

We ask the question. Why did this approximation by Maradudin lead to an exact result valid for all temperatures? The
result is due to peculiar properties of one-dimensional crystals and is explained in Appendix C.

The expression for the shift is given by

(e( —k, k„k, ) ~'
b(ken) = g [2n(co(k, ))+1]+ g 6( —k+k, +k~)

co k) 16¹ok k k cok, cok2
1 19 2

[n( co( k&)) +n( co(k 2)) +1] [n(co(k&))+n(co(kz))+1]
X +

(co+co(k, )+co(k2))P (co—co(k, ) —co(k2))p

[n(co(k, ))—n(co(k2))] [n(co(k, ))—n(co(k2))]
{co—co(k&)+co(k2))z {co+co(k&) ct)(k2))p

The principal part 1/cop is defined in Ref. 11.
N( —k, k, k &,

—k
&

) is the courier transform of the quartic anharmonic term and is given by (the formula has been de-
rived in Ref. 12)

@(—k, k, k„—k, )=16 co (k)co (k, ) .
m 2CO4

(27)

~ is the nearest-neighbor anharmonic force constant of the quartic order. The expression for the shift has the following
form:

4fiaco(k) 1 . I (k, Q)dQ
b, (k„co)= 3 I dy siny coth siny ——lim ' (Q —co) .

777// Q) 0 2kT m s 0 —~ (Q —~)2+E2

To arrive at this formula, we must remember the fact that the second term in the expression for b, (k, co) is connected
with I (k, co) through the Kramers-Kronig relation.

The expression (28) can be evaluated numerically to any accuracy desired. The high-temperature limit of (28) can be
evaluated exactly (see Appendix A). Then the expression for the shift reduces to

kT 5b(k, co) =4 kT co(k) —2—
+1—4(co /co )sin (ka/4)

ka
co —2' sin

+1—4(co /co )cos (ka/4)

ka
co 2co~ cos (29)

The exact evaluation of classical limit of b, (k, co) pro-
vides us with a good opportunity to check the reliability
of the Kramers-Kronig relation

b,~(k, co) = ——lim '
~ ~

(Q —c0) .
1 . ~ I (k, Q)dQ

0 —m (Q —co) +s
52(k, co) is the second term in Eq. (28). Due to the an-
tisymmetry of I (k, co) over co the interval of integration
over Q is reduced to [0,2co cos(ka/4)]. [Of course, one
must use the high Tlimi-t of I (k, co). ] If one applies the
trapezoidal integration rule, a million intervals and
v=0.01' are sufhcient to get a percentage error of only
a few percents. These considerations are very useful of

IV. CONCLUSIONS

The preliminary results have been published earlier. '

We adopt the nearest-neighbor Lennard-Jones potential:
12 '6

V(r) =4e. CT 0
r r

(30)

in order to be able to compare our results with those ob-
tained by Mori's method. ' Before summarizing the re-

the quantum case, where we were unable to get analytic
expression for h(k, co). Now we are in a position to cal-
culate the spectral shape.
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suits we must address the possible problems with pertur-
bation theory. The peculiar features of a one-dimensional
crystal are well known (Ref. 16). There is a well-known
proof due to Peierls, ' of the instability of one-
dimensional chain with respect to thermal fluctuations.
The root mean square of the thermal deviation of an
atom in such crystal diverges thus making the chain un-
stable. Nevertheless, the one-dimensional crystal has
been widely used as a model system. The stability may be
reached by putting additional pressure on the edges of
the chain or, as in our case, by imposing periodic bound-
ary conditions. That stabilizes the crystal. The second
question is whether the lowest order anharmonic pertur-
bation theory (LOAPT) is useful at nonzero tempera-
tures. Our results have been obtained in the framework
of perturbation theory. I (k, co) and b, (k, co) are, corre-
spondingly, the imaginary and real part of the proper
self-energy and, provided they are small in comparison
with co, the perturbation theory is, in principle, valid. So
at points 2' cos(ka/4), 2' sin(ka/4) the perturbation
theory breaks down. Therefore, we concentrate on the
case ka/n. =l. Then the singularities of I'(k, co) and
b, (k, co) at the points 2' sin(ka/4) and 2' cos(ka/4)
coalesce. We hope that this assumption makes the per-
turbation theory applicable for almost all frequencies in-
teresting from a physical point of view in the range of
temperatures we consider.

It is well known that perturbation theory for three-
dimensional crystal is valid for thermodynamic functions
up to about one-third of Debye temperature. ' We hope
that this criterion also holds for one-dimensional argon.
The reduced temperature t=0.3 corresponds to 36 K and
meets this requirement. We are encouraged by the fact
that the ratios I'(k, co)/co and h(k, co)/co are small up to
about co/co=15, which is the range of frequencies we use.
The application of LOAF T to a model of one-

I I I I [ I I I I
)

I m I I
i

I I I 5
)

I I I I

0.6
0

0.4
~ 0+4

3

o 0.2
O

00 10 15 20 25

FIG. 2. The same as in Fig. 1, at kT/e =0.3.

p2= J C(k, co)co de= kT . (31)

For t=0.05 the ratio of our result to the exact one is 0.9
and for t=0.1 it is 0.8. If one takes into account that our
theory cuts off the tail of C(k, co) which, due to the factor
co, gives a large contribution to the integral, the agree-
ment should be considered very good. The procedure
due to Gursey provides an exact evaluation of pp. For
t=0.1 the ratio of our result to the exact one equals 1.0. '

These results provide some support for the validity of
LOAPT in our case.

The results of our calculation are presented on Figs.
1 —4. We present frequencies in units of co=V Elmo~
and C(k, cg) in units of cr /co, which are natural for a

dimensional chain goes back to the 1950's (Ref. 19) and
since then has been extensively used. An early applica-
tion to LOAPT to the description of phonon structure of
this model is due to Maradudin [13]. For the classical
case our results should be checked against the relation

0.6

0

0.4— 0.4—
I I I

)
I I I I

)
I I l I

i
I I I I

)
I I I I

~p+I

3

o 0-2—
X

00
C)

00 10 15 20 25

0.3—
3

0.2—

0.1—

I

)

I

l

1

l

0 J
0 10 15 20 25

FIG. 1. Spectral shape of the Lennard-Jones crystal (classical
case) at ka/m =1.0 and kT/a=0. 1. The solid line is our result.
The dashed line corresponds to the Gaussian termination at
second order. The dotted line is that at third order. In the
latter, the width of the Gaussian 5& was used as a free parameter
to fit MD data (Refs. 7 and 8).

FIG. 3. F( k, co) (quantum case) at ka /m = 1.0 and
kT/a=0. 1. The solid line is our result. The dashed curve cor-
responds to the moments theory as given in Ref. 7.
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FIG. 4. The same as in Fig. 3, at kT/a=0. 3. FIG. 6. b (k, ~) at ka/+ =0.5 and kT/a=0. 5 for the classical
case.

Lennard-Jones crystal. For the quantum case, following
Refs. 7 and 8 we plotted the dependence of the normal-
ized dimensionless C (k, co), namely I I I I

I
I I I I

)
I I I I

)
I I I I

i
I I I I

F(k )
C(kgb)

Po
(32)

13

o 1
N

~ I+&I

po is the zeroth moment. t is the reduced temperature
kT/e In the .remainder of this section, we quote the mo-
ments method result of Cuccoli et al. ' Figures 1 and 2
include a classical case. Figures 3 and 4 correspond to
the quantum case. (The De Boer quantum coupling pa-
rameter A, =+72/2'~ A/cr &rn e has been given the value
0.23, corresponding to argon. See Ref. 7 for more de-
tails. ) At first, let us turn to the classical case (A, =O).
[Despite the complicated analytical dependence of
I (k, co) its behavior is rather simple. See Fig. 5 as a typi-
cal example. The quantum and classical I (k, co) are very
close]. We also present the classical (Fig. 6) and quantum
(Fig. 7) b, (k, co). We can draw the following conclusions.
Increasing the temperature leads to the broadening of the
peak of C(k, co), i.e., an increase of I (k, co) with tempera-

3

0—
0

I ~ ~ I ~

I
I ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ a

I
~ ~

10 ~/g 16 20
I I I

25

FIG. 7. A(k, co) at ka/+=1. 0 and kT/a=0. 3 for the quan-
tum case.

I I I I
)

I I I I
)

I I I I 0.5
0

I I I
I

I I I I
I

I I I I
I

I I I I
I

I I I I

0 60—

0 0.4—

0.3—

40
3

20—

~ W

3.

X

0.2—

0.1—

10
w~v T

20 30 5 10 15 20 25

FIG. 5. I (k, co) at ka/m=0. 5 and kT/a=0. 5 for classical
(filled circles) and quantum (solid line) cases.

FIG. 8. The classical spectral shape at ka /m = 1.0 and
kT/a=0. 025 (solid line) and kT/@=0.05 (dotted line).
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ture. It follows from the following qualitative considera-
tions: broadening must be inversely proportional to the
phonon lifetime. For high temperatures the probability
of the disintegration of the phonon due to anharmonicity
is, evidently, much higher. The peak itself shifts to the
left as the temperature increases. This is due to the fact
that the shift 5(k, to), which defines the location of the
peak monotonically d.ecreases with increase of tempera-
ture. We observe the same dependence for the quantum
case. The peak, nevertheless, is a little bit wider. Our re-
sults provide us with a good opportunity to compare the
results of the frequency moments method with ours. We
show the results of the moments theory for the second-
and third-order termination of the continued fraction.
From Fig. 1 we see that for low temperatures the results
of these two approaches agree well. The locations of the
peaks differ by about 10%, the widths and the heights
agree pretty well. Moreover, the curves corresponding to
the different orders of truncation of the continued frac-
tion are pretty close one to another. For the classical
limit and t=0.3, the results of two methods differ
significantly (see Fig. 2). Namely (a) the maximum of
C(k, co) is shifted by 50% and heights differ strongly too
and (b)the maximum (in comparison with t=0.1) is shift-
ed to the right in the moments method while our results
shift to the left. Further the difference between the re-
sults obtained by different orders of truncation of the

continued fraction is substantial.
We conclude that the two approaches only agree at low

temperatures; which is more reliable at elevated tempera-
tures must be left to further studies. As the temperature
decreases, the peak becomes narrower (Fig. 8) and this re-
sult is hard to obtain in the framework of the moments
method. Problems with the moments method have been
noted earlier.

APPENDIX A

The calculation of high-T limit of the first term in (28)
[b i(k, co)] is straightforward. The second term [b2(k, co)]
is evaluated as follows. We transform it exactly as the ex-
pression for I (k, co) with the only difference that instead
of

5(co)= f" e'"'dt

we substitute

C(t)= ——e ~'~'sgn(t) .
2

The result is as follows:

b,2(k, co) =—A'to( k)co %CO mlim f"f dt dxe ~'~' g e '"'coscot sinx coth sinx
477 p c,—+0 0 0 2kT

X cos2lx cos(co t sinx)[ J2i+ i (co t) J2i, (io t)—] . (A1)

For high temperatures: We will derive the formula

&~m . 2kTsinx coth sinx
2kT ~~m

—iaJ»(z)J2i~, (z) = J4i~, (2z cosa)e da .
2m

(B1)

We make use of (Ref. 14, p. 401),

f m/2
cos(co t sinx)cos2lx dx =—J2i(co t) .

0 m 2 2l m

If we apply the result of Appendix B and make use of the
easily proved formula [it holds for Re(a +ib) )0]

f dk e '"J,(bx) = ——f0 0 a —Sb COSa

the integrals are reduced to those evaluated by the stan-
dard methods and the calculation of b (k, co) is completed.

APPENDIX B

The aim of this appendix is the calculation of the sum

Let us write down the fundamental equality of the theory
of Bessel functions and its evident consequence:

izsinP ~ J ( )e iPP
pp= 00

00

e
—ia —tZ Sana ~ y g&qe

—tea
pg

—$x~/e
n = —oo

By multiplying these equalities and introducing the new
variables

a+p a —p

J2I(z) [J21+ i (z) J2i —i (z) ]
l = —oo we readily arrive to the formula
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J (2Z COSy)e ~
—i(k+1)z m J (Z)J (Z)e ~ s+y z ' s yy .k p n —1

n, p = —oo

From here it follows that

Jk(2z cosy)e
gasp = oo

n+p =k+1

J (z)J„,(z)e

By integrating both sides of the equality above from —m to m and setting k =4l +1 we obtain

lT

J21(z)J2,~, (z)= e ' J4,~((2z cosy)dy .2'
Now we can rewrite the sum in question as

—iy —2(z cosy sinPr i(4l +1)P 2ila— i(4I —1)P—2ila]y gee e Le' —e
(2~)2

and turn to its evaluation. The integrand is transformed using

e" =2~ g 5(a 2nn)—
$ = —oo n = —(x)

anci, after some calculations, we obtain the main result of Appendix 8,

e " J2l(z)[J2l+, (z) —J2l, (z)]=cos—J, 2z cos—+sin —J1 2z sin—
2I = —oo

(82)

APPENDIX C

The explanation is as follows: in order to give nonzero
contributions to the sum in (19) k„k2 must be such that
6( —k + k1+ k2) = 1 and one of the arguments of the 5
functions equals zero. This happens if and only if ro(k, )

or a)(k2) equal zero. For co(k) —+0

1 kT
e A'co( k) /kT

1 1)ta) ( k )

which is equivalent to the high-temperatures limit. If,
say a)(k) )=0, the brackets (n)+n2) —+kT/))ta)(k)). This
is the answer to the question and an alternative way of

the derivation of the main result of Ref. 13. Conway
used these considerations for derivation I [k,a)(k)].
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