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Energy transfer within a regular distribution of donors and acceptors: Application
to the upconversion dynamics of Er +:YA1O3 and Er +:YAG
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Based on the assumption of a regular distribution of the donors and acceptors, an energy transfer
model is built for the three-dimensional and two-dimensional interaction cases. From this model the
transfer parameter has a functional activator concentration dependence, e.g. , for the two-dimensional in-
teraction case the transfer parameter is proportional to the product of the donor and acceptor concen-
trations, and for the three-dimensional interaction case the transfer parameter is proportional to the
square root of the product of the donor and acceptor concentrations. A satisfactory simulation of the
upconversion dynamics of Er + in YA103 and in YAG subsequent to pumping with short (15 ns) pulses
at 1.55 pm is obtained when the two-dimensional interaction transfer parameter is included in a rate
equation treatment.

INTRODUCTION

The central role of energy transfer in the dynamics of
energy upconversion by rare-earth ions was recognized in
1966.' Nearly all theoretical treatments to date have
been based on a random distribution of donors and ac-
ceptors among the lattice points of the crystal. A very
thorough discussion of the rate equation treatment of en-
ergy transfer is given by Grant. He points out that a
quadratic dependence of the transfer parameter on con-
centration is very commonly observed, and powers up to
three are not unusual. He also shows that for a random
distribution of donors and acceptors the transition proba-
bility is determined by the number of interacting particles
and not the spatial dependence of the interaction. Thus,
for a random distribution a Q-particle process should be
characterized by an n ~ dependence in the rate equations
(n ~ dependence of the transfer parameter). In the usu-
al case of two-body energy transfer (one donor and one
acceptor) this would lead to terms like nDn„ in the rate
equations, and a concentration-independent transfer pa-
rameter. This was the approach used to analyze data on
the upconversion dynamics of Er +:Yal03 after excita-
tion with a 1.55-pm pulse. In that work not only the en-
ergy transfer parameters but also the decay rates were re-
quired to be adjustable parameters to obtain a satisfacto-
ry fit to the Er +:Yal03 data. However, attempts to fit
similar data acquired for Er +:YAG, were unsuccessful
for any set of parameters we could find. The present
work was motivated primarily by this diKcujjty.

In this work we develop an energy transfer model
based on a regular distribution of donor and acceptor
ions, rather than the usual random distribution. This
particular distribution, it turns out, gives a quadratic
dependence of the transfer parameter on activator con-
centration when the transfer occurs primarily within a
plane. Using this transfer parameter in the rate equations
leads to a satisfactory fit for both the Er +:YA1O3 and
the Er +:YAG data, without the need to use the radiative

and multiphonon rates as additional adjustable parame-
ters. Since the activator concentration dependence disap-
pears in the steady-state limit, we expect (and do) find
good agreement with published values of the steady-state
transfer parameters, and with steady-state (continuously
pumped) data. In addition, this model offers an explana-
tion for the previously reported quadratic dependence of
the transfer parameter on the total activator (Er + ion)
concentration and for the deviations from this behavior
found at low ( (3%) and high ( )60%) Er + concentra-
tions.

EXPERIMENTAL DETAILS

Measurements were made at room temperature using a
single crystal of YAG containing 3 at. % Er +. The ex-
perimental arrangement used to acquire the YAG data
was identical to that described previously for the YA1O3
study. The YA1O3 data included in the present work is
the same data presented previously.

ENERGY TRANSFER IN A REGULAR DISTRIBUTION
OF DONORS AND ACCEPTORS

We consider a system consisting of two particles, a
donor and an acceptor, in the dipole-dipole approxima-
tion, neglecting the exchange term the energy transfer
rate is given by

C
yDA= 6

DA

where C is the dipole-dipole transfer microparameter and

RDz is the distance between the donor and acceptor ions.
In a system consisting of XD donors and N~ acceptors
distributed among the lattice points of the crystal the
general form' ' of the rate equation for the donors can
be written as
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D D
p; (t) = p—; (t) lr —g y;; p; (t)p, '"+

J
(2)

dn „'~'(t)
dt

1
n ' '(t)

where 1/rD is the decay rate of the donor, and p; (t) is
the probability that the ith lattice point is occupied by a
donor and pj"(t) is the probability that the jth lattice
point is occupied by an acceptor at time t. When both
the donors and acceptors are erbium ions (possibly in
different excited states), distributed among the available
lattice sites in the crystal, Eq. (2) becomes

T T

P PE (t)PEj PE (t)+
i =1 j=1 ij

and for any state M at which the donor or acceptor ar-
rives after the energy transfer process

dp; (t)
dt

T

p; (t) —g y; p; 'p, (t)p 'p",(t)+.
7 D

dnM'~'(t)

dt
nM'~'(t)

M

(3)

where p; (t)=p;'pg, (t) and p". (t)=p. 'pE, (t); p,.
' is the

probability that the ith lattice point is occupied by an
Er + ion and p

' is the probability that the jth lattice
point is occupied by an Er + ion separately; pg, (t) is the
probability that the Er + ion which occupies the ith
point is occupied by a donor and PE,(t) is the probability
that the Er + ion which occupies the jth lattice point is
occupied by an acceptor separately; Nz- is the total num-
ber of lattice points. To consider the average probability
density, we should sum over all the lattice points in the
total interaction volume VT and divide both sides of Eq.
(3) by this volume (for three dimensions) or carry the sum
over all the lattice points in the total interaction area ST
and then divide by this area (for two dimensions). Substi-
tuting Eq. (1) into Eq. (3), we obtain the following expres-
sion for the rate equation:

dna~'(t)

dt

T T

p 'pg. (t)pjE'PE, (t)+
L$ '=f j=f R'j

(4)

In the above equation we use Ljr (LT is the dimension of
the interaction volume or area, y =3 or 2) to express Vz
or Sz-, and

1 1 E D+ X 2, 6 P PE (t)Pj PE (t)+
L$;=, .=, R;.

The general rate equations take the form

dn'~'(t)

dt
1 n' '(t)
X

T T

X X P P (t)P P (t)+ '

L$ j=);=)R;j

(8)

In the above equation if n~~~(t) is the M state ion concen-
tration the sign proceeding the double sum is positive, if
n„'~'(t) is either the donor or the acceptor concentration
the sign in front of the double sum is negative.

We now consider a regular distribution of donors and
acceptors within a regular distribution of activator ions,
such as that which would exist if the activator ions
formed a superlattice structure within the crystal. In
such a case every configuration of the donors and accep-
tors would have the same separation between them, and
we can choose only one configuration for discussion. For
a given configuration only certain lattice points are occu-
pied by the donors or the acceptors, so in Eq. (8) we can
take p; 'PE,(t) =p; (t) = 1 for those lattice points which are
occupied by a donor and p;'pg, (t)=p, (t)=0 for those
lattice points which are not occupied by a donor, and
treat the acceptors in the same way. Equation (8) can
then be rewritten as

ND(t)

L$; )
' Ljr

dn„'&'(t)

dt

ND(t) N~(t)
(y)( t )+

L5 r i j=i R('j
(9)

is the concentration of the donors, where ND(t) is the to-
tal number of donors in the region L$. For convenience
in the following discussion, we use n'~'(t) to express the
y- (y =3 or 2) dimensional concentration which has units
of L, where L is the unit length. From the same con-
siderations we get the rate equation for the acceptors

where ND(t) and Nz(t) are the total number of donors
and acceptors, respectively, within the interaction region
L j'r. Note that in Eq. (9) the double summation refers to
the transfer from every donor to every acceptor.

For energy transfer in three dimensions Eq. (9) takes
the form
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an„"'(t)
dt

1 n„"'(t)+
X

1
n„' '(t)+

X

ND(t)1V~ (t)

+

N~(t)

ND(T) g 6 +
l =1 RlJ

n„"'(t)+ ND(t)n ~ (t)f ff, d V+R6

1
n„' '(t)+n (t)n„(t)W' '+

X
(10)

where 8" ' is the three-dimensional transfer parameter
which can be expressed as

w")= f ff,dv=4~cf

given by the diameter of a sphere with volume
V~(t)= Vz/N~(t). Thus, for a system consisting of both
donors and acceptors we can define a sphere which has
the average volume of sphere D and sphere A:

V(t) = [ VD(t) V&(t) ] /

=4 cf„"
NN R & dNN

' 1/2
Vz- VE-

ND(t) N„(t)
—[n (3)(t)n (3)( t) ]

—)/2 (12)
In the above expression d is the maximum D-A distance
which is equal to Lz, the size of the total interaction
volume, and d NN is the average nearest-neighbor distance
between the donors and acceptors. Since d »dNN, we
may take d =ao from now on. Within such a regular
distribution of donors and acceptors the average D-A
nearest-neighbor distance must depend on the donor and
acceptor concentrations. We can obtain the relationship
for this dependence from the following considerations. If
the system consisted only of donors distributed as above,
for a given donor concentration the nearest D-D neighbor
distances are all equal. In this case we can treat each
donor as a sphere which occupies a volume of
VD(t) = Vr IND(t), and the donor-donor nearest-neighbor
distance is the diameter of this sphere. Similar considera-
tions for a system consisting only of acceptors leads to
the acceptor-acceptor nearest-neighbor distance being

I

and

4m.V(t)= RNN= dNN3 6
(13)

From Eqs. (12) and (13) we get

—~
[n (3)(t)n (3)(t) ])/2

D
NN

(14)

Equations (11) and (14) lead to the following expression
of the energy transfer parameter:

pr(3) — C[n(3)(t)n (3)(t)](/&2~'
(15)

9

If, for any reason, the energy transfer is constrained to
be planar, with no transfer between planes, the rate equa-
tion (9) takes the form

dn' '(t)

dt

ND(t) N~(t)
n (2)(t)+

n„' '(t)+ ND(t) g +

n„' '(t)+ ND(t)n~( '(t) f f dS+. . .
R

1 n' '(t)+n' '(t)n' '(t)W' '+ .
X

where 8" ' is the two-dimensional transfer parameter
which can be written as

W")= f f dS=2mcf . dR= — . (17)

As in the three-dimensional case, dNN is the average

nearest-neighbor distance between the donor and accep-
tor which varies with the donor and acceptor concentra-
tions. We can obtain this relationship from the same
considerations as for the three-dimensional interaction
case, but treating circles of area SD A for donor or accep-
tor, respectively. Thus we define a circle with the aver-
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age area of circle D and circle A,

S(t)= [S~(t)S„(t)]'"
ST ST

ND(t) N„(t)

=[n' '(t)n ' '(t)]

1/2

e
Hf f/e

(4) .88/e

(~) F„

and take

W' '= Cn' '(t)n' '(t) .D A (20)

S(t) ~~NN ——
~NN .

4

From Eqs. (17)—(19) we obtain the following expression
of the two-dimensional energy transfer parameter:

( 1) Iis/e

I
I

I
I
I
t
I

j
I
I
I

I
I

For purposes of comparison it is necessary to transform
the two-dimensional rate equations (16) into a three-
dimensional form. This can be accomplished by trans-
forming the transfer parameter W' ' as follows:

(o) ~fd/8

W' '= CL n' '(t)n ' '(t)D (21)
Wf f %fe W fe See A40 Aeo Aef Aea A,

where I. is the distance between two adjacent interaction
planes, which is determined by total concentration of the
doped Er + ions nTE.

3

FIG. 1. Energy level scheme of Er + showing the energy
transfer and decay processes considered in the rate equations.

4m

3 (3)n
(22) ri(4) = —[ A4~+ A40]n (4)+ W(22)n (2)

+ W'(12)n(1)n (2),

1 n' '(t)+W' 'LnD' '(t)n„'s'(t)+
X

By dividing both sides of equation (16) by L we obtain

an„"'(t)
dt

n(3) = A4&n(4) A&n(—3)+ W(12)n (1)n (2),
n(2)= A&2n(3) —A2n (2)+ W(11)n (1)

(25)

1
n„' '(t)+W' 'n' '(t)n' '(t)+

where

W' '= W' 'L = CL n '(t)n ' '(t)tlD ng

(23)

(24)

—2 W(22)n (2) —[ W(12)+ W'( l2) ]n (1)n, (2)

n(1)= A2, n(2) —A, n(1) —2W(11)n (1)
—[ W'(12)+ W'(12)]n(1)n (2),

ri (0)= A40n(4)+ A~on(3)+ A20n(2)+ A, n(l)

+ W(11)n(1) + W(22)n (2)
which gives the two-dimensional interaction transfer pa-
rameters in the three-dimensional form.

RESULTS AND DISCUSSION

Figure 1 shows the energy levels and various decay and
energy transfer processes which we consider in treating
the upconversion dynamics of Er in both YA1O3 and
YACC. The decay rates 3,. indicate the rate from state i
to state j, by either radiative or nonradiative (multipho-
non) processes. The energy transfer parameters are indi-
cated as W(ij), where i and j refer to the transfer occur-
ring from an ion in state i to another ion in state j. To
simplify the scheme as much as possible, we have con-
sidered the I»/2 and the I9/2 levels as one level. ' '
This leads to the following set of rate equations:

W(11)=aC„n (1),
W(12) =aC&2[n (1)n (2)]'
W'(12) =aC', 2[n (1)n (2)]'
W'(22) =aC22n (2),

(26)

+[W(12)+W'(12)]n(1)n (2) .

Using the above equations to treat the energy transfer
processes, the same ion in different energy levels is either
the donor or acceptor. Since this kinetic scheme includes
Ave levels, there can be as many as four different donors
and four different acceptors. Considering donor-acceptor
energy matching we have included only the above four
energy transfer processes.

If the energy transfer occurs in three dimensions, the
transfer parameters in Eq. (25) are given by
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TABLE II. Values of the microparameter C» derived from
the parameters in Table I.

C» (cm s ')

C22 (cm s '}
C, (cm s ')
C» (cm s ')

Er'+ YA103

8.29 X 10
5.34X10-"
1.00 X 10
4.00 X 10-"

Er'+:YAG

1.70X10-"
8.36 X 10-"
5.39 X 10
2.97 X 10

W"'~ [n "'(t)n„'3'(t)]& ~(n, "')'&, (28)

where 0(y ( 1. At total Er + concentrations above 50%
it is easy to demonstrate that the Er + ions can no longer
be regularly distributed, which causes the donors and ac-
ceptors to be irregularly distributed. Thus, according to
Eq. (28), the transfer parameter depends on lower power
of concentration.

In the interest of comparing these results with those of
other workers, we examined the steady-state limit of Eqs.
(25). In the steady state, the concentration dependence
becomes constant, permitting such comparison. The only
values available in the literature for Er +:YAG are for
the transfer parameters corresponding to W(11) and
W(22) in our scheme. For 3% Er +:YACC, Ref. 16 gives
W( 11 ) = 1.6 X 10 ' cm s ' in good agreement with our
value of 1.57X10 ' cm s ' for 40 Wcm . To com-
pare our results (for 3% Er +) of W(22)=3. 84X10
cm s ' with those of Ref. 19 we corrected their value of
W(22)=5. 1X10 cm s ' (for 10% Er +) to our con-
centr'ation, by using the quadratic concentration depen-
dence reported by those authors, which gives 4.6X 10
cm s ', in reasonable agreement with our result of
3.84X 10 ' cm s

CONCLUSIONS

We have shown that the energy transfer parameter can
have a functional dependence on the donor and acceptor
concentrations when the donors and acceptors are not
randomly distributed, but rather are distributed in a reg-
ular arrangement, such as in a superlattice structure.
This is in contrast to the results for a random distribu-
tion, which regardless of the spatial arrangement, always
requires the interaction of more than two donors and/or
acceptors to arrive at such a dependence.

The inclusion of these results in a rate equation treat-
ment of the upconversion dynamics of Er + in YA103
and YAG successfully reproduced the experimental up-
conversion dynamics over the entire time scale, but only
when the energy transfer was restricted to planar (two-
dimensional) interactions. While it may be possible to
speculate that the energy transfer is indeed largely con-
strained to two dimensions because of a combination of
polarization and dipole emission geometric effects, there
is no supporting evidence for any long-range superlattice
structure in these materials. It will be interesting to see if
these materials indeed have a superlattice structure, and
if the results obtained in this work can be broadly applied
to energy transfer in materials which are known to have a
superlattice structure.
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