
PHYSICAL REVIEW 8 VOLUME 52, NUMBER 5 1 AUGUST 1995-I

Molecular-dynamics study of orientational order in liquids and glasses
and its relation to the glass transition

T. Tomlda
Advanced Technology Research Laboratories, Sumitorno Metal Industries, Ltd. , 1-8 I'usocho, Arnagasaki 660, Japan

T. Egami
Department ofMaterials Science and Engineering and Laboratory for Research on the Structure ofMatter, University ofPennsylvania,

Philadelphia, Pennsylvania 19104-6272
(Received 27 June 1994; revised manuscript received 21 February 1995)

Molecular-dynamics simulations of monatomic liquids interacting via a modified Johnson potential
have been carried out to investigate the structure of liquids and the microscopic mechanism of the glass

transition. The structure of liquids is described in terms of spherical harmonic representations of topol-

ogy of local clusters and the orientational correlation among them. The variation of the averaged topol-

ogy of the nearest-neighbor clusters exhibits an anomalous behavior at temperatures between the glass

transition temperature (Tg ) and a temperature much above Tg. This anomalous behavior is shown to be

caused by aggregation of the clusters with icosahedral topology. The number of the icosahedral clusters
increases progressively with decreasing temperature, and, at Tg, the increase is abruptly arrested.
'Within the icosahedral aggregates, the strong mirror-related orientational correlation exists with a

0
correlation length growing over 10 A near the glass transition temperature. The percolation of the
icosahedral clusters and the mirror-related orientational order leading to the glass transition are dis-

cussed.

I. INTRQDUCTION

Despite numerous experimental and theoretical at-
tempts to determine the structural nature of liquids and
glasses, no satisfactory understanding has been attained
because of the complexity of the structure lacking
translational symmetry. This unsatisfactory state of
affairs has impeded not only the description of the prop-
erties of glasses from an atomistic point of view, but also
clarification of the mechanism of the glass transition.
The purpose of this work is to introduce a concept of suc-
cessively mirrored orientational correlation due to inter-
locking icosahedral clusters and to attempt to describe
some novel aspects of the orientational order in super-
cooled liquids and its relation to the mechanism of the
glass transition via molecular dynamics (MD).

Cxlassy structures are often described as resulting from
the competition between packing of tetrahedra maximiz-
ing local packing density and the frustration imposed by
topological and geometrical rules to attain global space
filling. ' The space cannot be filled by regular tetrahe-
dra alone, though the tetrahedral arrangement of atoms
achieves the densest local packing. Abundant results
mainly from model structure building support this
view of the glassy structure. The presence of tetrahedral
packing was first noted by Frank' 40 years ago. Frank
pointed out that at zero temperature a Lennard-Jones
particle and its 12 nearest neighbors prefer to form an
icosahedron that consists of 20 slightly distorted tetrahe-
dra; the icosahedral arrangement has a significantly
higher binding energy than the 13-atom cluster which
forms the crystalline close-packed structure. Therefore a

relevant question to ask in trying to characterize the
structure of liquids and glasses is how the tetrahedra are
spatially correlated to each other in the structure. Two
important approaches to this question have been intro-
duced by Steinhardt, Nelson, and Ronchetti, " and by
Kleman and Sadoc. '

Steinhardt, Nelson, and Ronchetti" studied the orien-
tational correlation between bonds defined by nearest-
neighbor atoms in model glasses constructed via MD us-

ing a Lennard- Jones potential. In this simulation, a
long-range bond orientational order was identified at a
temperature 20% below the empirical freezing tempera-
ture for the Lennard- Jones system. Furthermore, in
agreement with the prediction by Frank, ' the order was
found to possess an icosahedral symmetry. Although
their MD results concerning the long-range icosahedral
order are controversial, ' the way they have proposed to
analyze the orientational correlation provides valuable in-
sight into the study of the order in condensed matter,
which has actually led to the novel idea of icosahedral
quasicrystals.

On the other hand, Kleman and Sadoc' started their
thought-provoking approach in a curved space. The
curved space, which is a surface of a sphere in four di-
mensions, can be tiled completely by tetrahedra alone,
therefore by icosahedra, if it has the right curvature. The
complete icosahedral packing is then mapped onto ordi-
nary Aat space by introducing minimal disclination-line
defects. The introduced disclination network creates
strain fields in the icosahedral packing and fits them in
the Bat space. The obtained structure, however, depends
upon the mapping process, and details of the disclination
networks to reproduce realistic glassy structures are not
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known. Nevertheless, this conceptual and geometrical
model implies that local clusters with an icosahedral sym-
metry could aggregate in the structure of glasses until the
disclination intervenes to reduce the geometrical frustra-
tion caused by the aggregation, and a certain orientation-
al order provoked by the aggregation could develop in
the structure.

Such a "hidden" order in glassy structures has also
been argued for many years in connection with one of the
most formidable problems in condensed-matter science:
whether the glass transition is kinetic or thermodynamic.
The kinetic nature of the glass transition is clearly seen in
the cooling-rate dependence of glass transition tempera-
tures. ' The glass transition temperature ( T ), as defined

by a discontinuous change in heat capacity, is displaced
to a lower temperature by a decrease of cooling rates; if
there is no lower limit of the transition temperature, the
transition is purely kinetic. However, as Kauzmann'
pointed out about 50 years ago, an extrapolation of the
configurational entropy of various glass formers to lower
temperatures indicates the presence of a lower bound of
T . ' ' This suggestion is indeed supported by a recent
calorimetric measurement made by Bru ning and
Samwer. ' Their results by an extended calorimetric
measurement on several glass-forming systems suggest
that T and the temperature width of the transition may
decouple from experimental time scales for sufficiently
slow heating rates. Other experiments, for example, on
atomic vibrations' also imply some collective phenome-
na underlying the transition.

Much of the theoretical effort on the glass transition
has also been directed to dynamical explanations of freez-
ing. A polymer-configuration model by Gibbs and co-
workers' ' and a free-volume model by Cohen and co-
workers 20—22 assume under lying equi 1ibrium transitions
to ideal glassy structures, which never is practically ob-
tainable because of intervening kinetic freezing. The
mode-coupling theory developed by several groups
treats the glass transition as a purely thermodynamical
one. The first two theories deal with mixing or commu-
nal entropies, and the last incorporates nonlinear terms
involving hydrodynamic viscosity. On the other hand,
Saslow presented recently a Landau theory to derive the
well-known Vogel-Tamman-Fulcher (VTF) law for the
slowing down of relaxation processes. In this theory, a
global ordering that is frustrated by a quenched-in ran-
domness or a local order incompatible with the global or-
der and an Arrhenius-type relaxation process of local re-
gions toward the global order are assumed. The barrier
height for the relaxation is then shown to vary as
( T —To ) in a wide temperature range, resulting in the
VTF law. As connoted by the author, this Landau
theory of the glass transition may be related to the
above-mentioned work concerning the icosahedral orien-
tational order that is incompatible with the crystalline
translational one.

In this paper, we start by retracing the way to describe
the orientational order in glasses introduced by
Steinhardt, Nelson, and Ronchetti" and then extend the
idea to analyze the topology of local clusters defined as a
"cage" of nearest neighbors and the orientational correla-

tion among them. Based on this extended concept,
geometrical properties and their temperature dependence
of model supercooled liquids constructed by MD using a
modified Johnson potential are then investigated. The
temperature dependence of the symmetry parameters of
the local clusters indicates the presence of another transi-
tion temperature much above T . This second transition
temperature and T are shown to relate to aggregation of
the clusters with an icosahedral topology and the two
types of percolation among the aggregates. It is further
shown here that strong orientational correlation with
mirror reffection exists within the icosahedral aggregates.
The energetics of the icosahedral clusters, leading to ag-
gregation of the clusters in liquids, and the relation of the
percolation and the mirror-related orientational correla-
tion to the glass transition are discussed.

II. MATHEMATICAL EXPRESSIONS
OF ORIKNTATIONAL ORDERS

A. Bond orientational correlation functions

We first reintroduce the way Steinhardt, Nelson, and
Ronchetti" have proposed to analyze bond orientational
order (BOO) in glasses and then extend the idea to de-
scribe the orientational correlation among the clusters
defined as sets of atoms which are near neighbors to each
other.

To study BOO, Steinhardt, Nelson, and Ronchetti
have defined a set of "bonds" joining an atom to its
nearest neighbors and the spherical harmonics associated
with the bond orientation relative to the fixed coordinates
as

where the vector r represents the midpoint of the vth
bond, 8 and P refer to the angle between the bond and the
coordinates, and Yl denotes the spherical harmonic
functions. Using Q&, they define the bond orientational
correlation function G&(r),

g„„Q&(r )Q'1(r„+(Ir r„l r)—
2~+i g „Qo(r„)Q' (or„)5(rIr„l r)— —

where r denotes the distance between the bonds. When
there exists, for instance, an icosahedral type of long-
range BOO such as those in icosahedral quasicrystals, the
functions with l being more than 6, e.g. , 66 and G,o, sig-
nal it by being nondecaying functions.

B. Cluster orientational correlation functions
and cluster symmetry coefficients

Alternatively, however, we may choose to evaluate the
angular correlation between local clusters than just the
angular correlation between the bonds. The reason for
this will be clarified later. Here the local cluster is
defined simply as a polyhedron consisting of an atom at
the center and the nearest-neighbor atoms occupying its
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vertices. Note that the number of clusters defined in a
system is equal to that of the atoms involved, since these
clusters are allowed to overlap each other. The orienta-
tion and geometry of the cluster can be evaluated by sum-
ming up the spherical harmonics associated with the
bonds connecting the center atom of a cluster to the
atoms at its vertices, q&

0.25
fcc

(3)

nearest
to the ith

The vectors r; and r in this equation represent the posi-
tions of the center atom and its nearest-neighbor atoms,
hence the vertices, respectively. The difference between
the bonds and clusters defined here is illustrated in Fig. 1.

Furthermore, defining the position of a cluster by that
of its central atom, a cluster orientational correlation
function can be defined as

0.25—

0.25

Icosa-
hed ron

g, .q, (r;)q'I (r, )5(lr, r
l

r)——
J (r)= , (4)2I+l g,. qp (r;)q*p(r )5(lr; r

l
r)——

FIG. 2. JI's calculated for fcc, hcp, bcc, and icosahedral clus-
ters.

where r denotes the length of a "cluster bond" connect-
ing center atoms of two clusters instead of the bond dis-
tance unlike in G&(r). This function, as well as G&(r), is
invariant under the rotation of external coordinates.

This function provides information concerning not
only the orientational correlation in the system, but also
the averaged geometry of the clusters by its value evalu-
ated at r being zero, J&,

21 + l

J& is approximately equivalent to the cluster average of
the following spherical harmonics associated with each
local cluster:

l qz I'J)-—J,I=
~~ + l

l qp l cluster average

Note that J& is exactly the same as the cluster average if

Nearest neighbor

the number of atoms included in each cluster is the same.
It is instructive to calculate the symmetry parameters

JI's for clusters with simple geometries. The calculated
values for fcc, hcp, bcc, and icosahedral clusters are
shown in Fig. 2. These fcc, hcp, and icosahedral clusters
consist of 13 atoms including an atom at the center of
each cluster, and the bcc cluster consists of 15 atoms in-
cluding the second-nearest-neighbor atoms as well as the
first-nearest neighbors and the central atom. These pa-
rameters show a dramatic variation among the clusters.
For the fcc, hcp, and bcc clusters, the fourth-order pa-
rameter J4 is the nonzero parameter of the lowest order
except for the zeroth order. However, when the cluster is
an icosahedron, the parameters with l being 2, 4, and 8
are zero, and the parameters with I being 6 and 10 show
the largest values among the clusters. These trends are
very similar to those of the bond orientational correlation
parameter Q& after Steinhardt, Nelson, and Ronchetti. "
Indeed, for such simple clusters, JI is exactly the square
of Q&. The primary difference between J& and QI is that
JI does not depend on the orientational correlation be-
tween clusters when the evaluation is extended for a sys-
tem consisting of many clusters, whereas Q& does depend
and vanishes if the clusters are uncorrelated. In other
words, J& is purely a parameter of local geometry, while

Q& is a measure of global correlation.

FICx. 1. Schematic representation of (a) bond-angle correla-
tion calculation and {b) cluster-angle correlation calculation.

C. Mirror-related orientational correlation functions

Although icosahedral clusters cannot fill space by
themselves, one might imagine that the icosahedral clus-
ters aggregate in an orderly fashion, until structural frus-
tration produced by aggregation builds up to suppress ag-
gregation itself. Two of the simplest connections or in-
terlocking states between two icosahedral clusters are
shown in Figs. 3(a) and 3(b), which could be a unit of ag-
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TABLE I. J6(r) and J&p(r) calculated for the interlocking
icosahedral clusters shown in Fig. 3 ~

)C E

E

Intercluster
distance r

J,(.)
Jlp(r)

1

[Fig. 3(b)]

—0.0529
—0.0439

1.304
[Fig. 3(a)]

—0.1178
0.0348

(a) (c)

FIG. 3. (a),(b) Two simple interlocking states of icosahedral
clusters, (c) a pentagonal bipiramid, and (d) an ideal aggregation
of four icosahedral clusters interconnected in a manner shown
in (a) and (b).

gregation. One is by sharing a triangle face, therefore
sharing three nearest-neighbor atoms. The other is the
interconnection where one of the vertices of a cluster lies
on the center of the other cluster, and the clusters share a
pentagonal bipiramid or a heptatope cluster shown in
Fig. 3(c). The latter requires about 10% dilatation of
icosahedra in the direction of the bond connecting the
two cluster centers, while the former does not. Note that
one of the two interlocking icosahedral clusters in either
case cannot be superimposed on the other by translation,
but they are related by mirror symmetry.

So as to understand how such icosahedral aggregations
are rejected in the orientational correlation, functions
J6(r) and J&0(r) have been calculated for the above sim-

ple cases. In this calculation, we neglect the dilatation of
the icosahedra required for the aggregation shown in Fig.
3(b). Moreover, fractional coordinates are used so that
the cluster distances are measured in units of the distance

between the center and a vertex of the icosahedra; i.e.,
the distance between the two icosahedra shown in Fig.
3(b) is the unit. The results are shown in Table I. This
reveals that the values of the sixth-order function are
negative for both cases, while that of the tenth-order
function changes its sign depending on the type of the ag-
gregation, therefore the cluster distance. It is noteworthy
that not only JI(r), but also GI(r) responds to these
icosahedral aggregations in this fashion. Therefore, as
this type of the orientational correlation develops in
glasses, the sign of these orientational correlation func-
tions would change with respect to the interbond or in-
tercluster distance, and the positive and negative values
could cancel each other at large distances, resulting in an
attenuating behavior of the function. The oscillation and
attenuation of the orientational correlation can explain
the MD results by Ernst and Nagel. '

The orientational correlation of the aggregated
icosahedral clusters can be described without the above-
mentioned oscillatory behavior by modifying the
definition of JI ( r ) by using a mirror or reflection opera-
tor. In both of the simple interconnection cases shown in
Fig. 3, the two interconnected icosahedra are related by
mirror symmetry as mentioned before. For instance, in
an aggregate of four icosahedral clusters connected in
this fashion, as shown in Fig. 3(d), the orientation of the
icosahedron at one end of the aggregation becomes the
same as that of the icosahedron at the other end when the
structure is refIIected 3 times along the three cluster bonds
lying in the aggregate in the order of the bonds. Let us
define the operator R (r ) to reverse coordinates along the
direction of the vector r (reflection-symmetric operation
against the plane perpendicular to the vector), and R;J to
be R (r, r). With this—reflection operator, the following
cluster orientational correlation function can be defined:

1

2l +1
g gqI (r, )R,,R„R„,R„Jq*P(rj)5( ~r, rj ~

—r)—
m i,j

gqo (r; )q "o(r~ )5(
~ r; r~ ~

r)——

where sth, tth, . . . , uth„and vth clusters are the ones ly-
ing on the connection path between the ith and jth clus-
ters in the order of i —+s~t - u ~v~j, and
R;„R„,. . . , R„„orR, . operate on the coordinates of the
jth clusters to be mirrored. If these clusters are complete

icosahedra and the orientational relation between neigh-
boring clusters is described by mirror symmetry, the
magnitude of KI(r) is of the order of unity. Thus it al-
lows us to analyze if mirror symmetry or orientational
anticorrelation exists between the neighboring clusters or
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TABLE II. Some properties of the modified Johnson poten-
tial (Ref. 29).

0
Position of the minimum: 2.617 A

Depth of the minimum: —0.252 eV
2

Curvature at the minimum: 1.915 eV/A
Cuto6' distance: 3.44 A

500 K

not and, if any, how far such an orientational correlation
extends in the glasses without the difliculty due to the os-
cillatory behavior that characterizes J&(r) and G&(r)

/Vn

III. SIMUI.ATION PROCEDURE

Employing the modified Johnson potential (see the
Appendix) that was originally developed for bcc iron,
model structures consisting of 1024 or 4394 particles
were constructed by MD. This potential is a short-range
potential known to reproduce many of the properties of
bcc iron. ' Relevant characteristics of the potential are
listed in Table II. The integration time step was taken to
be 10 ' sec, which is about 100th of Debye time of this
potential. Periodic boundary conditions were maintained
on all six faces of the cubic assembly, and the computa-
tion was carried out in a constant-volume mode.

The assembly of 1024 or 4394 particles in a cubic block
was first equilibrated in a liquid state for 10 time steps at
3000 K. The pressure of the systems during this pro-
cedure was maintained at 0.02 eVA by changing the
size of the cubic block and linearly displacing all the
atoms every 100 time steps, thus using a pseudo-
constant-pressure mode.

Two types of cooling procedures were used to con-
struct model structures at various temperatures. In a
cooling procedure (process I), the assembly equilibrated
at 3000 K was quenched at a rate of 10' Ksec ' and
then relaxed for 10 MD steps at 500 K; both processes
were computed in the pseudo-constant-pressure mode so
that the pressures of the system during the quench and
relaxation processes were maintained at 0.02 eV A and
zero, respectively. Subsequently, after switching the MD
mode back to a pure constant-volume one, the assembly
was heated or cooled to temperatures ranging from 300
to 3000 K at a rate of 10' K sec ', and the assembly was
again relaxed at each temperature for 2 X 10 MD steps in
the constant-volume mode. On the other hand, in the
other quench procedure (process II), the volume of thc

0
I I I I

2 4 6 8 10
Inter-Particle Distance(A)

FIG. 4. Pair distribution functions of the model structures at
500 and 3000 K (run A) ~

system equilibrated at 3000 K was first reduced to in-
crease the density by using the pseudo-constant-pressure
algorithm, and the system was eventually cooled at a rate
of 10' or 10' Ksec ' in the constant-volume mode.
The data on five MD runs of which results are presented
here are listed in Table III. Furthermore, to investigate
the structural relaxation at low temperatures, relatively
long relaxation processes up to 6X10 MD steps in the
constant-volume mode were added to runs C, D, and E.
Typical examples of pair distribution functions of the
model structures are shown in Fig. 4. Note that there is
no indication of crystallization in the model structures.

Using these model structures, the cluster symmetry
coeKcients and orientational correlation functions de-
scribed previously were evaluated. The atomic bonds and
local clusters relevant to the evaluations were defined to
be bonds connecting the nearest neighbors and the clus-
ters consisting of a particle and its nearest neighbors, re-
spectively. The nearest neighbors to a particle were
defined as the ones within an interparticle distance of less
than 3.3 A. This nearest-neighbor definition ensures the
neighbors to be within the first peak of their pair distribu-
tion function. Evaluations were performed for the atom-
ic positions averaged over 600 time steps rather than in-

TABLE III. Data on the MD runs.

Run

A
8
C
D
E

No. of
atoms

1024
1024
1024
4394
4394

Density
(A )

0.074 02
0.074 02
0.074 02
0.074 62
0.078 43

Quenching
rate

(K/MD step)

1.0
0.1

1.0
0.1

0.1

Heating
rate

(K/MD step)

10

Process

I
II
II
II
II
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stantaneous positions, unless mentioned otherwise, to
eliminate the effects of thermal vibration of atoms.
Moreover, for the smaller systems of 1024 particles, the
evaluations were repeated 10 times and were averaged to
reduce the statistical error.

IV. RESULTS

A. Glass transition temperature

The temperature dependence of the pressure of the sys-
tems is shown in Fig. 5. The results of runs B and C are
very similar to that of run D and are not shown in the
figure. When temperature is lowered from above the ex-
perimental melting temperature (1808 K), the pressure
decreases almost linearly, suggesting that the system is
supercooled without crytallization. However, this tem-
perature dependence clearly starts departing from lineari-
ty at around 900 K. We interpret this departure to indi-
cate the glass transition and tentatively call this tempera-
ture T . This temperature is in good agreement with the
T reported by Chen, Egami, and Vitek ' for a system us-
ing the same potential and is slightly higher than the ex-
perimental Tg 's for Fe-based glass-forming alloys

(700—800 K). The higher pressure above T for run E
is, of course, due to the higher density of the system.
Furthermore, large deviation of the pressure from lineari-
ty below T and a somewhat higher transition tempera-
ture for run A are likely to be due to the mixed process
used for this particular run, consisting of quenching in
pseudo-constant pressure and subsequent heating and an-
nealing in constant volume (see Sec. III).

A similar clearly definable slope change also occurs at
T in the temperature dependence of the total energy, the
sum of kinetic and potential energies, as shown in Fig. 6.
In addition to this abrupt change at T, it is observed
that the slope of the total energy variation gradually de-
creases when increasing the temperature from T to
above, resulting in a slight but visible convex curvature of

-0.5

-0.7—
Q

I
g) -0.9-
tDc

LU

CO

+o-

-1.3 1000 2000
Temperature (K)

3000

A.
FIG. 6. Temperature dependence of the total energy for run

the variation. The abrupt slope change at Tg corre-
sponds to a change of the specific heat by about Nk~,
where X is the number of atoms and kz is Boltzmann's
constant, and the gradual slope decrement above T
yields the specific heat decrease of about 2Nkz/3 when
the temperature is increased from T to 3000 K.

B. Bond orientationai order [G&(r) and JI(r)]

First, we evaluated the bond orientational correlation
function G6(r) by using the instantaneous atomic posi-
tions of the model structures. The results are shown in
Fig. 7. The correlation function is largely oscillatory and
attenuates quickly at large interbond distances both at
500 and 3000 K. Although the attenuation is somewhat
slower at 500 K than at 3000 K, no sign of correlation ex-
ists beyond the distance of 10 A at either temperature.

0.4

'|0 0.2—
500 K

0

tD
Ol

m 4
4P~2
tO
N
Ol
a Q

-0.2

0.2—

0-
3000 K

-2 -0.2-

-4
0 1000 2000

Temperature (K)
3000 -0.4

0
i

5 10
Inter-particle Distance (A )

15

FIG. 5. Temperature dependence of the pressure of model
structures.

FIG. 7. Bond orientational correlation functions calculated
for model structures (run A).
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0.075

0.05—

0.025—

-0.025
/M/'/

0.025— 3000K

-0.025—

-0.05 5 10
Inter-cluster Distance (A)

15

FIG. 8. Cluster orientational correlation functions calculated
for model structures (run A).

700 K. Comparison between these parameters and the
J&'s calculated for the simple clusters shown in Fig. 2 in-
dicates that the averaged geometry of the clusters is
somewhat closer to that of an icosahedron than those of
cubic and hcp clusters; the t' =8 component for the mod-
el glass is smaller than those of cubic and hcp clusters,
while the l = 10 component is larger.

To evaluate this point further, J& for each cluster,
therefore Jci in Eq. (6), was calculated. The distribution
of the above parameter among the clusters is shown in
Fig. 10. It is quite interesting to note that there seem to
be two peaks in the distribution of the l =6 component,
whereas the l =4 and l =8 components exhibit simple
higher-dimensional Gaussian-type distributions. In the
distribution of the l =6 component, the larger peak lies
around the parameter value of O. j.9. The smaller peak,
which is somewhat like a shoulder of the larger peak, ex-
ists around the parameter value of 0.35 and ends at 0.44.
Note that the value of 0.44 happens to correspond to that
of Jc6 for icosahedra, and no cluster exists having a value
beyond 0.44. Thus Jc6 for a perfect icosahedron, 0.44,
could be the global maximum of this geometry parame-
ter. Furthermore, the mean Jc6 value of the smaller peak

These trends are in good accordance with previous re-
sults using the Lennard-Jones potential, ' and no indica-
tion of the long-range icosahedral BOO reported by
Steinhardt, Nelson, and Ronchetti" exists in the present
result.

As expected by the similarity between GI(r) and JI(r),
the J6(r) evaluated for the instantaneous atomic positions
also exhibits an oscillatory and attenuating behavior, as
shown in Fig. 8. Although the attenuation at a large dis-
tance in the J6(r) is slower than in the G6(r), the sign of
the function changes when increasing the cluster distance
quite similarly to that in G6(r). These results suggest
that the oscillatory behavior in these orientational corre-
lation functions is an intrinsic characteristic of the glassy
structure, and this could be in part due to the anticorrela-
tion or the mirror relationship among the local clusters
mentioned previously.

40

20

00

80

00 0.2

fl.mlL I LI. n

o.o5 o.or

0.02 0.04
Jc4

0.06

I

.45 0.65

I

0.60.4
Jc6

0.8

C. Topology of local clusters
and mirror-related orientational order below T~

1. Topology of local clusters

20

0.15 0.2

The topology of the local cluster defined as a polyhe-
dron consisting of a center atom and its nearest neighbors
on the vertices was analyzed in terms of the parameter JI.
Figure 9 shows the JI's calculated for the model glass at

00

80

0.05 0.1 0.15 0.2 0.25
Jc8

=)0

0.5 ~40 ~ere t es I

0.175 0.225

(~ 0.25— 0.05 0.1 0.15 0.2 0.25
JC1O

0 I I I W/ÃXEA I WZZZZZZZa

g =2 /=4 /=6 /=8 /=10

FIG. 9. J~'s calculated for the model structure at 700 K (run
D).

FIG. 10. Distributions of Jci calculated for the model glass
at 700 K (histogram, run D). The curve overlaid on the J,6 dis-
tribution shows the best fit of the main peak around a J,6 value
of 0.18 with the six-dimensional Ciaussian function.
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0.5

0.25—
700 K

10'
(a)

FIG. 11. J&'s calculated for the clusters with J,6 being larger
than 0.3 in the model structure at 700 K (run D).

0„
(b)

0.25

Ii. h
1$ f/ ~ 1P ~ 0

2. Mirror-symmetric correlation
among icosahedral clusters

It is of great interest to see if there exists a strong
orientational correlation among the icosahedral clusters.

0.15

0.14

o 013
5

0.12

0.11

0.10

2 3 4
Time (10 'Osec)

5 6

FIG. 12. Change in the number of the clusters with J,6 larger
than 0.3, N;„,during structural relaxation. The relaxation tem-
perature for the assemblies quenched by run C or D is 700 K,
while that for the assembly by run E is 900 K.

in the distribution is close to that for fcc clusters, 0.33.
The clusters within the smaller peak, therefore, seem to
correspond to the fcc or heavily deformed icosahedral
type of clusters.

In order to identify the symmetry of the cluster within
the smaller peak in the Jc6 distribution, J&'s for the clus-
ters of which Jc6 is larger than 0.3 were calculated.
Indeed the JI's for such clusters were found to be very
close to those of perfect icosahedra, as shown in Fig. 11
(see also Fig. 2 for comparison). From 10% to 12% of
the clusters involved in the model glasses quenched to
below T by our quenching procedures are of the
icosahedral type as defined by Jc6 being larger than 0.3.
This number of the icosahedral clusters (Jc6 & 0.3), N;„,
increases when the system is relaxed below Tg as shown
in Fig. 12. Note that, after an initial relaxation period of
about 5 X 10 MD steps (5 X 10 " sec), Ni„gradually in-
creases and appears to be saturating to a value around
15% of the total number of the particles, which is close
to the continuum percolation limit (about 0.15), for
various runs with different relaxation temperatures below
Tg 0

0.05

Cl

0
(c)

-0.05
0 4 8 12

Inter-cluster Distance{A}

FIG. 13. (a) Partial pair distribution function of the atoms at
the center of the icosahedral clusters with J,6 being more than
0.3, (b) J6(r), and (c) Jlo(r) for the icosahedral clusters in the
model structure at 700 K (run A).

Thus we will, for a while, analyze the structure of the ag-
gregates consisting of the clusters of which Jc6 is larger
than 0.3, rather than dealing with all clusters involved.
Figure 13(a) shows the partial pair distribution function
(PDF) for the central atoms of the icosahedral clusters.
This partial PDF retains well the characteristics of glassy
structures for which the second peak splits into two, and
the positional correlation dies out at a large distance, but
each peak is much sharper than in the total PDF.

Figures 13(b) and 13(c) display the partial J6(r) and
J,p ( r ) for the icosahedral clusters. The oscillatory
behavior is again found in the functions. However, the
first peaks in both J6(r) and Jip(r) are negative unlike in
those shown in Fig. 8. Moreover, the second peak is
strongly negative for J6(r) and is positive for J,p(r). It is
noteworthy that the values of J6(r) and Jip(r) for the
peaks are very close to those deduced for the simple
icosahedral aggregation shown in Table I. It is then nat-
ural to ask if the icosahedral aggregation possesses mirror
symmetry at each interconnection and, if any, how far
such correlation involving mirror symmetry extends.
This type of correlation should be signified in the orienta-
tional correlation function K&(r) as a smoothly decaying
curve as described previously. So as to calculate KI(r),
the interconnection between the clusters, along which the
mirror operation is performed by the operator R, must be
defined explicitly.

Corresponding to the two interlocking states of
icosahedra shown in Figs. 3(a) and 3(b), two kinds of in-
terconnections between the icosahedral clusters can be
defined. Since the two icosahedra in the interlocking
state shown in Fig. 3(b) are nearest neighbors to each oth-
er, the simplest definition of interconnection between the
clusters is that the distance between the clusters is less
than 3.3 A, which is equivalent to being within the first



3298 T. TOMIDA AND T. ECsAMI

peak in the partial PDF shown in Fig. 13. Let us call the
percolation through this type of connectivity a percola-
tion, which is approximated as a continuum percolation
with a volume occupied by the atoms at the center of the
icosahedral clusters, e.g. , the total Voronoi volume of
the center atoms.

The simplest extension of the definition of connectivity
is thus to define it to include both the first- and second-
nearest icosahedral clusters, corresponding to the two in-
terlocking states shown in Figs. 3(a) and 3(b). Thus we
define the clusters also connected, when they are the
second-nearest neighbors to each other and sharing three
atoms on their vertices, which occurs in the interlocking
state shown in Fig. 3(a). Most of the cluster pairs with
the intercluster distance within the second peak in the
PDF are in this topological situation. The second
definition of connectivity is either when the distance be-
tween the clusters is less than 3.3 A or the clusters share
three atoms. We call the percolation through this type of
connectivity P percolation

Figure 14 illustrates an example of the interconnection
network among the icosahedral clusters by P-percolation
paths in our model glass below Tz. The volume of the
icosahedral aggregates far exceeds the percolation limit
for P percolation so that most of the cluster pairs have
multiple connection paths. The volume ratio of the
icosahedral clusters to the total space below T is es-
timated to be about 40% when the volume of the cluster
is defined as the coordination polyhedron with an atom at
the center and the nearest-neighbor atoms at its vertices
(not the Voronoi polyhedron). Moreover, the number of
the atoms which are located at either the center or ver-
tices of the icosahedral clusters is approximately 80% of
the total number of atoms below Tg. It is worth noting
that triangular sites of the interconnection path, as fre-
quently observed in Fig. 14, never cause the frustration of
the mirror-operation processes, since an even number of

the successive three-dimensional mirror operations does
not necessarily rotate a cluster back to its initial orienta-
tion unless the mirror operations are those along the
same direction unlike in the case of spins. Successive
mirror operations of this type create an infinite variety of
orientations of the clusters, and this is the reason for the
complexity of this problem.

For evaluating K&(r), two more conditions as follows
were set to eliminate the frustration on choosing a path
among the multiple possible connection paths between
the cluster pair as shown in Fig. 14.

(1) If there exist multiple connection paths between the
cluster pair, the path consisting of the least number of the
interconnections is taken.

(2) If there exist multiple connection paths consisting
of the same least number of the interconnection units, the
path with the least path length is taken; the path length is
the sum of the length of the interconnections (sum of the
length of the cluster bonds shown in Fig. 14).

Thus we' analyze the percolation paths between the
clusters with these definitions and then evaluate K&(r) in-
volving the mirror operators. For instance, if the path
between the ith and jth clusters is of i ~o~p ~j, the
mirror operator in Eq. (7) becomes R;,R, R

We first evaluated K&(r)'s along the extended connec-
tivity, P-percolation paths, among the icosahedral clus-
ters. The K&(r) scaled by J'& calculated along P-
percolation paths for the model glass relaxed for 3X10
MD steps at 700 K is shown in Fig. 15. In this calcula-
tion, both interconnected and noninterconnected
icosahedral cluster pairs are involved; when there is no
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FICx. 14. Interconnection network among icosahedral clus-
ters in the model structure at 700 K (see text for the definition).
The solid circles represent the center atom of each icosahedral
cluster (run A).

FICx. 15. KI(r)'s calculated for the icosahedral aggregates in
the model glass relaxed for 3X10 MD steps at 700 K (run D).
The smooth curve overlaid on the K6(r) is the best fit with
Onsager's formula.
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path between a cluster pair, the mirror operator relevant
to the cluster pair in Eq. (7) is defined to be 1, and there-
fore no mirror operation applied. The sharp valley exist-
ing at the cluster distance from 3 to 3.3 A does not corre-
spond to a sharp decrease in the orientational correlation,
but is simply due to lack of cluster pairs existing at these
distances (see the PDF in Fig. 13). Except for this un-
physical valley, the KI(r)'s are monotonically attenuating
functions of r without such intense oscillation as ap-
peared in G6(r) and J6(r), supporting the idea that the
orientational relation between the clusters retains mirror
symmetry. The mirror relation between the neighboring

clusters is rather strong, since the K6(r) at r less than 4 A
is around 80% of J6, which is approximately the maxi-
mal possible value of K6(r). Beyond this distance, K6(r)
and K,o(r) attenuate gradually, while other functions of
the second, fourth, or eighth order decay quickly and
show almost no values at large distances; note that this
selective behavior on the order l implies icosahedral sym-
metry. In particular, Ks(r) exhibits a positive nonzero

0
value even at 20 A. This is rather surprising since the
averaged number of the interconnection units lying on
the path between the clusters of which the intercluster
distance is 20 A is more than 13. In other words, the suc-
cessively mirrored angular correlation between the clus-
ter pair survives even after 13 times of reAection opera-
tions.

Since the rate at which icosahedral clusters are inter-
connected by P-percolation paths below rs is fairly large
as shown in Fig. 14, the primary aspects of the Kt(r)'s
seen in Fig. 15 are not altered whether the evaluation in-
volves both interconnected and noninterconnected pairs
or omits the latter. Indeed, for well-relaxed structures
below T having many icosahedral clusters, both evalua-
tion procedures give almost the same results. Moreover,
the effect of quenching rates and structural relaxation on
this evaluation is not significant. Although the above-
mentioned positive tail of K6(r) becomes somewhat
longer by decreasing quench rates or by relaxing model
glasses when evaluating it with both interconnected and
noninterconnected cluster pairs along P-percolation
paths, the tail of K6(r) evaluated omitting nonintercon-
nected pairs is hardly changed by such a thermal history.
These facts suggest that although the density of
icosahedral clusters is history dependent as shown in Fig.
12, the mirror-related orientational correlation along the
interconnection paths is independent of thermal history.
Relevant results calculated along P-percolation paths
omitting noninterconnected cluster pairs will be present-
ed later in Sec. IV D.

KI(r)'s along a-percolation paths were then evaluated.
For this calculation, noninterconnected icosahedral clus-
ter pairs are neglected; the calculation without noninter-
connected pairs provides us with information on not only
the strength and length scale of the angular correlation,
but also the maximal size of interconnected icosahedral
aggregates, i.e., information on percolation. In Fig. 16,
the K&(r)'s calculated for the structure relaxed over
6X 10 MD steps at 700 K are shown. Large fluctuations
at large distances are statistical noise due to very small
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FIG. 16. K&(r)'s evaluated along a-percolation paths in the
structure relaxed for 6X10' MD steps at 700 K (run D). The
smooth curve overlaid on the E6(r) is the best fit with Onsager's
formula.

as shown in Figs. 15 and 16. The correlation length pa-
rameter A, , determined by fitting the particular K6(r)
shown in Fig. 15 with this function, is 15 A, and that for
the K6(r) shown in Fig. 16 is also over 10 A. As men-
tioned above, the positive tail of K6(r) depends on the
thermal history of the model glass. For example, when
the model glass is not well relaxed (just after our quench-
ing procedures), the length scale parameter A, for fitting
the K6(r) evaluated including both interconnected and
noninterconnected cluster pairs along P-percolation paths

numbers of the interconnected icosahedral cluster pairs
at the distance. Thus, as expected by the fact that the
volume of the space occupied by the center atoms of the
icosahedral clusters is just below the continuum percola-
tion limit (see Fig. 12), a percolation appears to be nearly
attained. Moreover, the sixth- and tenth-order functions
evaluated along a-percolation paths exhibit a positive
nonzero value up to large distances, although the correla-
tion function of the second, fourth, or eighth order de-
cays quickly and shows almost no signal beyond the dis-
tance of 4 A. The selective behavior of the correlation
functions on the order as well as the long positive tail of
the sixth function agree well with those observed for the
K&(r)'s evaluated along P-percolation paths, indicating
that the mirror-related orientational relation between
neighboring icosahedral clusters is independent of the
selection of paths and thus a rather universal property of
the icosahedral aggregates in the glassy structure.

These K6(r)'s can be fitted with Onsager's formula

exp( —r /1, )
Q
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O 0
is from 5 to 10 A, and it tends to increase to over 10 A by
structural relaxation below T . However, when evaluat-
ing IC6(r) without noninterconnected cluster pairs, this
fitting of the function with Qnsager's formula almost al-
ways gives a value of A, over 10 A, being independent of
thermal history as well as the type of percolation path.
Thus, among the clusters specified by J6 being larger
than 0.3, a strong orientational correlation due to the
nearest-neighbor anticorrelation always exists. The
length scale of the correlation extends up to more than 5
times the contact interatomic distance in our model
glasses.

So far we have investigated the successively mirrored
orientational correlation only among the icosahedral
clusters, since this concept has been introduced based
upon a geometrical consideration of interlocking icosahe-
dra. We now check here if this mirror-based orientation-
al correlation between adjacent clusters is a universal
property of the glassy structure irrespective of the topolo-
gy of clusters. Although the evaluation of K6(r) along
percolation paths as shown above is not directly applica-
ble to an entire system involving all clusters because of an
enormous number of percolation paths between clusters,
the universality of the reAection-related orientational
correlation can be investigated by the function

gqo (r, )q*0(r )5(
~ r, r~ r)— —

0
positive values at distances less than 5 A, i.e., the first-
and second-nearest-neighbor distances, and decays
abruptly beyond this distance. This behavior should be
compared with that of the J6(r) for the structure below
T shown in Fig. 8. The value of the first peak in the
L6(r) is approximately twice the value of the first peak in
the J6(r). Furthermore, the second peak of the L6(r) is
approximately 3 times larger in magnitude than that of
the J6(r), and they possess different signs. Therefore, al-
though the orientational correlation may be the largest
among the icosahedral clusters, that between adjacent
clusters can basically be described as the mirror-related
orientational correlation irrespective of the topology of
clusters.

D. Temperature dependence of the orientational order

The temperature dependence of the symmetry
coefticients of the local clusters, JI's, is seen in Fig. 18. In
this figure, the JI's calculated using the instantaneous
particle positions for run A are plotted as a function of
temperature. At high temperatures, the dependence is
linear, but deviations from the linearity occur at lower
temperatures analogously to the behavior of pressure.
However, except J2, the deviation from linearity occurs,
well above Tg, around 1600 K, and then, at T, the tem-
perature dependence changes again and becomes linear
again at low temperatures. Let us call this upper transi-
tion temperature Tg2. It is noteworthy that Tg2 is very
close to the temperature below which spatial correlations

The term evaluating the orientational correlation in the
numerator of this function involves only one mirror
operator R for all the cluster pairs, which simply rejects
the coordinates of a cluster of a pair along the bonds con-
necting the pair. Thus, whereas this function would not
describe the mirror-related orientational correlation be-
tween the clusters that are the third-nearest neighbors to
each other or beyond, if the orientational relation be-
tween adjacent clusters is strongly mirror related, it
would result in large positive values at the distances of,
perhaps, the first- and second-nearest neighbors. Figure
17 displays the L6(r) evaluated for the model structure at
700 K without averaging out thermal vibrations of
atoms. It is seen that the function indeed exhibits large
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FIG. 17. 1.6(r) calculated for all the local clusters in the
model glasses at 700 K using instantaneous positions of atoms
(run A).

FIG. 18. Temperature dependence of the symmetry
coefficients of the local clusters, JI's, for run A.



52 MOLECULAR-DYNAMICS STUDY OF ORIENTATIONAL ORDER. . . 3301

between atomic shear stresses have been reported to de-
velop in MD supercooled liquids using the same poten-
tial. ' Moreover, among the symmetry parameters shown
in Fig. 18, only the sixth-order parameter increases with
decreasing temperature, whereas the others decrease.
This trend implies that the clusters with icosahedral sym-
metry, which possess the lowest-order spherical harmonic
component at I =6,"become more abundant at low tern-
peratures, in particular below T 2.

To investigate the temperature dependence of the to-
pology of the local clusters further, the cluster symmetry
coefticient for each cluster, J,6, was evaluated for the
model structures at various temperatures. In Fig. 19 are
the results shown as a temperature dependence of the dis-
r~. ~Sation of the parameter among the clusters. At 1900
K, J,6 exhibits a simple higher-dimensional Gaussian-
type distribution with a maximal distribution at the pa-
rarneter value around 0.18. However, when the tempera-
ture is lowered through T 2, a small peak appears around
the parameter value of 0.35. The height of this small
peak increases with decreasing temperature, and the in-
crease then slows down below T . As stated previously
and shown in Fig. 20, the clusters within this range pos-
sess strong icosahedral characteristics. The symmetry
parameters J&'s of the clusters with J,6 larger than 0.3 are
very close to those of an icosahedron irrespective of tem-
perature, confirming that the anomalous temperature
dependence of JI's is caused by the increased density of
the slightly distorted icosahedral clusters at low tempera-
tures.

Fige.re 21 shows the number of the icosahedral clusters
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FIG. 20. JI's for the clusters of which J,6 is more than 0.3
(run D).

with the J,6 value larger than 0.3, X;„plotted against
temperature. This temperature dependence illustrates
well the rapid development of the above-mentioned sub-
peak in the J,6 distribution when lowering temperature
from above T z and the sudden arrest of the increase at
T . As temperature drops through T 2 and approaches
T~, the rate of increase in X;„becomes higher, and the
increase freezes when X;„reachesa value of around 12%
of the number of particles included in the system. In this
figure, N;„'sat 1900 K calculated using atomic positions
averaged for 0, 100, 1000, and 2000 MD time steps are
also shown, in order to see how thermal vibrations and a
large atomic diffusion at high temperatures affect the re-
sults. The N;„is seen to be constant and maximal at the
averaging period from 600 to 1000 MD steps. This
dependence of N;„on the number of MD steps tells us
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FIG. 19. Temperature dependence of the distribution of the
symmetry coefficient J,6 (run A). The dashed lines show the
best 6t of the main peak around a J,6 value of 0.18 with the six-
dimensional Gaussian function.

FIG. 21. Ratio of the number of the clusters with a J,6 value
of more than 0.3, N;„,to the total number of the clusters in the
system, N„„&,plotted against temperature.
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that the efFect of thermal vibration is adequately eliminat-
ed by averaging atomic positions for 600 MD steps, but
difFusion limits the lifetime of the icosahedral clusters at
1900 K to be around 10 ' sec (1000 MD steps). It is
worth noting that, as mentioned previously, even though
the temperature dependence of pressure suggests a slight-
ly higher transition temperature for run A than for the
other runs (see Fig. 5), the freezing of the evolution
shown in Fig. 21 marks approximately the same transi-
tion temperature around 900 K for any run in our simu-
lation, showing that this structural change is a rather
universal measure of freezing. Moreover, the value at
which the evolution of X;„is frozen depends weakly on
quenching procedures, and X;„increases, approaching a
certain fixed range of values during a structural relaxa-
tion below 900 K, as has been shown in Fig. 12. This
saturating variation of X;„during relaxation below 900
K implies that the freezing temperature for X;„would
not be significantly lowered by such structural relaxation,
although we have not investigated the efFects of the relax-
a'.ion on this freezing temperature because of a high crys-
tallization rate above T .

In order to gain insight into the orientational correla-
tion in the icosahedral aggregates developing in super-
cooled liquids, the successively mirrored orientational
correlation functions K&(r) were again evaluated for the
icosahedral clusters with a J,6 value larger than 0.3 at
various temperatures.

K&(r) along P-percolation paths have been evaluated,
and the results are shown in Figs. 22 and 23. In Fig. 22,
the temperature dependence of the sixth-order function,
scaled by J6, calculated neglecting the icosahedral cluster
pairs without any interconnection path is shown. Below

T, this correlation function exhibits a large value of
0

about 70% of J6 at a distance of around 2.5 A and decays
slowly at a large distance, retaining a small but positive
value even beyond the distance of 15 A. At higher tem-
peratures, although the variation at relatively short dis-
tances is almost the same as that below Tg the function
exhibits noisy behavior or a sharp cutofF at a large dis-
tance. This is due to a small number or an absence of in-
terconnected cluster pairs at the distance. Thus, at 1900
K, the maximum size of the icosahedral aggregates inter-
connected by the P-percolation paths is about 15 A, and
P percolation is observed to have already been attained in
the structure below 1300 K. The threshold temperature
for P percolation is expected to lie around Ts2. In other
words, there exists a strong successively mirrored orien-
tational correlation in the icosahedral aggregates along
P-percolation paths irrespective of temperature, and the
icosahedral aggregates start to percolate with the connec-
tivity throughout the liquid at a temperature close to T 2.
It is worth noting that the value of K6(r) at large dis-
tances at higher temperatures is somewhat larger than
that below T . This behavior suggests that multiple con-
nection paths between the icosahedral clusters due to
large aggregation of the clusters at low temperatures im-
pose a significant frustration on the successively mirrored
orientational ordering, while the small aggregates are in-
dependent of each other; thus, the ordering is less frus-
trated in high-temperature liquids.

To account for both the successively mirrored orienta-
tional correlation along P-percolation paths and the rate
at which the interconnection path is found between a
cluster pair at a distance, we also calculated Ks(r) involv-
ing both interconnected and noninterconnected
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FICx. 22. K„(r)evaluated along P-percolation paths in the
structures at various temperatures (run D). The evaluation was
performed neglecting the icosahedral cluster pairs without any
interconnection path.

FIG-. 23. E6(r) evaluated involving both interconnected and
noninterconnected icosahedral cluster pairs along P-percolation
paths in the structure at various temperatures (run A). The
smooth curves are the best fit with Onsager's formula.
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tantly, the number of the local clusters of an icosahedral
type increases rapidly when temperature is decreased,
and then this increase freezes at Tg. In this process, the
volume of the space occupied by the icosahedral clusters
reaches a threshold value, at which P percolation is at-
tained, at a temperature of about 500 K above T . Then,
at T, the aggregation of the icosahedral clusters is
arrested just before the volume reaches the limit for u
percolation. Furthermore, in the icosahedral aggregates
there exists a successively mirrored orientational order
with a length scale of about 10 A.

0
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FICx. 24. Temperature dependence of the correlation length
parameter A. for E6(r) evaluated involving both interconnected
and noninterconnected icosahedral cluster pairs along P-
percolation paths.

V. DISCUSSION

Since the configuration of the atom in the first coordi-
nation cell around a central atom prefers icosahedral
symmetry, as stated by Frank, ' it is not surprising at all
that our model glasses have involved many local clusters
of the icosahedral type. Indeed, such clusters have been
observed in previous intense studies on the topology of
local atomic configurations in glasses. However, impor-

icosahedral cluster pairs by P-percolation paths. In this
calculation, the mirror operators R relevant to the nonin-
terconnected cluster pairs are neglected so that KI(r) be-
comes equal to J&(r) when no interconnected pair exists
at the distance of r (the same procedure as that used for
the calculation shown in Fig. 15). Typical examples of
the results are shown in Fig. 23. At low temperatures
below Tg, this K6(r) is almost the same as that calculated
neglecting noninterconnected cluster pairs, reassuring
that most of the icosahedral clusters are interconnected
at distances within our simulation box. At high tempera-
tures, K6(r) decays rapidly at distances beyond 5 A.
Thus the existence probability of the interconnection
path at high temperatures attenuates quickly at distances
beyond 5 A, while the maximum size of the icosahedral
aggregates is 15 A even at 1900 K. It is also suggested
that the orientational correlation that may appear in
J6(r) does not exist between the noninterconnected
icosahedral cluster pair. These correlation functions at
high temperatures can also be fitted by Onsager's formula
as shown by the smooth solid lines in Fig. 23. Figure 24
displays the temperature dependence of the correlation
length parameter A, for fitting those K6(r)'s. As the tem-
perature drops from a high temperature through Tgz
increases markedly, and then this increase freezes below
T . It is also interesting to note that, above T, this
length scale varies as a function of temperature,
b i( T —T'), at temperatures above T, where T' is a tem-
perature slightly below T and b is a constant.

A. Bimodal structure

As stated previously, a four-dimensional sphere com-
pletely filled by icosahedra alone can be used as a tem-
plate for glassy structures in real Hat space. The real
structure is then produced by introducing appropriate
disclinations into the four-dimensional structure such
that mapping onto Aat space can be performed. ' In this
framework, the icosahedral aggregates observed in our
model glasses could be regarded as the part left intact
during the mapping process and the rest of the structure
as the part disclinated. Since the undisclinated region in
our model glasses below Tg involves approximately 80%
of the total atoms when counting both the centered atoms
and the ones at the vertices of the icosahedral clusters,
the glassy structure can be viewed as an icosahedral ag-
gregate surrounded by a highly localized disclination net-
work, therefore a bimodal structure.

This bimodal structure possesses similarity to glass or
liquid structures proposed in the free-volume theory by
Cohen and co-workers and in the "significant struc-
ture" theory by Eyring and Jhon. In these theories, the
authors also assumed a bimodal structure where solidlike
and liquidlike regions coexist. The free-volume theory
then interprets the glass transition as a manifestation of
the percolation of the liquidlike part involving excess
space, i.e., the free volume, which contributes to the
diffusion of atoms. Since the local icosahedral arrange-
ment of atoms is one of the densest local packing, the
part consisting of the icosahedral aggregates in our model
structure can be regarded as the solidlike region in the
theories, and the rest of the structure as the liquidlike
one. Our observation suggests the presence of the
mirror-symmetric orientational order of an extended
length scale in the solidlike region, whereas these theories
are only phenomenological. In our view the recently
developed mode-coupling theory should be revised, since
the theory assumes the structure of supercooled liquids to
be homogeneous and to possess only local order confined
within the scale of atoms, while in the present work the
two types of domains and the extended orientational or-
der were observed below Tg 2. Therefore the mode-
coupling theory in the present form may not be valid
below T 2.

'

The observed bimodal structure here may also be
relevant to nanoscale inhomogeneities or medium-range
orders that have been suggested experimentally for
various network glasses. For example the low-frequency
peak of Raman spectra ' as well as other vibrational
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properties observed by infrared or light scattering mea-
surements ' for these glasses have been ascribed by
many authors to some granularities (fluctuations in densi-
ty or chemical compositions) or structural correlations on
a length scale from 10 to 20 A. Although the nature of
the bonding between atoms, and thus the nature of local
atomic configurations, is much different in the network
glasses from our simple system with a spherically sym-
metric interatomic potential, it may still be possible that
such a structural correlation is understood within the
framework described above, i.e., the bimodal structure in-
volving the orientational correlation with some necessary
modifications.

6
H= —J g g q6 (r;)q'6(r~),

(ij) m= —6
(10)

where the interaction parameter J is not positive but neg-
ative and the symbol (i,j ) denotes a sum over pairs of
nearest neighbors. In reality J is not a constant, but in
the simplified model Hamiltonian we could regard it as a
constant. More precisely, since the orientational relation
between the interlocking icosahedral clusters is best de-
scribed by the mirror symmetry, the Hamiltonian may
need to be modified using the mirror operator R as fol-
lows:

B. Grientational freezing (tensorial glasses)

Although Steinhardt, Nelson, and Ronchetti" claimed
to have identified the "ferromagnetic" ordering of the lo-
cal BOO tensor q6 in their Lennard-Jones MD glasses,
the present results indicate that the order is not fer-
romagnetic but of "antiferromagnetic" type. This is be-
cause two interlocking icosahedral clusters have opposite
signs of q6 . This q6 (r, )q*6 (r ) becomes negative for
the interlocking state as shown in Table I, and the inter-
locking state was abundantly observed in the model
glasses. Thus the simple effective Hamiltonian may be
written as

the manifestation of a transition from a spherically sym-
metric liquid to a tensorial glass.

C. Energy states of the icosahedral clusters

In liquids and glasses, the energy of local clusters
varies from one site to another depending on their own
geometry and environment. If there exists a geometrical
state of the cluster of which the energy is significantly
lower than other states, the clusters with such a geometry
should dominate at low temperatures. Conversely, at the
high-temperature limit, all the geometrical states would
be activated equally by thermal excitation. Consequent-
ly, the distribution of the cluster geometry should be
directly connected with the distribution of states, for in-
stance, in a geometry parameter space. Thus, from the
distribution of the cluster-symmetry coefticient J,6 ob-
served at temperatures well above Tg2 (e.g., the bottom
histogram in Fig. 19), it is seen that, at high tempera-
tures, only a small portion of the clusters is distributed in
a J,6 range of more than 0.3, i.e., the range corresponding
to the icosahedral clusters. Furthermore, the distribution
of nonicosahedral clusters in J,6 space hardly changes
when decreasing the temperature, while the number of
the icosahedral cluster does increase significantly. This
behavior suggests that the energy difference among the
nonicosahedral clusters is small compared to that be-
tween the nonicosahedral and icosahedral ones. These
considerations lead to a simple picture on the energy
states of the clusters as shown in Fig. 2S, in which the
nonicosahedral topological states form a relatively nar-
row energy band, while the icosahedral states lie at
lower-energy levels.

Let us estimate here the energy difference between the
nonicosahedral and icosahedral states, Eb. Since, at tem-
peratures above Tgz, P percolation is not yet attained and
the clusters are thought to be efFectively almost uncorre-
lated to each other, the icosahedral cluster could appear
at any site in the system with the same probability and
therefore complete mixing of the icosahedral clusters is

6

H = —J g g q6 (r)RJq6 (r~) (J)0) . (11)
(i j) m= —6

The mean-field theory after Haymet ' using the former
Hamiltonian predicts that the positive J gives rise to the
first-order transition to the "ferromagnetically" ordered
states at a low temperature.

However, the Hamiltonian in Eq. (10) with negative J
or the latter Hamiltonian will most likely lead to a spin-
glass-like state at low temperatures. The negative in-
teraction or mirror-symmetric correlation between clus-
ters would produce a significant frustration on the align-
ment of the clusters in spatially disordered systems as in
real spin-glass systems. As a result, the local BOO tensor
q6 would be frozen in relatively random directions, and
the correlation length of the orientational order described
by K6(r) will never become infinite, but will be frozen at a
medium distance as observed here. In this way, the
structure of glasses is best described not as a spin glass,
but as a tensorial glass, and the glass transition could be
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FIG. 25. Schematic representation of energy states of the lo-
cal clusters.
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obtained. The entropy associated with the complete mix-
ing or distribution of the icosahedral clusters is written as

' totalS =k~lnP =k~ln

I' being the number of distinguishable arrangements.
Thus b, G associated with the N~„ formation of the
icosahedral clusters is given by

b,G =N;„(b,H' ThS—')

—k~T ln
total'

(Nt. t'ai Nics )'Nics'
(13)

where AH' and AS' denote the enthalpy and entropy
differences between the icosahedral and nonicosahedral
topological states, respectively. The equilibrium number
of the icosahedral clusters is then determined by the
equation

dhG
dX;„ (14)

By using Stirling's theorem, we obtain the following
equation for 1V;„atequilibrium:

total

1+exp[( b H' —ThS') /k// T]
(15)

b,H' =Eh, (16)

and AS', which represents the difference in degeneracy of
the two states, the icosahedral and nonicosahedral states,
is given by

This distribution law is equivalent to that used in a two-
state model or the bond-lattice model ' for describing
the thermodynamic properties of network glasses and the
glass transition.

In our model in constant volume,

temperatures above T with Eq. (19), we obtain E—
/, Ik~

of about 7000 K for our system, as shown in Fig. 26;
D0/D;„ for this Qtting is about 1250, justifying
D;„«Do.Note that this value of ~E/, ~

is close to the en-

ergy difference between icosahedral and cuboctahedral
clusters, about 5k& T, calculated by Frank' and Hay-
met ' for the particles interacting with inverse power po-
tentials, where T is the melting point of the systems
(5T of our system is approximately 9000 K). Although
their calculations are not for the clusters surrounded by
others, but for the clusters in isolation, this agreement
supports the above simple picture of the energy states of
the cluster in the high-temperature regime.

%Then the temperature drops below Tg2, the local clus-
ters in liquids start being correlated. A simple effective
Hamiltonian initiating this order may be described by Eq.
(11),as stated above. This interaction is larger among the
icosahedral clusters, since they possess larger q6 com-
ponents than the nonicosahedral clusters, and restrict the
orientation and topology of a cluster next to another clus-
ter. Among the nonicosahedral clusters, this restriction
on the geometry of the clusters would be smeared out
since the nonicosahedral clusters are within a small ener-

gy band and therefore the adjacent clusters can change
their geometry almost without energy cost. However, be-
cause of the interaction above when an icosahedral clus-
ter appears adjacent to another icosahedral cluster, the
orientations of the two are likely to be strongly correlat-
ed. Since the reorientation of an icosahedral cluster
would need to break up itself once and to reform an
icosahedral cluster with other orientations, which re-
quires to overcome an energy barrier of ~Eb ~

(about 0.7
eV as estimated above), most of the other orientational
states for the cluster would not be accessible. The more
the icosahedral aggregation develops, the larger the bar-
rier height becomes because the reorientation of the large

AS'= k~ln
0

(17)

Here D;„and D0 represent the degeneracies of the
icosahedral and nonicosahedral states or the densities of
states at the correspondent two energy levels shown in
Fig. 25, respectively. Putting Eqs. (16) and (17) into Eq.
(15) then yields the equation determining the equilibrium
number of the icosahedral clusters under the zeroth-order
approximation of the energy state on the topology of the
cluster shown in Fig. 25,

Nto„)D;„exp( Eb Ik// T)—
D;„exp( Eb Ik~ T)+Do—

Since, as mentioned previously, D;„«D0and the term
exp( Eb/K& T) would n—ot be very large at temperatures
above T 2, the above equation is approximated as

co 4
K
c

0.0005 0.001

1/T (K )

20/T)

0.0015

N„„,D;„exp( Eb IkzT)—
1CS D 0

(19)

By fitting the observed temperature dependence of %;„at

FIG. 26. Arrhenius plot of the number of the icosahedral
clusters. Note that a sharp slope change appearing to exist at
Tg2 is presumably due to a statistical uncertainty of the data.
The slope is likely to change gradually in a certain temperature
interval around Tg, .
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FIG. 27. Estimated specific heat change due to forming the
icosahedral clusters.

icosahedral aggregates obviously needs simultaneous
breakup of many icosahedral clusters. This gradual
freezing out of the degree of freedom is perhaps the
reason for the departure from the exp( Eblk~—T) type
temperature dependence of the number of the icosahedral
clusters occurring below T 2 shown in Fig. 26.

The simple picture on the thermodynamics of the clus-
ters above thus breaks down below T 2. Nevertheless, it
is still tempting to estimate the energy gain due to form-
ing icosahedral clusters above T, assuming that the ener-
gy gain is p;„~Eb . Approximating the temperature
dependence of p;„in the temperature range between T
and Tg2 as another exponential function of —E, /k~T
(~E, ~

( ~Eb ~, see Fig. 26), the energy gain of our system
due to the formation of the icosahedral clusters is ob-
tained to be

0.0115exp
1820

T (eV/atom), (20)

where T is the temperature in kelvin. This energy gain
gives the value of 0.087 eV/atom at T~. The contribution
of the energy gain to the specific heat is then

1 5 exp(1820/T)
(21)

D. Percolation and viscous liquids

We now consider here some implications of the succes-
sively mirrored orientational correlation and the percola-

where X is the number of atoms. As displayed in Fig. 27,
this contribution of forming the icosahedral clusters to
the specific heat is equal to about 2'~ at Tg and would
be sharply reduced when the temperature is lowered
below Tg because of the structural arrest occurring at the
temperature (i.e., Bp;„/8T~0). This temperature
dependence of the specific heat is comparable to that of
our system deduced from the total energy variation above
T shown in Fig. 6. Although the above estimate should
not be directly compared with experimental data since
our calculation is in the constant-volume mode, it is
noteworthy that the estimated specific heat variation well
reproduces the salient characteristics of the specific heat
change observed in real experiments.

tion on the properties of supercooled liquids and the glass
transition. As mentioned previously, T~2, around which
P percolation is attained, is close to the temperature
below which atomic shear stress correlations have been
reported to develop in supercooled liquids by MD using
the same potential. ' In this study of the stress correla-
tions, it has also been shown that a significant density of
shear phonons can be supported in the temperature range
between T and the characteristic temperature much
above T . These behaviors of the stress correlation and
vibrational density of states could simply be a conse-
quence of P percolation. Since the icosahedral clusters
are considered to be at a significantly lower-energy level
than the clusters with other geometries, the icosahedral
clusters would survive a breakup by thermal activation
for a much longer time. Indeed, the lifetime of the
icosahedral clusters at 1900 K, much above T~2, has been
observed to be around 10 ' sec in our simulation, which
is approximately 5 times the period of the transverse pho-
non at its maximal density of states. ' Moreover, a con-
siderable successively mirrored orientational correlation
exists among the icosahedral clusters even at a high tem-
perature. It is thus conceivable that when P percolation
is achieved at Tg2 the percolating icosahedral aggregates
start mediating, in part, long-range stress fields and lead
to the observation of partial propagation of shear pho-
nons.

In this viscous liquid in the temperature range between
T and T 2, atoms can still rearrange themselves in
response to a temperature decrease so that the
configuration accommodates more of the icosahedral
clusters during cooling. The glass transition is marked by
the sudden arrest of the reconfiguration as well as the
rapid change in many other properties, However, the
change in the structure from a liquid to a glass takes
place gradually over the temperature interval between
T 2 and T . As shown in Fig. 27, excess specific heat is
observed over this range, implying freezing of
configurational entropy. This gradual freeze-in of
configurational entropy above the glass transition is very
similar to that of a spin glass. Indeed, the effective Ham-
iltonian in Eq. (10) is similar to the exchange Hamiltoni-
an for a spin glass, except that the local operators are ten-
sors rather than vectors, and that the coefficients are like-
ly to be temperature dependent, while at this moment it
is not possible to determine the explicit temperature
dependence of these effective parameters.

At the same time it is possible to make a connection to
the phenomenological theory of Saslow in which the
VTF law is derived by a Landau theory assuming the
frustration between the local order and the global order.
Our local bond orientational order parameter q& (r, ) may
be used directly as the local variable in this theory.
Below T&2 dynamic correlations among the q's, or the
successively mirrored orientational correlations of
icosahedral clusters, start to develop, but it will soon en-
counter frustration and the dynamics will slow down,
leading to a glass transition at T .

The present simulation was carried out using a short-
range potential and keeping the volume of the system
constant under a periodic boundary condition. The use
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of the long-range potential may infIuence the orientation-
al correlations, but it is not likely to alter the nature of
the correlations and their temperature dependence. The
effects of keeping the volume constant and the periodic
boundary conditions are more difficult to assess, but the
fact that several models with somewhat different densities
and different periodicities of the boundary showed practi-
cally identical results suggests that the effects would not
be important. Nevertheless, this point deserves further
investigations using a constant-pressure method.

VI. CONCLUSIONS

The orientational order in supercooled liquids was
studied by geometrical considerations based on the spher-
ical harmonic representations of the orientation of the
bonds and clusters and the molecular dynamics simula-
tions of the monatomic model supercooled liquids with
the modified Johnson potential. In this study, the con-
cept of the successively mirrored correlation due to inter-
locking states of neighboring icosahedral clusters was in-
troduced, and it was carefully investigated in the model
structures.

Although our MD results showed no indication of the
long-range icosahedral BOO reported by Steinhardt, Nel-
son, and Ronchetti, "the aggregation of the clusters of an
icosahedral type and the associated successively mirrored
orientational order were found to be the key to the under-
standing of the structure of liquids. The distribution of
the l =6 spherical harmonic symmetry parameter of the
local clusters exhibits a small subpeak which corresponds
to the presence of the clusters with an icosahedral topolo-
gy. The number of the local clusters with icosahedral
characteristics in the symmetry coefficients increases rap-
idly during cooling from a high temperature, and then
this increase is abruptly arrested at T . In the course of
cooling, the volume of the space occupied by the
icosahedral clusters reaches a threshold value, at which P
percolation is attained, at a temperature much higher
than Tg. Then, at T, aggregation of the icosahedral
clusters is arrested just before the volume reaches the
limit for a percolation. a percolation can be approximat-
ed as the continuum percolation of the volume occupied
by center atoms of the icosahedral clusters, while P per-
colation is a more extended one involving the connectivi-
ty between the clusters that are first- or second-nearest

neighbors to each other. It has been further shown that
the successively mirrored orientational correlation with a

0
length scale over 10 A exists along both types of percola-
tion paths in the icosahedral aggregates. The estimated
internal energy decrease due to the formation of the
icosahedral clusters and its contribution to the specific
heat reasonably match the energetic preference of
icosahedral clusters stressed by Frank' and experimental
specific heat changes above T, respectively. This exten-
sive structural change above T associated with the
orientational correlation over a relatively long length
scale suggests a collective nature underlying the glass
transition.

ACKNOWLEDGMENTS

The authors are grateful to Dr. E. Marshal and A. Seki
for assisting in the computations. They also acknowledge
the use of the facility of the Laboratory for Research on
the Structure of Matter supported by the National Sci-
ence Foundation through Cirant No. DMR91-20668.

APPENDIX

The explicit expression of the modified Johnson poten-
tial in Ref. 29 is as follows: for 1.9 ~ r ~ 2.4,

P(r) = —12.90021(r —2.4) —15.096 18(r —2.4)

+ 1.372 738 ( r —2.4 )
—0.504 774 7( r —2.4)

—0.200 210 8;
for 2.4 ~ r ~ 3.0,

ttp(r) = —0.639 230(r —3.115829)'+0.477 871r
—1.581570 '

for 3.0 ~ r ~ 3.44,

P(r)=14.671 11(r —3.0) —12.91063(r —3.0)

+1.725 326(r —3.0)3+0.222 124 1(r —3.0)

+0.452 142 6(r —3.0)—0. 146 963 6 .
0

Here the potential P and the distance r are in eV and A,
respectively.
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