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Hamiltonian map approach to resonant states in paired correlated binary alloys
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The origin of resonant states in tight-binding models with correlated disorder is analyzed using an ap-

proach based on classical Hamiltonian maps. In this method, extended states correspond to bounded

trajectories in the phase space of a parametrically excited linear oscillator, where the external force cor-
responds to the site potential of the original model. We pay particular attention to the nearly resonant
states of the random dimer model. We also discuss the case of a general N-mer model.

I. INTRODUCTION

In one-dimensional tight-binding-type models an
infinitesimal amount of disorder renders all eigenstates lo-
calized. ' This property, in models w&thout any short-
range order, leads to the absence of electronic propaga-
tion in the lattice. On the other hand, it is generally
known that in quasi-one-dimensional polymers, the pres-
ence of disorder might not necessarily lead to a complete
lack of conduction. ' In Ref. 4 in particular, various or-
ganic disordered systems were quoted with electrical
properties. The presence of extended states in such sys-
tems (that lead to electronic propagation) can be under-
stood when, in the disordered tight-binding model there
exists short-range order. The prototypical case is that
of the random dimer model ' (RDM), where (in the con-
text of a tight-binding Hamiltonian) pairs of adjacent en-
ergy levels are assigned at random, leading to two-site
correlations in an otherwise random model. The pres-
ence of correlations in RDM results in the diffusive and
superdiffusive electronic propagation for specific values
of energies.

Since for infinite samples fully delocalized states appear
only for specific energy values, there is no Anderson tran-
sition in the usual sense (see, also Ref. 7). However, a
large number of transparent states occur for any finite
sample size; this number was found to be proportional to
the square root of the length of the sample. ' This fact is
related to the divergence of the localization length in
infinite samples when energy approaches the resonant
value. '

In the present paper we address the issue of the spec-
trum of RDM and extensions from a point of view
different to those used in Refs. 2—8. In particular, we use
a Hamiltonian map approach and transform the original
correlated random tight-binding model into a two-
dimensional map which corresponds to classical linear os-
cillator with a parametrical perturbation given in the
form of periodic delta kicks. ' The amplitudes of these
kicks are defined by the site potential of the given tight-
binding model. As a result, extended states are essential-

ly represented by the bounded trajectories in the phase
space of the Hamiltonian map. This approach gives quite
an effective and simple tool for understanding specific
properties of eigenstates as well as for deriving some
analytical expressions which have been found before in a
different way. In particular, one can easily see the
meaning of fully transparent states for the general case
when X sites are correlated.

II. RESONANT STATES: HAMILTONIAN MAP
APPROACH

~n+i+xn —&=vn~n ~

with U„=E e„. We cast Eq. (2—) in the form of a two-
dimensional map, i.e.,

&n+i v„—1 x„
1 0 Jn

(3)

where the substitution y„=x„& is made. While Eq. (3)
is equivalent to the tight-binding Eq. (2), it nevertheless
provides with an alternative interpretation, viz. , that of a
two-dimensional dynamical system. In this picture an
eigenstate of Eq. (2) can be seen as a "trajectory" of the
map of Eq. (3). Straightforward diagonalization of this
map leads to

v~+l + 4 v~
n 2

A. Time-dependent linear map

Our starting point is the usual Schrodinger equation in
the tight-binding approximation in one dimension:

dc„(t)
i =e„c„(t)+c„+,(t)+c„,(t),

dt

where c„(t) is the probability amplitude for an electron to
be at site n and e„ is the local site energy. The eigenvalue
problem is obtained by making the transformation
c„(t)=exp( iEt)x„which —results in the equation
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E'2

for which dimers of the first type e& or of the second E'2

have no influence on the transparent states. One should
note that in the case of only one type of dimer, say e2, the
transparent states appear for only one value E„=@2.

Based on the above analysis, it is easy to understand
that in the general case of N-mer (two values E, and e2 ap-
pear in blocks of length N) the resonant energy is defined
by the following condition:

2m 3m 4n (k +1)vrE'N'N'N' ' N

k=0, 1,2, . . . , N —2.
For example, for trimers the resonant energies are given
by the relations

= ~. 2~E„e)2
—2 cosp~, p~ =—,' (8)

which result in four values for E„:
E„=E'] 1p E'&+ 1p E'2 1p 62+ 1

(see also Ref. 8).
We now use a different approach' suggested for tight-

binding models of type (3). The idea is to use an alterna-
tive two-dimensional Hamiltonian map, instead of the
map of Eq. (3). For this, the new variable
p„+&

=x„+
&

—x„ is introduced which plays a role of the
momentum in the discrete Hamiltonian equations

pn+ i =pn +fn&n
(10)

~n+i ~n+Pn+i .

The above map can be easily obtained from Eq. (2) by
making the substitution for p„+& and p„. In this repre-

where the phase p„ is introduced by the relation
u„=2 cosp„. One can easily see that for lu„ l

(2 the map
results in a simple rotation with the phase p„. Conse-
quently, the stability condition for the trajectories of Eq.
(3) has the form

IE —e„l &2 .

In order to specialize the general Eq. (3) for the random
dimer case we must take pairs of random site energies,
i.e., e„=e„+,=e, or e2. To understand the origin of the
resonant states, reported in Ref. 3, we consider the se-
quence e„which consists of one dimer only, i.e., where all
the values of e„are equal to e& except two values for
which we have e =e +i=@2. From Eq. (4) one can see
that this unique dimer with energy e2 does not influence
the trajectories of the map of Eq. (3) when the total phase
advance p +p +, =2p through the dimer is equal to
w or 2m. Since the latter value p =~ is forbidden due to
the stability condition of Eq. (5), the resonant energy E„
is defined by p =vrl2 giving E„=@2. As a result, for
the general case of randomly distributed dimers E'& and e2
there are two resonant values

sentation the amplitude f„ofthe linear force depends on
the discrete time n as follows:

f„=E—2 —e„,
where f„ is determined by the disorder site energy e„of
the underlying tight-binding model. It is important to
note that the eigenvalues A,„of the map, Eq. (10), are
defined by the same condition given in Eq. (5) as for the
map of Eq. (3). The corresponding Hamiltonian for the
map of Eq. (10) has the form

p2 ~2
H(p, x, t)= + 5,(t), 5,(t)—= — g f„5(t n), —

n = —oo

(12)

where the potential is given in the form of 5 kicks with
time-dependent amplitudes [here 5(t n) =5—, „equals 1

for t =n and 0 otherwise]. The analysis of the Hamiltoni-
an map (10) turns out to be very instructive for under-
standing the structure of resonant states.

In the simplest case of the complete order, i.e., e„=e&
for all n, [constant force f„=f in (10)] the motion is
represented by an ellipse in the phase space (p, x) with the
orientation defined by E'& ~ If the sequence of constant en-
ergies e„=e, is interrupted only once at a given site m
with a local energy e =@2, then the result in the phase
space is the following: All trajectory points for n & m fall
on a given ellipse in the phase space, at n =m there is a
kick to larger or smaller amplitudes and the remaining
points for n &m fall on a different ellipse but with the
same orientation as the original one [Fig. 1(a)]. If now
the second site with energy different from e& is placed
next to the one at the mth site, i.e., e + j =@2 it is possible
to have a reversal of the effect of the first kick from the
energy e2 at site m. This happens when e =e +, and
the total phase advance after the two kicks is

p =p +p +,=m [Fig. 1(b)]. This condition for the
phase advance is a generalized resonant condition that
leads to a propagating state. When a random mixture of
dimers with energy e2 is embedded in the chain with en-
ergy e& we obtain a phase-space trajectory similar to the
one in Fig. 1(c). We observe the two ellipses correspond-
ing to e, and e2 values. The second ellipse is formed by
points occurring every time the first site of a dimer is en-
countered in the map.

From the above consideration, it is easy to understand
that similar resonant states may exist even for a more
complicated case of slightly correlated sequences of e„of
any length M. The only condition is that the total sum

i p„of phase shifts has to be equal to m nfor any se-.
quence with m integer. In this case, the trajectory always
goes back to the ellipse in the phase space, which is asso-
ciated with the perfect lead to the left and to the right of
the scattering potential.

B. Parametric linear oscillator

Another representation of the original model of Eq. (2)
is similar to the map of Eq. (10) but more convenient for
the analysis of localization length. ' It is easy to show
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4
that two successive maps

p„=p„+A„x„,

0-
xn =xn

4

-4 -2 0 2 4

p + ] =p cospp x& sinpp

x„+&
=P„s1nPp+x„cosPp,

can be written in the form of the relation (2)

x„+,+x„,= (2 cospo+ A „sin go )x„.

(14)

Comparing with (2) one can establish the correspond'nce

E =2 cospp, A„=—
sinpp

0-

(b) between the parameters E, E„ in the original model (2)
and the parameters po, A„of the map (13) and (14). The
latter has clear meaning, i.e., the map (13) corresponds to
an instant linear kick of the strength A„resulting in the
change of the momentum p„and the map Eq. (14) de-
scribes the free rotation in the phase plane (p, x) defined
by the angle pp. One can see that such a map can be as-
sociated with the Hamiltonian of a linear oscillator with
a periodic parametrical perturbation:

-4 -2 0 2 4

4-

0-

-4-

-2 0 2 4

FIG. 1. The phase space of the map (10) for po=xo=1. (a)
One value of e2 in the sequence e:. . .e&e&e&e2e&e&e&. . . for
E= 1.7; e& =0; e&= 1.8. We note that one point is outside of the
ellipse representing the kick to the e& trajectory by e2. (b) Two
values of e2 (one dimer) in the sequence E:
. . .6)E')E')E'2E'26')E'I6). . . fol 6) =0. E =~,= 1.8. We note that
there is a point inside the ellipse representing the kick to the e&

trajectory by the first ez value. The second e2 value kicks the
trajectory back to the ellipse. (c) dimer of type e2, randomly
(with piobability Q= 0.5) distributed in the sequence e for e, =0
and E =F2=1.8.

H = + ——x'8, (r), 8,(r) = g A„5(t n), —PoP Ppx 1 2-
2 2 2

(17)

which may be treated analytically.
It is interesting to note that the one-dimensional map

of the type (13) and (14) is well known in accelerator
physics (see, e.g., Ref. 11). It describes the motion of a
charged particle subjected to periodic linear kicks due to
thin magnetic lenses or due to beam-beam interaction,
when neglecting nonlinear terms. In such an application,
the quantity p has the meaning of the phase shift of beta-
tron oscillations between two successive kicks. In the
case of kicked noise [p„=p„+A„ in Eq. (13)] the prob-
lem is analytically solved in Ref. 12.

For the above dimer de6ned by two values of e&, ez,
without the loss of generality, one can put e, =0. As a re-
sult, the motion corresponding to e„=e& is represented
by the circle in the phase plane (p, x) and resonant
behavior appears when, after numbers of kicks with
e„=@2,the trajectory comes back to this circle. Some ex-
amples with difFerent values of e2 are given in Figs. 2 and
3 for E =@2and E =e, =0.

C. Nearly resonant states

The above representation of the given quantum model
of Eq. (2) allows for the study of global properties of
eigenstates. In particular, the resonant delocalized states
correspond to a bounded motion described by the maps
of Eqs. (10), (13), and (14). Localized states, on the other
hand, are represented by unbounded trajectories which
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go away from the origin of the phase space (p, x). This is
well illustrated in Fig. 4 for the case of random dimers
with nonresonant values of energy E. The exponential in-
crease of a distance from the origin (p =x=0) can be re-
lated to the localization length of the eigenstate. To
study the dependence of the localization length l for near-
ly resonant states, it is useful to pass to action-angle vari-
ables (r, 8) for the map of Eqs. (13) and (14):

x =r cosO, p =r sinO .

As a result, one can obtain the following map for the ac-
tion r:

r„+& =r„D„, D„=(1+A„cos 8„+A„sin28„), (19)

where the transformation for cosO„and sinO„ is given by
the relations

cos8„+,=D„'tcos(8„+pp) —A„cos8„sinppI,

sin8„+, =D„' Isin(8„+pp)+A cos8 cos)"pI
(20)

The relations of Eqs. (19) and (20) can be used instead of

(a) .
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FIG. 2. The phase space of the map (13)—(14) for po =xo = 1

and Q =0.5; e, =0. (a) E =e 0.23; (b) E =E2= 1.3; (c)
E =e2= 1.96. The length N of sequence e is equal to X= 1000.

FIG. 3. The same as in Fig. 2 for E =e, =0. (a) @2=0.3; (b)
&2= 1.3j (c) &2=1.96.
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N —1

y= lim —g lnS „
rn+I

(21)

the common transfer-matrix approach for the determina-
tion of the localization length. The latter can be found
from the Lyapunov exponent y which is defined as

correlations in the sequence 8„,expression (21) cannot be
evaluated directly. However, it is possible to construct
an eff'ective map for two successive kicks of the single
map (19) and neglect the correlations between the phases
0„+z and O„near the resonance E =E„—5=E„. One
can show that the two-step map has the form

where the ratio r„+,/r„=D„ is given by (19). Due to
r„+~ =r„[1—WF, ( 8„) +2 5WFz( 8„)], (22)

I I I

(a) where W = 2„5/sinpo and functions F„Fz are given by

F, (8„)=sin 8„—sin (8„+go) (23)

0- Fz(8„)=sin8„si (n8„+IUD) . (24)

S e
~ e

~ ~
~ ~

Near the resonance, 5«1, the Lyapunov exponent can
be estimated by making use of expansion in W with the
successive averaging over 9„. As a result, one can get

-2 0 2
X

Q 5cospo
4 sm po

(25)

2-

0-
~ &

where the factor Q stands for the probability for the di-
mer of the second kind (with energy ez), to appear. From
the above expression the dependence of the localization
length on the distance 5 (with 5 ((1) from the resonance
can be easily found for two extreme cases. The first one
corresponds to the case when the value of ez is far enough
from the stability border Eb =2. If the distance
E=Eb —ez=—2 —ez is large compared to 5=ez —E, then
the estimate for the localization length I =y ' has the
form

~ ~

I I I % LL I I I I I I

l—,for 5«h«1
52

(26)

-2 0 2 due to the relation 2cospo=E =ez —5. In the other lim-
it, case ez =2, we have

I 1 I I I I I I I I I I I~ ~ I I I I

~ ~

g ~we~0
~ ~

~ t ~

~ 0
~1 ~

~ ~I

0-

~ ~ s~ Ill ~
'~

~ ~ ~s

~ ao 4 ~ pi agi ~
'e

~ ~ 0 ~ ~ ~ ~~ ~
~ ~I

r
~ ~

I I I I I I ~ U I I I I I I l I I I

-4 -2 0 2

FICx. 4. Nearly resonant states; the same as in Fig. 2 for
di8'erent E. Comparing with the resonant states shown in Figs.
2 and 3, nearly resonant states correspond to the unbounded
(for n ~~ ) motion with a slow spread of the points in the
phase space. (a) E=1.799; @~=1.8; (b) E=1.790; e&=1.8; (c)
E= 1.771; op= 1.8.

(27)

The above dependencies of the localization length I on
the parameter 5«1 have also been found through a
different approach in Refs. 5 and 6 (see also Ref. 9).

III. CONCLUSIONS

We have studied a one-dimensional tight-binding mod-
el with binary on-site disorder randomly assigned every
two sites. For such a model it was found ' that there ex-
ist special energies E„at which transparent states ap-
pear. We recover the above results using the approach
based on the classical Hamiltonian maps. Moreover, we
generalized our results for a N mer case (see also R-ef. 8)
giving a simple expression for the resonant values of ener-
gy. In the suggested approach, resonant delocalized
states correspond to a bounded motion, while localized
states are represented by unbounded trajectories in the
phase space (p,x). Making use of expansion in the vicini-
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ty of the resonance we give an analytical expression (25)
for the Lyapunov exponent for the nearly resonant states.
From this expression one can obtain that in the limit
5 « b. « l the localization length diverges as l —6/5; in
the other limit, 5«1 and 5=0, the dependence is
l —1/5 in perfect agreement with Refs. 5, 6, and 9. Im-
portant aspects of fluctuations of the transmission
coefficient for nearly resonant states are discussed in Ref.
13.
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