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We derive an expression for the inverse longitudinal dielectric function c '(k, co) of a random system
of identical spherical particles with dielectric function c,&(co) in a host with dielectric function c2(m). A
spectral representation allows us to separate geometrical and material effects by writing c '(k, co) in
terms of a spectral function, which depends only on the wave vector k and the geometry of the system.
Multipoles of arbitrary order are included. Using a mean-field theory and introducing the two-particle
correlation function, we carry out a configuration average and find a simple result for the spectral func-
tion. From the loss function Im[ —e (k, co)] we calculate the energy loss probability per unit path
length for fast electrons passing through a system of colloidal aluminum particles.

I. INTRODUCTION

Scanning transmission electron microscopy, together
with electron-energy-loss measurements, have been used
to study systems with various geometries, such as inter-
faces and small particles. ' The measured electron-
energy-loss spectra depend on both material properties
and on the geometrical shapes of the particles or inter-
faces. Energy-loss spectra have been calculated, using
classical dielectric theory, for electrons moving on a
definite trajectory past surfaces and particles of various
shapes. More complicated geometries, such as coated
spheres, spheroids, ' interpenetrating spheres, " and
spheres embedded in planar surfaces, ' have also been
studied. In the above theories, the energy-loss calcula-
tion is based on finding the force on the electron due to
the induced electric field at the electron s position, as it
moves on its classical trajectory. An alternative ap-
proach, which leads to equivalent results for an electron
moving past a surface, is to find both the electric and
magnetic fields outside the surface, allowing the energy-
loss rate to be calculated by integrating the Poynting vec-
tor into the surface. ' This theory has the advantage that
if the medium below the surface is inhomogeneous but
ordered, a transfer-matrix method' can be used to find
the reflectance amplitude, which is needed to determine
the Poynting vector. However, it appears difficult to use
this theory to calculate the energy loss of electrons pass-
ing through a disordered inhomogeneous system like the
one we will be dealing with here. Moreover, the bulk
losses due to electrons passing through the particles are
not inherently included in the theory.

The theoretical treatments mentioned above are not
well suited for analyzing experiments in which the fast in-
cident electrons do not pass at a well-defined distance
from a given particle or interface in the inhomogeneous
system. In an experiment of this type, Howie and
Walsh' measured the energy-loss spectra for electrons
incident on colloidal Al particles randomly dispersed in

an A1F3 matrix. The electrons passed at random dis-
tances from the Al particles, as well as through the interi-
ors of the particles. Loss peaks associated with both sur-
face and bulk plasmon excitations of the particles were
observed. Effective-medium theories, commonly used for
analyzing optical spectra, were only partially successful
in explaining the data. Instead, it was found that a sim-
ple model, based on classical electron trajectories which
can pass both inside and outside the particles, gave a
better explanation of the data. ' The model included
only dipolar surface plasmon excitations, and did not
take account of the geometrical arrangement of the
spheres. Fujimoto and Komaki' constructed a theory of
electron energy loss for an electron passing a single me-
tallic sphere with a given impact parameter ro, for ro
both less than and greater than the sphere radius. The
electrons in the sphere were described by a hydrodynamic
model, and an average over ro was taken. They found
energy-loss peaks associated with both multipolar surface
plasmon and bulk plasmon excitations.

Although the problem of electron energy loss by a sin-
gle spherical particle has been solved, this is not true for
a random system of many spherical particles. The main
difIIiculty lies in taking account of the interaction among
the particles and in performing an adequate average over
particle positions. In this paper we consider the energy
loss of an electron beam passing through a system of
spherical particles of equal radii a, located at random in a
host material. The sphere and the host materials are de-
scribed by local, frequency-dependent dielectric func-
tions. The interaction between the particles is included
by keeping multipoles of arbitrary order. The electron-
energy-loss spectrum for such a system is calculated from
the efFective inverse longitudinal dielectric response

'( k, co ), where the term

effective

arises because
(k, co) is the result of averaging over particle positions.

The method of calculation is conceptually simple, as
we shall find in Sec. II. An external potential V'"'( k, co) is
applied to the system, and the total potential
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V(k, co)= V'"'(k, co)+ V'" (k, co) is determined. After tak-
ing a configuration average over sphere positions, giving
an averaged total potential ( V( k, co ) ), we find the
effective inverse longitudinal dielectric function by taking
the ratio E '(k, co) =( V(k, co) }/V'"'(k, co). The external
potential induces multipoles of all orders on the spheres,
and the interaction of the multipolar excitations on
different spheres is included in the theory. The theory
does not include the effect of transverse fields, an approx-
imation that is valid if the radii of the spheres are small
enough for retardation effects to be negligible.

We have found it advantageous to write E '(k, co) in
the form of a spectral representation in which all geome-
trical effects are included in a spectral function g(n).
This function contains information about the strengths
and positions of the bulk and surface modes of the system
of spheres, but is independent of the dielectric functions
of the two media. By surface modes we mean those exci-
tations in which the induced charge lies at the interface
between the spheres and the host. Sum rules related to
the total strength and centroid of the excitation spectra
are also derived. Then, using a mean-field theory, we car-
ry out the configuration average in terms of the two-
particle distribution function. The spectral function
breaks into discrete Dirac 5 functions associated with
coupled multipolar surface modes, and we find a simple
result for the strengths and positions of these modes.

In Sec. III we apply this mean-field theory for
'(k, co) to calculate the electron-energy-loss probability

for some specific systems and a summary of the paper ap-
pears in Sec. IV. Most of the details of the derivations
are presented in the Appendices.

II. INVERSE LONGITUDINAL DIELECTRIC FUNCTION

A. Electron energy loss in an inhomogeneous system

dP (E,A)
dt z 2 mKF ~ V„~ S(k, co )dE d Q,

(2vrfi )

where Vk =47Te /k and

S«,~)=& I(pi, ).ol'&(~.0
—~) (2)

—ik.r .
is the dynamic structure factor. Here pz =g~ e ' is
the density operator, (pk )„0 is the matrix element of the
density operator between exact ground states and excited

Since the standard derivations of the relation between
the inelastic-scattering cross section, the dynamic struc-
ture factor, and the longitudinal dielectric function apply
to homogeneous systems, we begin this section with a
brief discussion of how our inhomogeneous system can be
treated. One uses the Born approximation to treat inelas-
tic scattering of a fast charged particle (the incident elec-
tron) by an electronic system which may be inhomogene-
ous. If the energy loss of the incident electron is
EI—EF=E=%co and the momentum transfer is
Kl —Kz =k, then the probability per unit time of
scattering an electron with energy loss in the range
(E,E+dE) and final wave vector KF in the solid angle
dn is" "

( ) ( -)*47re y
Pk' 0 Pk" Ilo

gp2

where s is a small positive quantity. ' Taking the imagi-
nary part of Eq. (4), we have, for k'=k"=k and positive
CO~

Ims '(k, k, co) =—4m e

haik
y ~(pk) 0~ 5(~ ~ 0)

4m e S(k, co) .
Ak

In the above equations S(k, co) can depend on the
direction of the wave vector, since the theory applies to a
general inhomogeneous system. We assume that the sys-
tem, although inhomogeneous on a microscopic, or more
properly, on a mesoscopic scale, is homogeneous and iso-
tropic on a macroscopic scale. Therefore, by taking a
suitable ensemble average over the positions of the parti-
cles, the system will become isotropic, so the averaged k-
dependent quantities in the equations will depend only on
the magnitude of the wave vector. Denoting the ensem-
ble average by ( ), the isotropic, or effective dynamic
structure factor is defined by S(k,co)=(S(k,co)). From
Eq. (5) we have

S(k,co)= — Imc, (k, co),haik

4m e
(6)

where the effective inverse longitudinal dielectric func-
tion c, ( k, co ) of the macroscopically isotropic inhomo-
geneous system is given by

'(k, co) = (E '(k, k, co) )

=(p"'(k, ~) &/p'"'(k, co) .

The last equation is found by taking a single wave vector

states of the electronic system, and co„o is the excitation
frequency. The above equations are written for a system
at zero temperature, but only slight modifications are re-
quired for the theory to be applied to nonzero tempera-
tures.

Next, we discuss how S(k, co) is related to the dielectric
function. In an inhomogeneous electronic system the
Fourier transform of the inverse dielectric function de-
pends on two wave vectors k', k", since a single spatial
Fourier component p'"'(k", co) of an external charge den-
sity with wave vector k" can induce a total charge densi-
ty p"'(k', co) with many Fourier components with wave
vectors k', that is,

p"'(k', co) =Q s '(k', k",co)p'"'(k", co) .
kit

If linear-response theory is applied to this electronic
system, turning on a small external charge density adia-
batically and calculating the induced and total charge
density, one finds a formal expression for the inverse
dielectric function:
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p'"'(k", co)=p'"'(k, co)5„&- on the right-hand side of Eq.
(3), choosing a single Fourier component k' =k, the same
as that of the external charge density, from the total
charge density on the left-hand side of Eq. (3), and taking
an ensemble average. Now, since 4m p'"'(k, co)
=k V'"'(k, co) and

4n.p'"(k, co) =k V(k, co)

=k [V'"'(k )+ V'" (k )]

Eq. (8) can be written as

'(k, co) =1+( V'" (k, co) )/V'"'(k, co),

which is the form we shall use to perform the actual cal-
culation of E '(k, co). Recall that we are assuming, from
the beginning, that both the sphere and the host materi-
als have a local ( k-independent) dielectric response;
therefore, the k dependence or nonlocality of s '( k, co )

arises from the finite sphere size and the interaction be-
tween spheres.

SphereS, SO qlmi qloi qli . ThiS induCed multipOle ql;
must be proportional to the external potential Vo, and it

ikz,.
contains the phase factor e ', so it can be written in the
form

2(+1
qlmi al V(mi

4m
(13)

Here al is the I polarizability of a sphere and Vlm; is the
coefBcient in the spherical harmonic expansion, about the
center of sphere i, of the induced potential arising from
spheres j difFerent from i:

(12)

An expression for I'l is derived in Appendix B.
The induced multiple ql'; on sphere i is proportional

to the induced potential acting on the same sphere, and
can be written

B. Basic formalism for Anding c '(k, co)
V"" (r')=g V,', (r')'Y; (8', jp'),

lm

(14)

Our system consists of N spheres of radius a located at
random positions r; in a box of volume v. The spheres
and the host are made of materials with local, isotropic,
dielectric functions Ej(co) and ez(co), respectively. In or-
der to simplify the notation we replace the dielectric
function of the spheres, Ej(co), by s(co) and that of the
host, c,2(co), by 1. At the end of the calculation we will re-
store the original materials by replacing E,(co) by the ratio
E,(co)/E2(co), and e '(k, co) by s '(k, co)s2(co).

We start with an external potential with a single
Fourier component with wave vector k. It is convenient
to take k in the z direction, so the external potential can
be written

Vext(r &) Vext(r)e —jcoj V eikze —ico~ (10)

From Eqs. (10) and (All), the kth Fourier component of
the external potential is V'"'(k, co) = Vo. We will further
simplify the arguments in the induced potential by drop-
ping the index co, so that V'" (k, co) is written simply as
Vind( k)

The external potential induces charges on the spheres,
and there are multipoles associated with the distribution
of these charges on each sphere, so one has a system of
coupled multipoles, driven by the external potential.
After having solved for the induced multipoles, we can
find the induced potential V'" (r) produced by all the in-
duced charges on the spheres. The quantity of interest,
V'" (k), is the kth Fourier component of V'"d(r).

We now proceed to carry out the calculation described
in the preceding paragraph. The multipole ql; on sphere
i can be written as the sum of two terms,

0 ~ i
qlmi qlmi ' qlmi

where ql, . is the multipole produced by the external po-
tential acting on sphere i, and ql, . is produced by the in-
duced potential arising from all spheres j different from i,
acting on sphere i. Since the external potential has an
e' ' dependence, it induces only m =0 multipoles on the

where r'=(r', 8', y') =r —r;. The coeKcient Vj~; is deter-
mined by the induced multipoles ql. j on spheres j
different from i by the equations of the form

1 l'm'j
Vjmi

—X &Igni am I .
E'm'j

(15)

0 2I+ & lt I ~

Plmi Qli~mO I g Imi 'Vl'm'j
l'm'j

(16)

Equation (16) can be solved using a spectral-
representation method, as will be described in detail in
Appendix D. The key step in the solution is to write Eq.
(16) in the form

l'm'j
+nl 5jj'~ pfg ppg'~ j+h/pfgi ( k) y'I'/fan 'j

e. —1

where

V'Icj" +'R V g
4n l 0 mo&

( —I )
I —ikz,.

2l+ &~ la

(17)

(18)

Here nj =1/(2l+1) are depolarization factors for the
surface resonances of an isolated sphere, and hl'; j(k) is a
real Hermitian matrix that is independent of the proper-
ties of the material. These properties appear only in the
term 1/(a —1) in the diagonal element on the left-hand
side of Eq. (17). Expressions for hl', j(k) and Rj are
given in Appendix D. The structure of this equation is
what allows us to 6nd a solution in the form of a spectral
representation, in which the depolarization factors for
the surface resonances of the coupled system of spheres
are the eigenvalues of the matrix Hjj,. j(k)
=nj'~jj&~ 5, +hj'~T'(k)

Expressions for the coefFicients 8l'™are given in Appen-
dix D. Combining Eqs. (11), (13), and (15), we get a set of
coupled equations for the multipoles on all spheres:
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c, —1
+nl 6ll + hl'~ k yl

J

~I@&i+i/ V0 ~ (19)

Here ( g~h&'; J(k) ) is the ensemble average of the multipo-
lar interaction between spheres, which depends on the
two-particle distribution function, as shown in detail in
Appendix D.

Equation (19) can be solved immediately for (y&, ), and
then the corresponding average multiple (q&) is found
by using Eq. (18). The result has the following structure:

Equation (17) is valid for an arbitrarily large number of
spheres at random locations; it can be solved formally to
give sum rules, as we shall show in Appendix F, but this
formal exact solution is not useful for the actual calcula-
tion of s '(k, co). Here we present an approximate solu-
tion of Eq. (17) by using a mean-field theory. This means,
that for all spheres, we neglect the fluctuations of the
multipoles about their average values, and take the mul-
tipole on each sphere to be equal to its corresponding
average. Therefore, all multipoles are "aligned" in the z
direction; that is, only the m =0 multipoles appear. This
allows us to write the multipole variables as
y&. 1 =(y&. )5 .0, which no longer depend on the sphere
index j. The ensemble average of Eq. (17), over a large
number of random sphere configurations, becomes

Therefore, V,'" ' (k) must be proportional to the exter-
nal potential V0, and we can write

V'"' (k)=+ M V
1=0

(23)

where the coefticients M& are given in Appendix A. Simi-
larly, V,

'" '(k) is proportional to the induced multipoles
1

qlmi:

yind'l(k) = y Z ~
i

l=1

(24)

00

V" (k)= g [(Mi ZiFi)VO—+Ziqi, e '] .
l=o

(25)

We take the ensemble average of Eq. (25) and use Eq. (20)
for (q&, ). The sum over i in Eq. (21) gives a factor N, so
we find

where we have dropped the m index because only m =0—ikz,
multipoles contribute. The phase factor e ' is included

Ekz 1to cancel the factor e ' that occurs in ql;, so no phase
factor appears in the expressions for the coefticients Zl,
as can be seen in Appendix C.

Using Eqs. (23), (24), and (12), we can rewrite Eq. (22),

Dii (s) ikz, .
&i Voe

(s—1) '+n, (20) O, g (E—1) '+n,

(26)

Vind(k) y Vind(k) (21)

The contribution V" (k) from sphere i can be written as
a sum of two parts:

Vind(k) Vind, o(k)+ Vind, l(k) (22)

which are defined similarly to Eq. (11). The external po-
tential, with a single Fourier component k, induces
charges on sphere i with multipole moments ql;. These
induced charges produce an induced potential V" (r),
which has the kth Fourier component V" ' (k). The po-
tential from spheres other than sphere i also acts on
sphere i, inducing charges that have multipole moments
ql';. These induced charges produce an induced poten-
tial V,'" '(r), with a kth Fourier component V " '(k).

where n, are the depolarization factors of the surface
modes of the coupled system of spheres, and are given by
the eigenvalues of a matrix H&& =n&5&&. +(g~h&;'~(k)).
The coefficients D&& (s) are related to the eigenvectors of
Hll, as is also shown in Appendix D. Note that n, and

D&& (s) are independent of the dielectric function s(co), but
depend only on geometrical factors: the wave vector k,
the sphere radius a, the volume fraction of spheres, and
their two-particle distribution function.

The final step is to find V'" (k), the kth Fourier com-
ponent of the induced potential. We express V'" (k) as a
sum of contributions from the individual spheres:

The inverse dielectric function is then given by
'(k, co) =1+( V'" (k) ) /Vo.

C. Spectral representation for a '(k, cu)

The spectral representation of the effective dielectric
response of a composite, in the local limit (k~0), was
first introduced by Bergman' and Milton. They
showed that the local effective dielectric function of any
two-component material is a function of the ratio of the
dielectric functions of its components, and also, that this
function can be always written as a series of simple poles
and residues which depend only on the microgeometry of
the composite material and not on the dielectric func-
tions of the components. However, if the microgeometry
is random, in the limit of infinite volume, the poles merge
into a branch cut and the residues become a continuous
function, called the spectral function.

Fuchs and Claro, ' and later on Hinsen and Fel-
derhof, developed two different procedures for the cal-
culation, in the long-wavelength limit, of these poles and
residues for a finite system of identical spheres embedded
in an otherwise homogeneous host. Here we extend the
formalism of Fuchs and Claro ' to the effective inverse
longitudinal dielectric response, but now with a finite
wave vector.

For doing this, the quantities in Eq. (26) can be
simplified and combined, as discussed in Appendix E, to
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provide an expression of s '( k, co ) as a series of simple
poles and residues. We obtain

Cb C,
'(k, oi)=(E2) ' 1+f +g

u —1, u —n,
(27)

where f is the volume fraction of the spherical particles
and u is a spectral variable, defined as

u = —(E, /E2 —1) (2&)

Here we have replaced e '(k, co) by c, '(k, co)e2 and e by
c, /c2, a complex function of the frequency, in order to re-
turn to the original materials, where the spheres and the
host have dielectric functions c& and c2, respectively.

Equation (27) is one of the main results of our paper.
It is a spectral representation of E (k, co), in which the
residue Cb is the strength of the bulk longitudinal mode
and the residues C, are surface mode strengths. The fre-
quencies of the modes are determined by the poles of
each term, that is, by the vanishing of the corresponding
denominators. For the bulk mode the depolarization fac-
tor is nb = 1, and so the denominator vanishes if
u =nb= 1, or e&(co)/E&(co)=0. The surface modes, la-
beled by the index s, have depolarization factors n, and
their frequencies are determined by u =n, or
E,(co)/s2(co) = 1 —1/n, .

The bulk mode strength is

eigenvalues of Hll, and their strengths are related to its
eigenvectors through the unitary matrix U, l which diago-
nalizes Hll. . That is,

Q U, i H» Ui, =n, 5„. .—1

ll'

The strengths of the surface modes are given by

(31)

C, =3 g &Il'(Pl+1)(2I'+ l)p j&(p)j i (p) UI, Ui, ,
ll'

Cb+g C, =1, (33)

and that Q, C,n„ the first moment of the surface mode
spectrum, is given by

(32)

where p= ka.
Therefore, we obtain an expression for the inverse lon-

gitudinal dielectric function 8 '( k, co ) with the same
structure and the same spectral variable, as the one pro-
posed originally by Bergman' and Milton for the local
effective dielectric function s,s(co). The main difference is
that values of the poles and residues are now k depen-
dent.

It can be easily shown (see Appendix F) that the
strengths of all modes add up to 1:

Cb = 1 —3 g l(2l + 1)[j&(p) /p]
1=1

(29) g C, n, =g 3&ll'(2l+1)(2l'+1)p j,(pj), (p)H». .
S 11'

J'i+i i(k"o)—
kro

(30)

where j (x) is the spherical Bessel function of order v.
The depolarization factors of the surface modes are the

Notice that the strength of the bulk mode now differs
from 1, and that the difference does not depend on the
geometrical arrangement of spheres, but only depends on
the sphere radius through p =ka. This means that the
depression of the strength of the bulk mode comes from
the finite size of the spheres. This depression in strength
is known in the literature as the Begrenzung effect.

On the other hand, the properties of the surface modes
(n, and C, ) depend on interactions between the spheres
and, within the mean-field theory, are determined by the
eigenvalues and eigenvectors of a real symmetric matrix
Hll, which is a functional of only the two-particle distri-
bution function p' '(r). Explicit expressions for H». , in
terms of p' '(r), are given in Eqs. (D13)—D(16) of Appen-
dix D. For simplicity, we consider here only the
excluded-volume correlation among pairs of particles;
that is, we take p' '(r) =n8(r ro), where n =N/v is t—he
density of spheres, 8(x) is the step function, and ro =2a is
the exclusion radius. The result is

I
ll' 2( + 1

ll'

I+1'—2

+3f&ll'/(2l + 1)(2l'+ 1) l!(I')! ro
I.

(34)

'(O, co) =(E2) '[1+f /(u n, )], — (35)

where n, =
—,'(1+2f). Thus at k=0, the longitudinal

dielectric function reduces to the Maxwell-Garnett (MG)
dielectric function eMG(co), which can be considered as
the k =0 limit of the transverse dielectric function for a
system of spherical particles within the mean-field
theory. That is, Eq. (35) can be rewritten,

E(O, co) =E2[1 f /(u —nMo )]= eMo(oi)—, (36)

where nMo =
—,'(1 f). For this reason our t—heory can be

considered a generalization of the MG theory to finite
wavelength and to all multipolar orders. It also explains
why a straightforward application of an effective-medium

It is also shown in Appendix F, that both of these sums
rules are valid not only within the mean-field theory, but
that they are valid in general. This means that they also
apply to an exact theory.

Now we consider the k~O (local) limit of E '(k, ai)
within the mean-field theory. From Eq. (30) we find
H» =(1+2f )/3, H» =1/(2l + 1) if I )2, and H». =0 for
l&l' Modes wit. h different 1 values are uncoupled since
off-diagonal elements of Hll vanish, so the surface modes
can be labeled by the multipole index l. Furthermore, the
bulk mode strength is Cb=0, the dipole (l=1) surface
mode has strength Cl = 1, and the higher-multipole
modes have zero strengths: C1=0 for I ~2. Equation
(27) becomes
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theory like MG, which is successful in the optical range
(k —+0), fails to give reasonable answers when applied to
electron-energy-loss experiments, where the k depen-
dence of the external field plays a prominent role.

An alternative way of writing the spectral representa-
tion of E '(k, co) is

1.0 I ~ I I
I

1 I I ~ I

30

—1 C,

C, /n,+—1 —gC, +fg
n, e, +(1 n—, )sz

& 0.2

0.0
10 15 20 25 30

(37)

where we have eliminated the spectral variable u in favor
of the dielectric functions E, I and c2, and have replaced Cb
by 1 —Q, C„using the sum rule in Eq. (33). In this ex-
pression, the first term has a pole at F2=0, and thus is in-
terpreted as the contribution of the bulk mode of the
host, with a weight proportional to the filling fraction of
the host: 1 f, times —a factor less than 1, which
represents the Begrenzung effect in the host. The second
term in Eq. (37) has a pole at e, =0, so it corresponds to
the contribution of the bulk mode of the spheres, with a
weight proportional to the filling fraction of the spheres
(f), times 1 —g, C„which represents the Begrenzung
effect in the spheres, as pointed out before. Finally, the
third term in Eq. (37) corresponds to the contribution of
the surface modes of the system. The location of the sur-
face modes here is the same as in Eq. (33), since the zeros
of the denominators here are the same as the zeros of
u —n, . This form of the spectral representation of

'(k, co) might be useful to people working in electron-
energy-loss spectroscopy, who often interpret experi-
ments in terms of excitation functions for each material.
Notice, however, that our theory is, from the start, non-
symmetric with respect to the role played by materials 1

and 2. For any filling fraction f, material 1 consists of
identical inclusions of spherical shape, and thus is discon-
nected, while material 2 is always connected and plays
the role of the host. Therefore, while the shape of the in-
clusions is independent of f, the shape of the host de-
pends on f. For this reason, the Begrenzung effect is in-
dependent of f for the spheres but is f dependent for the
host.

D. Numerical results

As mentioned before, one of the distinguishing merits
of the spectral representation of E '(k, co), as given by
Eqs. (27)—(32), is that both the mode strengths and the
mode positions are independent of the materials. In this
section we present numerical calculations of their depen-
dence on the filling fraction f, the wave vector k, and the
sphere radius a. Since we are considering only the
excluded-volume correlations among pairs of spheres, the
dependence on k and a will always appear as the product
ka.

In Fig. 1 we show Cb as a function of ka, for different
values of L,„,which is defined as the maximum value of
I taken in the multipolar sum of Eq. (29). This figure

FIG. 1. The solid lines show the bulk mode strength Cb as a
function of ka calculated with different values of I. ,„. The
numbers which label the different solid lines designate the corre-
sponding value of L, ,„used in the calculation. The dashed line
is the total strength of the surface modes, 1 —Cb.

shows that as the value of ka increases, more terms must
be included in the multipolar sum. For example, for
ka = 10 a value L „=12 is sufhcient, whereas for
ka =20, L,„=20 is required. Also, it can be seen that
Cb=0 for ka=0, increases as (ka) for small ka, and
finally approaches 1 asymptotically for large values of ka.
Thus for a fixed value of k and a ~~, Cb tends to its
bulk value: 1. According to the sum rule in Eq. (33), this
reduction in the strength of the bulk mode (Begrenzung
efFect) is equal to the sum of the strengths of all the sur-
face modes of the system. In Fig. 1 the total strength of
the surface modes is also plotted as a function of ka. It
has the value 1 when ka =0, and then decreases as ka in-
creases. For example, when ka =10, the total strength of
the surface modes is about 0.22.

We now consider the position and strength of each in-
dividual surface mode. When k &0, we have HII, WO if
l&l', so different multipoles are coupled, and the surface
modes cannot be labeled by the index l. Nevertheless, as
can be seen from Eq. (30), the eigenvalues n, of HII in the
k~0 limit are easily determined. For l=1, as pointed
out before, n, = ( 1+2f) /3, and for I & 1, n I

= l /( 2l + 1 ),
independent of the filling fraction f. Therefore we will
denote the different surface modes by taking the label s
equal to the corresponding value of l at k =0.

Figure 2(a) shows the mode positions, i.e., the surface
mode depolarization factors n„as functions of ka, for
f=0. 1 and L,„=6 is the dimensionality of the matrix
HI&.. The s = 1 and s =2 modes, which happen to be de-
generate at k =0, split rapidly as ka increases. This ac-
cidental degeneracy arises because n I =(1+2f)/3 is
equal to ni = I /(2l + 1), for f=0.1 and 1=2. Figure 2(b)
shows the mode positions n, (ka) for f=0.5 and

,„=6. At k =0, the dipole mode is shifted to
n, =2/3; as k increases, this "dipole" mode moves to
smaller values of n I and then, around ka =3, it flattens
out, at values of n, of about 0.48. In both cases, f=0. 1

and f=0.5, the higher modes (s &3) show a small
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dispersion with respect to ka, this dispersion being small-
er the higher the mode.

In Figs. 3(a) and 3(b), the mode strengths C, are plot-
ted as functions of ka, for values of f=0. 1 and 0.5, re-
spectively, and L,„=6. We also plot the total strength
of the six surface modes (dashed line) and also the exact
total strength of all surface modes, g, C, =1—C&, using
the sum rule given in Eq. (33). These two curves coincide
a11 the way up to ka =5, and as mentioned above, are in-
dependent of f. This means that up to this value of ka,
the first six modes exhaust the sum rule, and one might
expect that the contribution of higher modes should not
be important. Figure 3(b), with f=0.5, shows that the
"dipole" (s= 1) mode is the only mode with a finite
strength at ka =0, and that this strength decreases as ka
increases. On the other hand, the strengths of all other
modes start with zero values at ka =0, increase as ka in-
creases, go through a maximum, and finally decrease
asymptotically to zero for large values of ka. This max-
imum shifts to larger values of ka, the higher the mode
index. The behavior of C, (ka) for f=0. 1 is similar, as
can be seen in Fig. 3(a). However, it might seem in this
figure that the first two modes share strengths equally for

ka =0. This is not true, and a closer look at the region of
very small values of ka shows that at ka =0, the s = 1 and
s =2 modes actually start with strengths equal to 1 and 0,
respectively. Then, very rapidly, both strengths become
approximately equal to 0.5 at about ka =0.1, and as ka
continues to increase, they separate slowly and progres-
sively. This behavior is due to the accidental degeneracy
of these two modes at ka =0.

%"e now illustrate the effects of the multipolar coupling
and how the I character of the modes is preserved, lost,
and eventually transferred to other modes, depending on
the strength of the coupling in different regions of ka.
We do this by showing in Figs. 4(a) and 4(b) the mode po-
sitions n, (ka) without coupling between different mul-
tipoles, for f=0. 1 and f=0.5, and then comparing them
with the corresponding mode positions in Figs. 2(a) and
2(b). The multipolar coupling is taken away by simply
neglecting all the nondiagonal matrix elements in the ma-
trix HI&, . One can see, by comparing Figs. 2(a) and 4(a),
that for f=0. 1 the effect of multipolar coupling is hardly
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FIG. 2. Surface mode positions n, as functions of ka, calcu-
lated with a matrix HII of dimensionality L,„=6. The num-
bers which label the different curves correspond to the surface
mode index s. Plot (a) is for f=0.1; plot (b) is for f=0.5.

FICx. 3. Surface mode strengths C, as functions of ka, calcu-
lated with a matrix HII of dimensionality 1. ,„=6. The num-
bers which label the different curves correspond to the surface
mode index s. Plot (a) is for f=0.1; plot (b) is for f=0.5. The
dashed line is the total strength of the six surface modes shown,
and the line labeled "exact" is the total strength of all surface
modes, 1 —Cb.
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noticeable; thus all the modes preserve, very much, their
original (k =0) I character. On the other hand, by com-
paring Figs. 2(b) and 4(b), one can see that for f=0.5,
the effects of coupling are rather strong, especially for
values of ka ~ 4. That is, the ka region where the uncou-
pled modes cross is the region where the effect of mul-
tipolar coupling is the strongest. As expected, the main
effect of multipolar coupling is to "repel" the modes so
they actually do not cross. Thus in the region ka ~4,
where the "crossing" of modes occurs, the modes lose
their original (k =0) I character. When ka ~ 5, the
modes regain their original l character, but now the dipo-
lar character has been transferred to mode s=2, while
the l =6 character has been transferred to mode s = 1.

For larger values of L,„()6), a corresponding larger
number of modes will appear, with values of n, between
6/13 and 1/2 at k =0, the value 1/2 being an accumula-
tion point. These higher modes will be rather Aat with
respect to ka and will lie very close to each other. We
have chosen the rather small value, L,„=6 (giving six
modes), in order to provide the clearest possible illustra-
tion of the mode posi'tions as functions of ka. If we had

shown more modes by taking a larger value of I.
Figs. 2—4 would have been very confusing because of the
high density of the additional modes and intricate
behavior of the modes in the "crossing regions. "

The nice thing about the numerical results presented
here is that they are independent of the dielectric proper-
ties of the Inaterials of the composite; they depend only
on f and ka. Nevertheless in order to give a more physi-
cal meaning to the depolarization factor presented above,
it is useful to think of speci6c materials. Let us take the
sphere material to be a free-electron gas, with
e, = 1 —

(co~&) /co, where co~& is the plasma frequency,
and the host to be vacuum, F2=1. Then the bulk mode
condition u=1 or c&=0 corresponds to the condition
nb=co &, whereas the surface mode condition u =n, or
e&=1—n, ' corresponds to the frequency co, =co&,Qn,
Hence, each depolarization factor or mode position is as-
sociated with a specific mode frequency, such that depo-
larization factors in the range between 0 and 1 corre-
spond to surface mode frequencies in the range between
zero and the plasma frequency co &, and the bulk mode
frequency is the plasma frequency.
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III. ELECTRON-ENERGY-LOSS PROBABILITY

A. Basic formalism

In this section we apply our result for e '(k, ~) to the
calculation of the energy loss of a beam of fast electrons
passing through the composite. Using Eq. (6), which ap-
plies to our effectively isotropic inhomogeneous system,
we can write Eq. (1),

dP E II mICze
Im[ E'(k, co)]d—E dQ .~'A'k' (38)

If the wave vector Kl of the initial electron is in the z
direction, the scattering wave vector k can be decom-
posed into a components parallel and perpendicular to z:
k=k, z+Qp. We assume that the deflection angle is
small, and that the loss in energy is small compared to
the initial energy. Then El =K+, the conditions for ener-

gy and momentum conservation give k, =co/vl, where
vI=AICI/m is the initial speed of the electron, and the
solid angle element is d0=2m sinOd8=2mQ dQ/(KI) .
Equation (38) can then be rewritten,

dP (E,Q)
dt

2e'
I -l(k )

QdQdz
m6 vl

(39)

with k =Q +(m/vi)2.
We want to find the energy-loss probability per unit

path length, for all scattering angles, so we divide Eq. (39)
by vr and integrate over Q. Finally, dividing by dE, we
get the probability per unit path length, per unit energy,
of scattering with energy loss E:

d PE
FIG. 4. Surface mode positions nI as functions of ka, calcu-

lated without multipolar coupling and a (diagonal) matrix H~~ of
dimensionality I. ,„=6. The numbers which label the di6'erent
curves correspond to the multipolar index I of the surface
modes. Plot (a) is for f=0.1; plot {b) is for f=0.5.

where

1 &~Qd:-(E)=—f Im —e '(k, co)
o

(41)
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Here ap is the Bohr radius, Er is the incident electron en-

ergy, and Q, is an upper cutoff wave vector that is needed
to avoid a logarithmic divergence of the integral. Q, is
determined by (k, ) =(co/v&) =(Q, ) +(co/vl), where

vf is the Fermi velocity and k, is approximately the larg-
est wave vector for which the bulk plasmon is a well-
defined excitation. =(E) is the dimensionless energy-loss
probability density spectrum which will be calculated and
analyzed below.

Within the mean-field theory and taking account only
of excluded volume pair correlations, an explicit expres-
sion for =(E) is found by substituting Eq. (37) into Eq.
(41). The result is

k, &rn" (E)= (1—f)ln +f(+8&—gK, ) Im
l s

I

(a) f=0.01

2
0

C4

0

bQ

(0

a=10nm

a = 2.0

tribution to the energy-loss probability from a single, iso-
lated sphere in vacuum. It has two terms; the first term is
due to the excitation of bulk plasmons in the sphere, and
the second term is due to the excitation of the surface
modes. This expression agrees exactly with the one ob-

where

k, &r+f ln —+81 Im
CO

f +L, ,—

(42a)

a =0.5
I I ~ I I I

10 15
Energy Loss (eV)

20

(x)
8I =3l(2l +I)f dx,

l

(42b)

30 I I I I

I
I I I I

f
.I I I I

(b) f= 0.1

k,a C (x)
K, =

~«~1 n, (x) x

k, a C (x)I., = Im
~«~1 n, (x)

1

n(x,)e&+ [1—n, (x)]s2

(42c) ~~ 20
0

0

a=10nm

a = 2.0nm

(42d)

k
lim =(E)=f —ln
f~0 7T CO

—g 8) Im
1=1

OO 1 c)+1+ g (21+1)8I—Im
1=1 Iei+l+1

(43)

Since the right-hand side of Eq. (43) is directly propor-
tional to f, the term in curly brackets represents the con-

Here C, (x):—C, (ka) and n, (x)=n, (ka) are the strengths
and positions of the surface modes as functions of ka, for
a given filling fraction f. The contribution to the
energy-loss probability due to the excitation of bulk
plasmons in medium 1 (2), which is identified by the pres-
ence of the bulk loss function Im( —1/E& )[Im( —I /ez) ], is
given by the first (second) term on the right-hand side of
Eq. (42a). The third term on the right-hand side of this
equation represents the contribution to the energy-loss
probability due to the excitation of surface or interfacial
modes.

We can take the dilute limit (f~0) in Eq. (42) with
c.2= 1. In this case, the matrix Hll becomes diagonal and
its eigenvalues are n=)1/(2l +I). Also, since U&, =5&„
Eq. (32) gives C, =3s(2s+1)[j,(ka)/ka], and we can
write, to lowest order of f,

a=0.5 nm

0 I I I I
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I I I I ~ I I I
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FICx. 5. Energy-loss probability density =|,'E) for Al spheres
in vacuum, as a function of energy loss E, with three values of
the sphere radius: a =0.5, 2.0, and 10.0 nm. =(E) is the dimen-
sionless quantity defined in Eq. (41). Plots (a), (b), and (c) are for
sphere volume fractions f=0.01, f=0.1, and f=0.5, respec-
tively. The incident electron energy is 100 KeV. The zero
points on the ordinates have been shifted upward for the larger
values of a.
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tained in Ref. 26, where the case of electron energy loss
from a single, isolated sphere in vacuum is treated in de-
tail.

B. Aluminum spheres in vacuum

We now use Eq. (41) to calculate the energy-loss spec-
trum for a simple model system of aluminum spheres in a
vacuum host, using a free-electron dielectric function for
the aluminum, E, = 1 —(co~) i[co(ro+iy)], where
Ace =15.8 eV. The damping factor y=0. 02co is chosen
arbitrarily so as to make the peaks in the energy-loss
spectrum easily visible, and is, in fact, about one-half as
large as in actual aluminum. The incident electron en-
ergy is EI=100 KeV. Figures 5(a), 5(b), and 5(c) show
the energy-loss spectrum for three values of the volume
fraction: f=0.01, 0.1, and 0.5. For each volume frac-
tion, three different sphere radii are chosen: a =0.5, 2.0,
and 10.0 nm.

These three figures show loss peaks in the range 8 —13
eV that are associated with surface modes, and a peak at
15.8 eV that is associated with the bulk mode. The irn-
portant effect of changing the sphere radius is that in the
integration over Q, the high-ka modes are weighted more
strongly as the radius increases. This has two conse-
quences. First, since the total strength of the surface
modes decreases and the strength of the bulk mode in-
creases with increasing ka, as shown in Fig. 1, the total
height of the surface mode loss peaks decreases, and the
height of the bulk mode loss peak increases, as the sphere
radius increases. The second consequence is a systematic
variation of the surface mode positions and heights. For
the smallest radius, a =0.5 nm, the most prominent peak
is associated with the s=1 surface mode, for small ka,
predominantly a dipolar mode, that has the largest
strength and exhibits a shift in position as the volume
fraction f changes. As f takes on the values 0.01, O. l,
and 0.5, this peak moves from 9.2 to 10.0 eV and finally
to 12.9 eV, energies that are consistent with the values of
the depolarization factor for this mode, n, =0.34, 0.40,
and 0.667. As a increases, the height of this dipole peak
decreases, and a peak at about 11 eV grows; this is associ-
ated with the closely spaced surface modes with depolari-
zation factors in the region between n, =0.45 and 0.5,
whose strength grows with increasing ka. Several other
peaks that can be associated with specific surface modes
also appear, but we shall not discuss these in detail.

cal electron trajectories, which they used to explain the
data qualitatively. They calculated an inverse effective
dielectric function, whose imaginary part gave bulk loss
peaks in both Al and A1F3, as well as interface loss peaks.
They showed how the heights of these peaks varied with
the Al volume fraction f and the radius a of the spherical
Al particles. Because of the simplicity of model, they did
not attempt to fit the data precisely, nor did they find
values off and a.

We have used Eq. (41) to calculate the energy-loss
spectrum ~™(E)for this system, allowing f and a to vary
so as to give the best fit with the experiment. For Al we
took a free-electron dielectric function c,= 1
—( co~) i[co(ro+iy)], where %co~ =15.8 eV, and the

damping factor is y=yb+y, . Here yb =0.04co~ is the
experimental bulk damping factor for Al and the second
term, y, =vf/a represents a contribution from surface
scattering, or from an alternate point of view, a width pa-
rarneter that is caused by the distribution of surface
plasrnon excitations over a large number of quantized en-
ergy levels in a small sphere. ' The surface damping
term y, can be comparable to the bulk damping term for
small spheres. For example, if a =2.6 nm, then
y, =0.032. The dielectric function of A1F3 was found by
Howie and Walsh from an analysis of the electron-
energy-loss spectrum of pure A1F3.

The experimental curve, shown by the dashed line in
Fig. 6, was normalized so that the areas under the experi-
mental and theoretical curves were equal. The broad
peak at 25 eV is the bulk plasmon loss peak for A1F3, the
narrower peak at 15.8 eV is the bulk plasrnon loss peak
for Al, and the peak at 8.5 eV is the interface loss peak.
The parameter values for which the agreement between
theory and experiment is best are f=0.25 and a =2.6
nm. Increasing the value of f has two effects: (1) The
heights of the interface and bulk loss peaks for Al in-
crease, compared to the A1F3 bulk loss; (2) The interface
loss peak moves to higher energy. With increasing
sphere radius a, the Al bulk loss peak increases whereas
the interface loss peak decreases.

It is evident from Fig. 6 that although the peak posi-

3.0

C. Al spheres in AlF3 host

Howie and Walsh' found that if a high-intensity beam
of electrons is focused on a thin sample of A1F3, a small
hole can be drilled in the sample. Colloidal Al particles
are formed in the region immediately surrounding the
hole, as indicated by the appearance of Al bulk and inter-
face loss peaks in the electron-energy-loss spectrum,
when electrons pass through this region. If the electrons
pass through the hole which has been drilled previously,
the interface loss peak still persists but the Al bulk loss
peak is missing.

Howie and Walsh' proposed a model, based on classi-
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FICi. 6. Energy-loss probability density =(E) for Al spheres
of radius a =2.6 nm and volume fraction f=0.25, in an AlF3
host. The incident electron energy is 100 KeV. Dashed line: ex-
periment; solid line: theory.
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tions and areas are well described by the theory, the ex-
perimental loss peaks are wider than the corresponding
theoretical ones. If the bulk damping factor yb is in-
creased to about y& =0.1m, the theoretical Al bulk loss
peak is broadened so that it agrees with the correspond-
ing experimental peak, but the theoretical interface and
A1F3 bulk loss peaks are still too narrow. It is possible
that this increased value of yb can be attributed to imper-
fections in the Al spheres. The fact that the theoretical
interface loss peak is still too narrow, even when using
this larger value of yb, may be due to nonspherical parti-
cle shapes, a variation of the volume fraction f over the
region traversed by the electron beam, or inaccuracy of
the mean-field approximation at this relatively large value
of f. Radiation damage of the A1F3 host material may be
responsible for the bulk A1F3 loss peak discrepancy at 25
eV. If one begins with pure A1F3, and a volume fraction
f=0.25 of colloidal Al is formed as a result of the elec-
tron irradiation, the remaining A1F3 must be altered
significantly, and it is unlikely that its dielectric function
can be represented adequately with that of pure AlF3.
An attempt to model the host material as a mixture of
bulk A1F3 and vacuum-filled voids gave better agreement
between theory and experiment in the 20—30 eV energy
range, but did not improve the overall agreement over
the entire energy range.

IV. SUMMARY

The theory of energy loss for fast electrons passing
through a single particle of various sizes and shapes has
been thoroughly described in the literature. However, if
a system contained many randomly located particles, no
formalism existed for including interactions between the
particles and averaging over the positions of the particles.
We have approached this problem by calculating

( k, co ), the effective inverse longitudinal dielectric
function of a system containing identical spherical parti-
cles with local dielectric function E,(co), randomly located
in a host medium with dielectric function e2(co). If one
knows E '(k, co), the energy-loss probability can be calcu-
lated using the first Born approximation.

We were able to find an exact formal expression for
(k, co) that includes interactions of all multipolar or-

ders between the spheres, as well as a configuration aver-
age over the random positions of the spheres. Further-
more, E '(k, co) can be written in the form of a spectral
representation: it is equal to a sum of terms with simple
poles and residues that are related, respectively, to the
energies and strengths of the normal modes of the system.
The positions of these poles and the values of the residues
are independent of the materials; they depend only on the
wave vector k and on the geometrical microstructure of
ihe system.

In the mean-Geld approximation, the positions and
strengths of the modes can be calculated in terms of f,
the volume fraction of the spherical particles, and p' '(r),
the two-particle distribution function. As a simple exam-
ple, we used an excluded volume expression for p' '(r),
and found the mode positions and strengths as functions
off and ka. In the local (k ~0) limit, only the dipole in-

terface mode is present, and s '(k, co) reduces to the in-
verse of the Maxwell-Garnett dielectric function. As ka
increases, a bulk mode and higher-multipolar interface
modes appear. An important feature of the spectral rep-
resentation is that these statements about the mode
behavior can be made independently of the materials.

To illustrate an application of our theory for s '(k, co),
we calculated the energy-loss probability function for a
system of aluminum spheres in vacuum. For a fixed in-
cident electron energy, we presented results showing how
the loss peaks varied when f and a were changed, and
were able to explain these changes in terms of the
behavior of the mode positions and strengths in the spec-
tral representation for E '(k, co). Finally, we used our
theory to explain the experimental electron-energy-loss
spectrum for Al particles in an A1F3 host. Three loss
peaks associated with excitations of interface modes and
bulk plasmon modes for Al and A1F3 are observed. By
appropriate choices of the parameters f and a in our
theory, we were able to fit the positions and areas of the
observed peaks. We also gave possible explanations for
the fact that the experimental loss peaks are broader than
the theoretical peaks.
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Introducing a relative coordinate r'=r —r, , we write
the external potential

V'"'(r) = e ' V'"'(r'),
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V; (r)=
Vext( t

)
ao

+ g Cl(l' ) Ylp(8 ) e ', r'(a
6 1=0

V'"'(r')+ g bl(r') ' 'Ylp(8') e ', r') a .
I=O

(A3)

The Fourier expansion of a function F(r) is

F(r)=g F(k)e'"',
k

and the inverse of Eq. (A10) is

F(k)=v ' fd r F(r)e

(A10)

(A 1 1)

The unknown coefficients c& and bI are determined by
requiring that the potential V; (r) and the radial com-
ponent of the displacement be continuous at r =a. Solv-
ing the two continuity equations for cI and b&, we find, for
1%0,

To find the kth Fourier component of the induced poten-
tial, V" ' (k), we replace F(r) by V" ' (r) in Eq. (All),

—ikz ' i —ikz'write e ' '=e 'e '"', and use the complex conjugate
of Eq. (A2) to expand e ' '. The result is

bl = —
Vpa

'+'a, i '&4n(21 + 1)jl(ka),

cl = —s '[(1+1)jl )a ' 'bl,

where

(A4)

(A5)

V" ' (k)=v ' f d r'g ( i)'&—4n( 21' +I)

Xj l.(kr') Yi.o(8') V" ' (r)e

(A12)

l(e —1)
0

l(c, + I)+ I (e—1) '+nlP
(A6)

a =a2I+'n .I I (A7)

is the dimensionless l polarizability for the l multipole of
the sphere, the actual polarizability being

After substituting the expression for V,'"d'O(r) from Eq.
(A9) into Eq. (A12), the integration over 8' and P', with
the orthonormality of Yip(8', $') and Yi.p(8', ttt'), gives the
single term 1'=1 in the sum over 1'. The r' integration
can be done using '

In Eq. (A6), nl =1!(21+I ). Equations (A4) and (AS) are
not valid if l =0. Instead, we have b0=0 and

cp = Vp[(e —1)le]a 'i /4' p(ka) . (AS)

Vind, o(r) — Vext(ri )
E

The induced potential is found by subtracting the exter-
nal potential [Eq. (Al)] from the total potential [Eq.
(A3)], giving

f 'r + jl(kr)dr=k 'a'+ jl+,(p),

f r' j'l(kr)dr=k 'a' j'l, (p), 1~1,
a

where p=ka, and

f r [jl(kr)] dr—=—a Sl(p)

with

Sl(p)=[jl(p)]' i~ &(p)jl+—1(p)-,

(A13)

(A14)

(A15)

+ y Cl(r')'Ylp(8') e ', r'&a
1=0 =[jp(P)] +np(P)j, (P), 1=0, (A16)

QO 0

bl(r') ' ' Yip(8') e
1=1

r'&a . (A9)
where n p(p) = —p 'cosp.

We find that Eq. (A12) can be written in the form of
Eq. (23), so the final result for the coefficients Ml is

4+a 1 1
Ml = (21+ 1) ———1 Sl(p) —al

V 2

4+a 1 1 1 .
2

So(p) ——ii(p)jo(p)
V

1+1 . . il(P)
, ii+1(p)+il 1(P)—

c,l P

(A17)

APPENDIX B: DETERMINATION OF F

The same external potential V'"'(r) = Vpe'"' is applied
to sphere i as in Appendix A. Multipole moments qI;
proportional to the amplitude V0 are induced on the
sphere, and the constants of proportionality F& are
defined in Eq. (12).

The induced potential outside the sphere is used to
define the multipole moment. For a general multipole

q& located at the origin, the potential is

V(r)=g ql r ' 'Y, (8,p) .
Im
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Applying this equation to the present situation, where the
induced multipoles have m =0 and r must be replaced by
the relative position vector r', we get

p
'2I + 1 tkz, .

gl;= 4. ' e (B3)

Substitution of Eq. (A4) for the coefficient bl into Eq. (B3)
and comparison with Eq. (12) gives the result

F, = a'+—'a, i'(4~) ' '(21+1)' 'ji(p) . (B4)

I

V" ' (r')= g ql (r') ' 'Ylo(8'), r') a . (B2)
4m

1=1

Comparing Eqs. (B2) and (A9), we find

APPENDIX C: DETERMINATION OF Z

V'(r)=g Vi;(r')'Yl (8', qi'),
lm

(Cl)

ikz, .
where the coefficients VImi carry the phase factor e
V'(r) is considered as an external potential acting on the
sphere, so the total potential is the sum of V'(r) and the
unknown induced potential V " '(r):

Consider sphere i, acted on by the potential V'(r) from
other spheres j Wi .This potential induces multipoles ql;
on sphere i, and all these multipoles ql'; (with m =0) pro-
duce an induced potential V" '(r). The kth Fourier
component of V,'" '(r) is V,'" '(k), which is proportional
to ql';, the constants of proportionality being ZI, as
defined in Eq. (24).

The potential V'(r) can be expanded about the center
of sphere i:

V(r)= V'(r)+ V,
'" '(r)

=g V, ;(r')'Yl (8', y')+g cl (r')'Yl (8', ip'), r'(a
Im lm

X Vlm (r ) Ylm(8~q ')+/bi (r ) Yl (8 I' )
Im Im

(C2)

From the continuity of the potential and the radial com-
ponent of the displacement at r =a, we can solve for the
unknown coefficients him and clm

..

jl+,(p)+j l i(p)=(21+1)jl(p)/p

is useful for simplifying the equations. We find

(C6)

1
lm I Imi 2I + l ~lmi

CIm (XI VImi

(C3)

(C4)

V'" '(k)= —v ' g ( i) v'4vr(2—1+1)3/2
1=1

X k a 'ji(ka)ai Vi;e (C7)

where the second equality in Eq. (C3) has been found by
comparing the terms containing bl in Eqs. (C2) with Eq.
(Bl).

Finally, the kth Fourier component of V" '(r) (the
terms in Eq. (C2) that contain bl and ci ) is

Zl =v '( i)'4m&4m(—21+ 1.)k .a j'i(p) . (Cg)

If we express ai Vi; in terms of ql'; using Eqs. (C3) and
compare Eq. (C7) with Eq. (24), we get

Vind, i(k) —v
—i d3re —ikz'Vind, l(r )el l (C5) APPENDIX D: MULTIPOI. AR INTERACTION

We expand e '"' as in Eq. (A12), and the resulting in-
tegrations can be carried out in the same way as in Ap-
pendix A. From the orthogonality of the spherical har-
monics, only the m =0 terms in Eq. (C2) contribute to
V" '(k). The identity

1. Determination of HII

In this appendix the missing steps in the derivations
leading from Eq. (15) to Eq. (20) are filled in. The
coefficients Bi'; 1 that appear in Eq. (15) are '

I'+ m ' I +I', m —m '(8", ")*
)i+i +i

Pij

(4m ) (1+1'+m —m ')!(1+1'—m +m')!
(21 + 1)(21'+1)(21+21'+1)(1+ m)!(1—m)!(1'+m ')!(1'—m ')!

1/2

where r, . is the distance between spheres i and j, and
(8,J,y;J) are the polar and azimuthal angles of sphere j
with respect to sphere i. Note that Bl'™ is a complex
Hermitian matrix; the various substitutions that will be

made in the derivation below have been chosen so that
the final matrix Hll, which has to be diagonalized is real
and symmetric. Its eigenvalues are the depolarization
factors that appear in the spectral representation.
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Beginning with Eq. (16), we introduce new variables
yl; and yl. .j defined by Eq. (18), multiply both sides by
( —i) [(21 +1)al] Vl(2 +'e '"', and write the 1 polari-
zability al using the second form in Eq. (A6). We also
express qI;, on the right-hand side of Eq. (16), as

matrix by ensemble averages. The 8 matrix in Eq. (Dl)
simplifies, and so the average h matrix in Eq. (19) is

F~ Vpe
' = —[(21+ 1 )/4 Ir]al VORI e (D2)

(D6)

where [by comparing Eq. (D2) with Eq. (B3) for I I ], we
have

where

IE~I~
j (

~

)I( )I' y (8 )I l( )I+I'+ I (D7)

Rl=(I/a)'&4~(21+1j), (p) . (D3) with

h
I'll)'j (4~)

—1+11&2I+I& 21'+1+i')I) j ' ~l

lpga

E

with

(D4)

Making these substitutions, we can write Eq. (16) in the
form of Eq. (17), where I' (4~) [(1+1')!]

(21+1)(21'+1)(21+21'+1)(1!) (1'!)

1/2

(D8)

j—( I ) I( I )
I'g I 'm 'j (D5)

We use mean-field theory to go from Eq. (17) to Eq.
(19), setting m =m'=0 (simply omitting the m, m' in-
dices) and replacing the multipole variables y and the h

I

The ensemble averaged sum over j on the right-hand
side of Eq. (D6) can be carried out by writing r —r; =r,
z. —z, =z, and 8,. =8, inserting the two-particle distribu-
tion function p' (r), and replacing the sum over j by an
integration over r:

( I 2)e' '

)
=( —()'(()'2 fp' '(r))' ( )r (")+'+"e' *d'r

I

J

=( —i) (i) yll fp' I(r)g (i) &4m(21" +1j)I (kr)Y&- o(8)Y&+I 0('8)r ' + +"r2dr dQ, ,

(D9)

(D10)

where we have used Eq. (A2) to expand e'"'. The angular
integration gives fil+I, I„, and so,

and HI). is defined as

HII =nI 6II + ~I"
J

(D16)

JI+I (kr)'
Xf p''(r)

I I, , dr.
0 I+ I' —1

(D 1 1)

with nl =1/(21+1).

2. Solution for the multipole moments

Iz(k)= f p' (rj)I„(kr)r' dr . (D13)

Integration by parts gives an alternative form for Iz(k),
using the identity (d /dx) [x ' ~j&

& (x)]= —x ' ~j &(x)
and the fact that p' '(r)r' j&,(kr)=0 at r=0 and

We substitute Eq. (D8) for yll, , and find

J
~

~
~

II~

IJ
~

e

J
~
~

I~

~

~~
~

I
I

I~

2

7

I
I~

I I ~ I I t

(4~)'(1+1')!
1!(1')!&21 + 1)(21'+1)

(D12)
where

The matrix Hll which we have found in Eq. (D16) ap-
pears in Eq. (19), which we can rewrite as

g [(E—1) '5II. +HII ](yl ) =Tl, (D17)

X U.l HII Ul, =n, fi„.—1

ll'
(D18)

where the quantity TI stands for the right-hand side of
Eq. (19). If the eigenvalues of Hll. are n, and the eigen-
vectors are the columns of a matrix U, the transforma-
tion which diagonalizes H is

P —00 '

I2(k)=k ' f [dp' I(r)/dr]J'I„&(kr)r' "dr .
0

Finally, combining Eqs. (D6)and (D13), we have

X k,';)(k)) =4e V'(('/(2! +1)(21'+1)

(D14)

Multiplying Eq. (D17) by the matrix U on the left, and
inserting U 'U between the square bracket and (yI. ), we
find the solution

(D19)

with

(1+1 )' I+I+II (k)I+ I' (D15)
UI, U,I. '

(E—1) '+n, (D20)
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(D21)

In the derivation of Eq. (D21) we also have used the
equality U, (

= U(., (i.e., U is a real orthogonal matrix),
which follows from the fact that Hll. is a real symmetric
matrix.

APPENDIX K: SPECTRAL REPRESENTATION

In this appendix the derivation of Eq. (27) starting
from Eq. (26) is discussed. The volume fraction of
spheres is f= 4~a N/v, so we can write N=fv/4' in3

Eq. (26). If we also introduce the spectral variable
u = —I/(e —1), the expression for the inverse dielectric
function is

'(k, a()=1+(fvl 3ma ) g—(M( Z(F()—
1=0

Z(D((.(s)R—X (El)

Finally, we use Eqs. (17) and (D19) to solve for (q(; ) and
substitute the right-hand side of Eq. (19) for T . The re-
sult is Eq. (20), where

( ) (4 )
—( ~ (( ~ )('+11I 2(+ la 2('+ ( U

Combining the expressions for Z( [Eq. (C8)] and F( [Eq.
(B4)],one finds

Z(F(= —(4~a /v)(21+1) a([j((p)lp] (E2)

Equation (El) has terms containing denominators of
three kinds: u —1, u —n( =u —1/(21+ 1), and u n-„
which are of interest since a zero denominator corre-
sponds to a resonant mode of the system.

(a) The denominator u —1, corresponding to the bulk
longitudinal mode, comes from two terms in Ml, one con-
taining (E ' —1) and the other, a(/e. [See Eq. (A6) for
a( and Eq. (A17) for M(.]

(b) The denominator u n(—, corresponding to a surface
mode of an isolated sphere, comes from all terms that
contain a, : from M( where there are both a(/e and a(
terms, and also from Z1Fl, which is proportional to nl.

(c) The denominators u n„corre—sponding to surface
modes of the coupled system of spheres, appear in the
second sum in Eq. (El).

It can be shown, using the identity in Eq. (C6), that the
terms in Ml —Z1F1 containing the denominator u —nl
cancel. This is responsible physically since the spheres,
are, in fact, coupled with each other, so we do not expect
any resonances corresponding to surface modes of an iso-
lated sphere. Therefore, we find

oo oo
1g (M, Z, F, )=—(4~a'Iv)g (21+1)[,'S, (p) j,+-,(p)j, (—p)Ip)

1=0 1=0

Cb
=(-', ma /v)

(E3)

(E4)

where After substitution of Eqs. (E4) and (E6), Eq. (El) takes on
the simple form

C( =3 g (21+1)[,'S((p) j(+((p—)j((p)—lp] .
1=0

Using expressions for Z(, [Eq. (C8)], D((.(s) [Eq. (D18)],
and R( [Eq. (D3)], we can write the numerator in the
second sum in Eq. (El) in the form

Cb C,
E '(k, co)=1+f +g

u —1, u —n,

where

(E8)

Z(D» (s)R( = (41ra Iv)C—([.(s), (E6) C, =g C(( (s )
ll'

(E9)

where

C» (s) =3v'll'(21 +1)(21'+l )p 'j, (pj), (p) U„U,(
' .

is the surface mode strength given by Eq. (32), and Cb is
the bulk mode strength given by Eq. (E5), which can still
be simplified. By substituting Eq. (A15) for S((p), one
can show,

—g (21+1)S((p)=—g (21+1) f r [j((kr)] dr3 3" 2 (2 2 ~

1=0 1=0 a
oo

f r~ ~ g (21 + l)[j((kr)] dr
1=0

3 OO '2
f r~ g (21+1) J ( (kr)dr =1, ,

a 0 1=0 2kr 1+—' (E10)



52 THEORY OF ELECTRON ENERGY LOSS IN A RANDOM. . . 3271

since the quantity in the curly brackets has the value 1.
Then using the identity (C6}one can demonstrate that

2
oO oO ji(p)g (21+1)p 'ji+, (p)jl(p)= g 1(21 +1)

l=o l=1 P

(El 1}

Therefore, combining Eqs. (E5), (E10), and (El 1) one gets
the expression for Cb given in Eq. (29).

The spectral representation (ES) applies to spheres with
dielectric function s surrounded by vacuum. The spec-
tral representation in Eq. (27), which applies to the sys-
tem with dielectric functions ci and c2 for the spheres and
host, respectively, is found from Eq. (ES) by making the
substitutions described in the discussion after Eq. (28}.
This procedure also changes the spectral variable u,
defined above Eq. (El), to the quantity defined by Eq.
(28).

APPENDIX F: SUM RULES

g(n)=Cl, 5(n —1)+g, (n) . (F5)

fg, m(n)dn=g C, =3 g l(21+1)[jl(p)/p] (F6)

We also will show that Cb, the strength of the bulk mode,
is given correctly by Eq. (29), a result that is independent
of the volume fraction and spatial distribution of the
spheres. This proves the general sum rule

The first term corresponds to the bulk longitudinal mode,
whereas the second term g, (n) is a continuous function
corresponding to the surface modes of the system of in-
teracting spheres. [Note that in the special case of
mean-field theory, the spectral function for the surface
modes breaks into a sum of discrete terms,
g, (n) =Q, C, 5(n n—, ), so Eq. (F4) reduces to Eq. (27).]

We shall find an exact formal expression for g, (n),
from which we can derive a sum rule stating that the ex-
act total strength of the surface modes equals the total
strength of these modes in mean-field theory.

I. Mean-Seld theory fg(n)dn=Cb+ fg, (n)du= 1 . (F7)

We first prove the sum rule in Eq. (33), which states
that the total strength of all modes is 1. From Eqs. (E7)
and (E9) using the fact that yg Uig Upi =5lt
the total strength of the surface modes:

g C, =g Cii(s)=3 g l(21+1)[ji(p)/p]
s sll' 1=1

(Fl)

= g 3v'll'(21+1)(21'+ l )p j l(p)
ss'll'

Then using Eq. (29), the sum rule in Eq. (33) follows im-
mediately.

Next, we prove the sum rule in Eq. (34) for the first
moment of the surface modes, g, C, n, . We use Eqs. (E7)
and (E9) for C„and write n, =g, n, 5„. This give.s

g C, n, =g Cii.(s)n,
s sll'

Although we shall prove the sum rule in Eq. (F7) ex-
plicitly for a system containing identical spherical parti-
cles, it actually holds for any two-component system, ir-
respective of the shapes and sizes of the particles, since it
is equivalent to the f-sum rule. This can be shown most
easily by considering the high-frequency asymptotic
behavior of Eq. (F4}. If the individual components
satisfy the f-sum rule, then to order co

[s,(co)] ' —+1+(to~, ) /co and [Ez(co)] '~l+(co 2) /co,
whereas for the composite system, s '( k, co )~ 1

+(0 ) /co, where the plasma frequency squared
of the composite system is a weighted average of the
squares of the plasma frequencies of the two components,
(&z) =f(co&, ) +(1 f)(co&2) . —Taking these high-
frequency limits in Eq. (F4), one can prove the sum rule
(F7).

A second sum rule states that the centroid of the spec-
tral function n, is given correctly by mean-field theory:

Xji.(p) Ui, U, l'n, 5„ (F2)

Inverting Eq. (D18},we have Q„Ul lt 5~~ &s'l =Hli' a'nd

so Eq. (F2) becomes

ngsm n dn

g, ndn

QC, n,
s

gC,
(FS)

g C, n, =g 3i/ll'(Xi +1)(21'+1)p ji(p}jr(p}~li .
s ll'

)-' 1+ff u —n
(F4)

2. Exact theory

The spectral representation in Eq. (27), derived using
mean-field theory, is a special case of a Inore general
spectral representation,

We begin with Eq. (18), which describes the coupling
between multipoles on an arbitrarily large number of
spheres. Denoting the right-hand side of Eq. (18) by ti;
and defining H/~; j=ni5ll5mm 5; +hj'jim(ki), this equa-
tion can be written

X [(S 1) +Hei'lyi m
=itim. i

l'm 'j
(F9)

The method for solving Eq. (F9) is similar to that
presented in Eqs. (D17)—(D20). Denoting exact quanti-
ties by a caret symbol, we note that &„the exact depo-
larization factors of the surface modes, are eigenvalues of
Klmi

where the exact spectral function g (n) can be written as
the sum of two terms,

l'm'j Q~s, lmiH!mi ~l'm'j, s' ~s5ss'
lmi, l'm'j

(F10)
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Solving Eq. (F9) for yI;, we find

Xlmi 2 Imi, I'm'j !'m'j
1'm'j

(F1 1)

function for the surface modes,

g, (n) = (x c,g(n —g, )),
S

(F18)

where

A —i

Ims& I'm 'j g
( 1 )

(F12)

I =o 11 &
(s 1) +8'

Next, the multipoles qlo, - are found from ylo,. using Eq.
(18), and Eq. (24) gives V" '(k). [Note that only m =0
rnultipoles contribute. ] Also, m =0 in tl;, which stands
for the right-hand side of Eq. (17), restricting the sum in
Eq. (Fll) to m'=0. That is, only m =m'=0 terms are
needed in Eqs. (Fl 1) and (F12). Substituting qio; into Eq.
(25), we find

so the ensemble averaged sum over modes in Eq. (F15)
can be written

s gsm "dn
u —fi',

(F19)

This completes the derivation of the spectral representa-
tion in Eqs. (F4) and (F5).

The sum rule (F6) for the total strength of the surface
modes can be proved by noting that

g, n dn= . . . summing Eq. F16 over s, and us-

ing Xs ~loi, s ~s, l oj fill'5ij in Eq. (F17).
The derivation of an expression for the first moment of

spectral function is similar to that given in Eqs.
(F2)—(F3). We use Eqs. (F19), (F16), and F(17) to find

where

(F13)

( ) (4 )
—

11 I( I )I'+II i 21+ 1 2l'+1 / Q
—1

lo~, s s, I OJ

f ng, (n)dn=(x d, g',
)S

=g 3&ll'(21+1)(21'+1)p jl(pj)I (p)N
ll'

(F14)

Summing Eq. (F13) over i and taking an ensemble aver-
age gives ( V'" (k) ) . We find the exact formal expression

loi, s ~s s, 1'Oj
EJS

Now, the ensemble-averaged quantity in Eq. (F20) is

(F20)

with

E '(k, co) =1+f (F15)
(X ~lo; g ~,PQJ) (X ~ltli, g d '~ ', I og)'

jJS iJSS

H 1'OJ

C, =g Cll.(s), (F16)

C'll (s) =3&ll'(2l + 1)(2l'+ 1)p

Xj l(p)j, (p)N 'g OIo, ~., I o (F17)
=XH11 (F21)

The strength of the bulk mode, Cb, which is contained
in the first sum in Eq. (F13), does not depend on the in-
teraction between spheres. Therefore Cb =Cb, the
mean-field value [Eq. (29)j. For a large number of
spheres, say N & IO, the even larger number of surface
mode depolarization factors will form an essentially con-
tinuous distribution, even before taking an ensemble
average. Therefore one can define a continuous spectral

where we have used the inverse of Eq. (F10), Eq. (D16),
and the fact that Hll. is independent of i. Therefore, the
right-hand sides of Eqs. (F20) and (F3) are the same,
showing that

ng, n dn= C,n, . (F22)

This proves Eq. (F8), since the numerators and denomi-
nators of both sides are equal.
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