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Phase diagrams of the Blume-Emery-GrifBths model for semiconducting alloy systems
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The Blume-Emery-GriKths model is used to model the ordering of semiconducting alloy systems
with chalcopyrite structure and zinc-blende structure as the parents, such as the alloy systems
(ABD2)$ —~(CD)z or [(AB)z Cz ]D2. The ground states are determined to classify the types
of ordering and phase diagrams of the system. The new ordered phases are found at composition
x = — and x = — besides the x = — stannite phase for a range of energy parameters. The phase
diagrams of the compounds are calculated by the cluster-variation method. Several features of the
phase diagrams are discussed and compared with experiment.

I. INTRODUCTION

The ternary ABC~ chalcopyrite compounds form a
large group of semiconducting materials which have im-
portant technological interest related to their diverse op-
tical, electrical, and structural properties. Many of these
chalcopyrite compounds undergo an order-disorder tran-
sition as a function of temperature &om chalcopyrite to
zinc-blende crystal type. ' Recently chalcopyrite phases
have also been found by the growth of ordered ternary
III-V semiconductor compounds such as GaAsSb2. 4

The chalcopyrite structure can be considered as a su-
perlattice of the zinc-blende structure. The ABC2 chal-
copyrite phase possess the tetragonal El~ structure-type
space group I42d. In the chalcopyrite structure, two
kinds of cations cause the doubling of the unit cell along
the c axis and each atom A and B is tetrahedrally coor-
dinated to four atoms C, while each atom C is tetrahe-
drally coordinated to two atoms A and two atoms B in
an ordered manner as shown in Fig. 1. If the cations A
and B are distributed at random, the cubic zinc-blende
structure would result. Many of these compounds un-
dergo an order-disorder phase transition as a function of
temperature to the zinc-blende form due to the thermal
disordering of the cation sublattice. When the chalcopy-
rite compounds are alloyed with II-VI zinc-blende com-
pounds to form alloy system such as (ABDAL)q (CD)q
or (AB)q ~Cq~Dq, the order-disorder transition occurs
as a function of composition x.

Recently Newman and Xiang analyzed the phase dia-
grams of alloys mixing the chalcopyrite crystal structure
with the zinc-blende structure using an antiferromag-
netic Blume-Emery-GrifFiths model for the alloy system
as either (ABDAL) q (CD) 2 or (AB) q ~Cq~D2. They
demonstrated some of the typical phase diagrams for a
range of energy parameters. Some of them show rich
structures of ordering transition.

The spin-1 Blume-Emery-GriKths (BEG) model is a
model with a very rich phase diagram. The model ex-
hibits a wide variety of transitions of 6rst and second
order. The general Hamiltonian of the BEG model that

includes only a nearest-neighbor interaction and site en-
ergies has the form

H = J ) s, ss —K ) s, s + L ) (s, s, + s, s )

+p) sq + h) sg)

where (i, j) indicates a sum over the nearest neigh-
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FIG. 1. Representation of ordered phases in
(ABD2)~ ~(CD)q~ system. (a) A zinc-blende compound
CD; (b) a chalcopyrite compound ABDAL, (c) an ordered
x =

z compound, stannite phase; (d) an ordered x =
4 com-

pound Oq, (e) an ordered x = — compound Oq. Cations A,
B, and C are shown as large solid, hatched, and open circles,
respectively, and anions D are shown as the smaller solid cir-
cles. The crossed circles in Oq and Oq represent A+ B.
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bors. The spin-1 Blume-Emery-Griffiths model was
originally introduced to describe phase separation and
superHuid ordering in He- He mixtures. Later it
has been applied to various systems such as multi-
component Huids and multicomponent liquid crystal,
solid-liquid-gas system, microemulsions, semiconduc-
tor alloys, ' and electronic conduction models.
Recently a very rich phase diagram was obtained
for three-dimensional bipartite lattices by means of
a mean 6eld approximation, renormalization-group
techniques, and a Monte Carlo renormalization-group
calculation. The cluster-variation method has also been
used to reveal the rich structures in phase diagrams of the
Blume-Emery-Griffiths model on a simple cubic lattice.

In this paper, we have analyzed the ground state
diagrams of the alloy system (ABD2)1 ~ (CD) 2~ or
(AB)1 ~C2~D2 using the Blume-Emery-Grifliths model.
According to the phase diagrams of the ground state,
we calculated the phase diagrams of the system using
the cluster-variation method (CVM) within the energy
parameter region —1 ( J/K ( 0 in which the struc-
tures of the phase diagrams are rich. This particu-
lar region was not covered in Ref. 5. We also com-
pared our results with the experimental phase diagrams
for the semiconductor compounds (CulnTe)1 (MnTe) 2

and (AglnTe)1 (MnTe)2 and explained some of the
features of the experimental results.

The outline of this paper is as follows: Section II de-
scribes the method used for the calculations. Section III
presents the results on the ground states of the system.
In Sec. IV the results on the phase diagram calculations
are illustrated and discussions of the results and compar-
isons with experiment are given.

II. METHOD

II~ii~y ——zN ) E~ pP~, p
—N ) p~

a,P CX

(2)

where z = 12 is coordination number, N is the number
of the lattice sites, p, is chemical potential, and x is
the composition of the o. component.

Using the isomorphism between the BEG Hamilto-
nian (1) and alloy Hamiltonian (2) of three components,

In the alloy system (ABD2)1 (CD) 2~
or (AB)1 C2 D2, the atom D always occupies one of
two fcc sublattices in the zinc-blende structure and the
other sublatttice is shared by atoms A, B, and C. Thus
the problem reduces to the ordering of three components
(atoms A, B, and C) in the fcc lattice. We can use a
BEG Hamiltonian to model the system by mapping the
spin s; = (+1,—1,0) on site (i, j) onto the atoms A, B,
and C.

If we use P p to represent the pair probability that
an atom a and an atom P are nearest-neighbor bonded
and represent the nearest-neighbor interaction energies
by E p [n, P = l(A), 2(B),3(C)], the alloy Hamiltonian
of three components with a nearest-neighbor interaction
can be written as

we can establish the following correspondence between
the energy parameter of the BEG Hamiltonian and alloy
Hamiltonian:

4J E11 + 822 2812)

4K = —Ell E22 2E12 4E33 + 4(E13 + E23)) (4)

4~ Ell E22 + 2(E23 E13)1

1 z
P —P3 (Pl + P2) —ZE33 + —(E13 + E23) )

2 2

) s, = 0, ) (s,'s, + s;s,') = 0.
(i j}

Therefore, we do not need to consider the parameter I
and site energy h. In our problem, there are only two pa-
rameters (J and K) and one chemical potential p which
controls the ratio between the composition. of atom C
and that of atom A or B The H. amiltonian (1) reduces
to the original Blume-Emery-Griffiths Hamiltonian with
up-down symmetry used to model tricritical behavior in
a He- He mixture,

II = J ) s,s,- —K) s,'s,'+ p) s,'.
(i j} (i j} i

We use the tetrahedron cluster-variation method
to calculate the phase diagrams. Since we consider
only nearest-neighbor interactions, we use the nearest-
neighbor tetrahedron with vertices on each of the four
simple cubic (sc) sublattices of the fcc lattice.

For a fcc lattice of N sites the tetrahedron cluster-
variation weight factor is

[II,',,= (NP") ']'N'

m.',...=, (NP...) ] m.'=, (NP. )']" (10)

where Pi, P,z, and P;~A,.~ are the probabilities of ending
the indicated atomic species on a lattice point, on a pair
of neighboring sites, and on the vertices of a tetrahedron,
respectively, with i, j, A:, and I, taking values 1, 2, and
3. P, and P;~ are connected with P;~1,~ by statistical
constraints related to the symmetry of phase.

We calculated the phase diagrams by the natural-
iteration method with the use of a chemical potential.
The procedure is to minimize the grand potential

G=E —TS —N) p, x

where E is the total energy of the system described by the
first term of the Hamiltonian (2), T is the temperature,

1 z
(P2 Pl ) (E23 E13)~

2 2

Since the composition of atom A and that of atom B
are equal, the number of si = 1 is equal to the number
of si = —1, which means
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TABLE I. The eight ground states of the system.

No.
1
2

3
4
5
6
7
8

I
A+B
A
A+B
A+B
A+B
A
A
C

Sublat tices
II
A+B
B
A+B
A+B
C
B
B
C

(each sc)
III
A+B
A
A+B
C
C
A+B
C
C

IV
A+B
B
C
C
C
C
C
CE

Free energy
1 + 6J 15K
2
-p —2J ——K2 2
-p+ 3J —3K

—4p+ 3K
-' p —J —3K4—J+ —K
—-p, + -K1 S

2 2

and the configuration entropy 8 is given by 8 = k~ ln 0,
where k~ is Boltzmann's constant.

The minimization of the grand potential results in a
superposition relation used as the basis for natural iter-
ation,

I'ij kt = 4(Iij & k& l&j k&'j tI''kt) ' (Ii&j I'kIl) '
~ (12)

vrhere the factor P depends on the interaction energy and
chemical potential

4 = exP ——(&'& + &'k + &it + &&k + &&t + &kt)
2

1+—(t;+ t, + t k+ et) + 2&P,

vrhere P = 1/k~T and A is a Lagrangian multiplier.

III. CROUND STATES OF THE SYSTEM

We have analyzed the ground states of the system be-
fore the calculation of the phase diagrams. Since we con-
sider only nearest-neighbor interactions, we can use the
nearest-neighbor tetrahedron with its vertices on each of
the four sc lattices to analyze the ground state configura-
tions. The ground states correspond to the configurations
of the tetrahedron with the lowest energy. Thus we can
obtain the ground states by analysis of the combination
of atoms A, B, and C occupying the four vertices of the
tetrahedron. Since the composition of atom A and that of
atom B are equal, configurations of the tetrahedron with
more atoms A than B should be combined with configu-
rations with more atoms B' to reBect the up-down sym-
metry. There are eight types of ground states as is shown
in Table I. In Table I, the four vertices are represented as
I, II, III, and IV which can also be viewed as four sublat-
tices subdividing the fcc lattice into its four constituent
simple cubic lattices. The first type of ground state is
the phase separation state with two cluster configuration
AAAA and BBBB.The second one is the chalcopyrite
phase. The third one is the mixed state with compostion
x = 1/4. Ground states 4 and 5 are also mixed states
vrith composition x = 1/2 and x = 3/4, respectively. The
structure of ground state 5 is shown in Fig. 1. Ground
state 6 is the ordered state which is shown in Fig. 1 as

4

3,

2,

-20 -10 10

FIG. 2. The phase diagram of ground states of the system
with K ) 0. The numbers refer to the types of ground state
in Table I.

Oq. Ground state 7 is the stannite phase and gound state
8 is the zinc-blende phase.

We have calculated the free energy of the ground
states. The phase diagrams of the ground states are
drawn by comparing the free energies of these eight types
of ground phases, which are shown in Fig. 2 and Fig. 3.
Figure 2 corresponds to the case K ) 0 while Fig. 3 cor-
responds to the case K & 0. The numbers labeling the
regions of the interaction parameter in the figures corre-
spond to the labeling numbers of ground states in Table
I. From the ground state diagrams, we can classify the
phase diagrams as described in the following: When we
calculate the phase diagrams, we change the chemical po-
tential p, to scan the whole range of the composition x.
The chemical potential can change from —oo to oo. The
sequence of ground states along the line parallel to the p
axis cooresponds to those of the low-temperature phases
in the T—x phase diagram when the chemical potential p
is varied from —oo to oo. Thus one may analyze the type
of phase diagram according to the sequence of ground
states along a line parallel to the p axis. For K ) 0, as
shown in Fig. 1, there are two types. When J/K ( 0,
&om Fig. 1 we can see that ground state 1 (mixed A
and B phases) is transformed into ground state 8 (zinc-
blende phase) as the normalized chemical potential tLt is
varied &om —oo to oo. When J/K ) 0, ground state 2
(chalcopyrite phase) is transformed into the zinc-blende



PHASE DIAGRAMS OF THE BLUME-EMERY-GRIFFITHS. . . 3217

-20 -10

FIG. 3. The phase diagram of ground states of the system
with K ( 0. The numbers refer to the types of ground state
in Table I.

phase. For the case of K & 0, there are four types of
phase diagram which can be seen &om Fig. 3. For J ( 0,
there is no chalcopyrite phase. The reason is that the
Ising parameter J controls the bonding type between the
components A and B. If the components A and B do not
phase separate, J should be positive with the Hamilto-
nian being antiferromagnetic type. So we consider only
the case J & 0. With K & 0, this will be the case
J/K & 0. There are two types of phase diagram. One
with J/K & —1 consists of phases 8, 7, and 2 which corre-
spond to chalcopyrite, stannite, and zinc-blende phases,
respectively. Another type with —1 & J/K & 0 consists
of all the 6ve phases shown in Fig. 1.

IV. PHASE DIAGRAMS AND DISCUSSIONS

We have focused our calculations on the regions —1 (
J/K & 0, in which there are five ground states along
the line parallel to the p, axis. As p changes from —oo
to oo, one may experience five phases from a chalcopy-
rite to zinc-blende phase with Oq, stannite phase, and
02 in between. For the determination of the phase dia-
grams of the system, we minimize the grand potential G
using Kikuchi's natural iteration scheme in which the
chemical potential p, and temperature T are the natural
variables. As we change the chemical potential p and
temperature T, we can determine the phase boundaries
by searching for those special values of the chemical po-
tential p and corresponding composition x for which two
phases coexist.

The con6guration of each phase in the phase diagram
corresponds to the cluster con6guration. Symmetry of
each phase is determined by the site probabilities P; .
We can also describe the phase by the magnetization and
quadrupolar moments of sublattices I, II, III, and IV in
the BEG model:

1.6

1.2
kBT

J
0.8

0.4
Z

0.0
0.0 0.2 0.4 0.6 0.8 1.0

phases with different symmetry: (1) zinc-blende phase:
m; = 0, qr = qrr = qrrr = qrv' , (2) chalcopyrite phase:

rrl = lmr»l = lmrvl l 0 qr = q» = qrrr —qrv;
(3) stannite phase: mr = —mrr g 0, mrrr = mrv
0, qr = qrr W qrrr = qrv, ' (4) phase Or. mr = —mrr P

mm ™rv= 0 qr = qrr P qr» 8 qrv', {5) phase
O2 ~ m; = 0, qr ——qrr = qrrr g qrv. There are also some
other ordered phases w hich occur at higher temperature
in the phase diagrams such as the phases characterized

y lmrl = lm»l & lm»rl = lm»l qr = qrr A qrrr = qrv or
m' = 0~ qr g qrr l qrrr g qrv

We have calculated several types of phase diagrams
by the cluster-variation method in the parameter region
—1 & J/K & Q. Figure 4 shows the phase diagrams
with J/K = —0.91. The value J/K = —0.91 is near the
boundary line with J/K = —1 which divides two regions
in the ground state diagram corresponding to difFerent

types of the phase diagram (see Fig. 2). J/K = —1
represents the pecolation limit of the system,

I Jl = IKI,
and so all energies are equal in magnitude to allow pairs
of atoms A and B being diluted by atoms C with A,
B, and C sitting on a fcc sublattice, as discussed in
Ref. 5. From Fig. 4, it can be seen that at high tem-
perature the system undergoes an order-disorder tran-
sition &om the chalcopyrite phase directly to the zinc-
blende phase with the transition being first order. As
the temperature decreases, we can see that there is an
interim phase C' between the chalcopyrite phase and
zinc-blende phase. The transition &om the chalcopyrite
phase to C' is second order because the order parameter
changes continuously. As the temperature decreases, the
interim phase changes into another ordered phase with
lmrl = lmrrl W Imrrrl = lmrvl qr = qrr & qrrr = q»
and a stannite phase occurs. The transitions &om the
chalcopyrite phase to phase C" and that &om C" to the
stannite phase are second order. The ordered phases Oq
and Og occur at lower temperature. The shaded parts in
the figure are the phase separation region. The transition
&om Oq to the stannite phase is second order while the
transition &om the stannite phase to 02 is first order.

m; = (s;), q; = (s, ), (14) Chalcopyrite Zinc Blende

where the subscript i represents the four sublattices I, II,
III, and IV, and (. . .) indicates a thermodynamic aver-
age. The values of these parameters de6ne the following

FIG. 4. Phase diagram of the renormalized temperature
knT/J vs composition x for energies ratio J/K = —0.91.
Chalcopyrite (C), stannite (S), zinc-blende (Z), Oi, and Oz
phases are indicated.



3218 JUN NI AND SHUICHI IWATA 52

1.6

kBT

J

1.2

0.8

0.4

Figure 5 shows the phase diagram with J/K = —2/3.
From the figure we can see that the phases Oq and 02
occur at a higher temperature than that of Fig. 4. There
is also an interim phase. The transition between C" and
Oq is second order. The transition between phase Oq and
the stannite phase is second order while the transition
between the stannite phase and phase 02 is first order.

Figure 6 shows the phase diagram with parameter
J/K = —0.2 which is near to another boundary which
divides the two types of phase systems of ground states.
As we can see &om the figure, the upper part of the
bulge in the phase diagram is rather flat. The first ap-
peared ordered phase is stannite phase. On top of the
Oq phase there is an interim phase C" with m,. = 0,
q~ = q~~ = q~~~ g qrv. With a decrease of temperature,
phase Oi and phase 02 appear. The transition between
C" and Oi is second order. The transition between phase
Oq and the stannite phase is second order while the tran-
sition between the stannite phase and phase 02 is first
order. The transition between the chalcopyrite phase and
zinc-blende phase appears at a relatively low tempera-
ture.

There are several measurements on the phase dia-
grams and ordered structures on the system of alloys
(ABDz) ~ (CD) 2 or (AB) q Cz Dz. Aresti et al.
have used the difI'ere ntial thermal analysis measure-
ments to obtain the phase diagram of the alloy system
(CuIn)q ~Mnz~Te2. They found that manganese tends
to order on a stannite type and there is evidence of
mixed-symmetry alloys. Quintero et al. 2 obtained more
complete phase diagrams of (CulnTe)q (MnTe)2 and
(AgInTe)q (MnTe)z alloys using differential thermal
analysis and x-ray diBraction techniques. MnTe plays
the part of a zinc-blende parent with tetrahedral bonding
only up to a certain maximum value of composition x
with MnTe itself having a rocksalt structure. The range
of compostion investigated was limited to 0 & x & 0.8
and the behavior of the MnTe-rich phases was not con-
sidered. Their results indicated that there are four struc-

kBT

J

2.5

2.0

1.5

CII

0.5

0.0
0.0 0.2

Chalcopyrite

0.4 0.6 0.8 1.0
Zinc Blende

FIG. 6. Phase diagram of the renormalized temperature
k~T/ J vs composition x for energies ratio J/K = —0.2. Chal-
copyrite (C), stannite (S), zinc-blende (Z), Oq, and Oq phases
are indicated.

tures as equilibrium structures: the o. phase with chal-
copyrite structure, the P phase with zinc-blende struc-
ture, the P' phase which they called ordered zinc-blende
and believed to be a stannite structure, and the o.' phase
which they called ordered chalcopyrite and is similiar in
some way to the P' phase. Both phase diagrams for
(CuinTe)q ~(MnTe)2~ and (AglnTe)q (MnTe)2 are si-
miliar. They also found that the transition P -+ n was
first order while the transition P' ~ n' was second order.
Their measured phase diagrams are very similiar to our
calculated phase diagram Fig. 5. Comparing the location
of phases n' and P' in the phase diagram with that of Oq
and the stannite phase and considering that the differ-
ence between n and n' and between P and P' was the
ordering of manganese on the cation sublattice and that
the ordered n' and P' phases have very similiar behavior,
we suggest that the ordered n' is Oq phase and P' phase
is the stannite phase. The difFerence between phase Oq
and the stannite structure is qgy g qryr as described by the
order parameters in Eq. (10). The transition between Oq
and the stannite structure is second order which is same
as the measurement.

In summary, we have investigated the ordering of
the (chalcopyrite —zinc-blende) system using the Blume-
Emery-GrifIiths model. The ground states are deter-
mined and new ordered phases are found. The phase
diagrams of the system with parameters in the re-
gion —1 & J/K & 0 are calculated by the cluster-
variation method and rich structures of the phase di-
agrams are illustrated. We have compared our results
with the experimental phase diagrams of the alloy sys-
tems (CuInTe)q (MnTe)2 and (AgInTe)q (MnTe)z0.0

. 00 02
Chalcopyrite

0.4 0.6 0.8 1.0
Zinc Blende ACKNOWLEDGMENT

FIG. 5. Phase diagram of the renormalized temperature
ksT/J vs composition z for energies ratio J/K = —2/3.
Chalcopyrite (C), stannite (S), zinc-blende (Z), Oz, and 02
phases are indicated.
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