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Inelastic scattering of fast electrons by crystals
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Generalized fundamental equations for electron diKraction in crystals, which include the e8'ect of
inelastic scattering described by a nonlocal interaction, are derived. An expression is obtained for
the cross section for any specific type of inelastic scattering (e.g. , inner-shell ionization, Rutherford
backscattering). This result takes into account all other (background) inelastic scattering in the
crystal leading to absorption from the dynamical Bragg-reflected beams (in practice mainly due to
thermal diffuse scattering). There is a contribution to the cross section from all absorbed electrons,
which form a disuse background, as well as from the dynamical electrons. The approximations
involved in assuming that the interactions leading to inelastic scattering can be described by a
local potential are discussed, together with the corresponding expression for the cross section. It is
demonstrated by means of an example for K-shell electron energy loss spectroscopy that nonlocal
eKects can be signi6cant.

I. INTRODUCTION

The inelastic scattering of electrons in electron diffrac-
tion plays a vital role in many experimental procedures
involving the scattering of electrons in a crystalline envi-
ronment. Inelastic scattering not only leads to an energy
loss for the electrons. They may be scattered through an
angle large enough such that the electron is no longer part
of the dynamical wave function describing the diffraction
of the electrons. Electron microscopists say that such an
inelastic scattering event has led to absorption &om dy-
narnical beams (which is not true absorption in the usual
sense). i The main inelastic mechanisms we consideri'
are (i) single-electron excitations, (ii) collective atomic
excitations [phonons, leading to thermal difFuse scat-
tering (TDS)j, and (iii) collective electronic excitations
(plasmons). Plasmon excitations are not necessarily con-
sidered absorptive since the electrons are mostly scat-
tered through small angles.

In this work we are mainly concerned with the scatter-
ing of fast electrons in crystalline solids. For electrons in
the energy range of several keV to MeV, exchange inter-
actions can be ignored. The Coulombic crystal potential
can be considered to be essentially local. The absorp-
tive scattering is also very often represented in terms of
a complex energy-dependent local potential. ' How-
ever, it is often not appreciated that, unlike scattering
&om the crystal potential, inelastic scattering can have
substantial nonlocal character.

In Sec. II we derive general dynamical scattering equa-
tions for electrons incident on a crystal of a given finite
thickness which are a generalization of those given by
Yoshioka which in turn are a generalization of those de-
rived by Bethe in 1928. These fundamental scattering
equations follow &om a Schrodinger equation containing

a nonlocal integral kernel that represents inelastic scat-
tering (including virtual inelastic scattering). We show
that, with appropriate assumptions and simplifications,
our dynamical scattering equations become independent
of thickness and reduce to those given by Yoshioka.

In Sec. III we derive a general form for the cross sec-
tion for any particular type of inelastic scattering in a
crystal &om the nonlocal formulation obtained in Sec.
II. This general cross section expression consists of two
terms. One is due to inelastic scattering of the dynamical
Bloch waves describing electron diffraction. The other is
due to a diffuse background of electrons that have scat-
tered out of the dynamical waves, in practice mainly as
a consequence TDS.

In Sec. IV we show how local approximations may be
used to represent nonlocal inelastic scattering, making
clear the assumptions made. An expression for the cross
section is then obtained in terms of a local inelastic po-
tential which, if the local potential is represented by a b
function, reduces to the previous result of Cherns et al.

In Sec. V we consider the effects of nonlocality in the
cross section by comparing nonlocal and local cross sec-
tions for K-shell ionization in electron energy loss spec-
troscopy (EELS) for 120 keV electrons incident on Al.

II. FUNDAMENTAL SCATTERING EQUATIONS

A. Generalized fundamental scattering equations

As shown by Yoshioka, the scattering of fast electrons
incident on a crystal, taking into account absorption, can
be described by an integro-differential equation of the
form

'V + ko — EIoo(r) o)'o(r) — jA(r, r') )'o(r )dr =o0, '' (2.1)
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where Qp(r) describes elastic scattering of the fast electron. This result can be viewed as an equation for a one-electron
state with damping due to the nonlocal kernel, which is given by

m ). . . , exp (ik ir —r'i)Arr r r r —r'
mgO

(2.2)

where k is the magnitude of the wave vector of the scattered electron. In general the interaction matrix elements
H' (r) are given by

H' „(r) = f r' (r , .r. . , r )rH'(rr , r. . . , r )rr[rr, . . . , rr )drr, . . . , drr (2 3)

where H'(r; ri, . . . , r~) describes the interaction of the
incident electron (coordinate r) with the crystal parti-
cles (coordinates ri) and a (ri, . . . , r~) represents the
nth stationary state of the crystal. The approximation
has been made that only excitations &om the ground
state contribute significantly to the scat tering, i.e.,
H' p(r) )) H' „(r) (n g 0). A treatment of inelastic
scattering which does not neglect the terms H' „(r) (n g
0) is discussed in Ref. 10. More exact but more compli-
cated forms for A(r, r') can be obtained. P'

For fast electrons the interaction matrix element
Hpp(r) can be assumed to represent the local crystal
potential due to elastic Coulomb scattering and ex-
change is ignored. i4'is [At lower energies another non-
local term representing exchange could be included in
the Schrodinger equation or a local, approximately equiv-
alent, contribution could be included in Hpp(r). ] Be-
cause of the periodicity of the crystal lattice, Hpp(r) =
Hpp(r+R ) for any lattice vector R and Hpp(r) can be
expanded in a Fourier series

Hpp(r) = —) Vg exp (ig . r),
g

(2.4)

A(r, r') = A(r+ R, r'+ R ), (2.5)

where Vg are the Fourier coeKcients and the I's are re-
ciprocal lattice vectors. The minus sign has not been
absorbed into the Vz's so that the usual de6nition of
the Fourier coeKcients used in electron difFraction is
preserved. The inelastic scattering of the fast electron is
represented by the additional term containing the non-
local kernel A(r, r'). In general A(r, r') depends on the
energy of the incident electron. It has the periodicity
property

for any lattice vector R . The approximate equality re-
flects the fact that in principle such a symmetry is only
approximate. For example, after a core excitation the in-
teraction between the core hole and the valence electrons
destroys translational symmetry. However, such contri-
butions to A(r, r') are small so that equality in Eq. (2.5)
is assumed from this point onwards, as done by others. '

Because of the periodicity of Hpp(r) and A(r, r'), the gen-
eral solution to Eq. (2.1) can be written as a sum of Bloch
states P'(r), such that

@p(r) = ) n*) C' exp[i(k'+ g) . r] = ) n'P'(r) .

(2.6)

A' = ~'+ig', (2.7)

where p' are the real parts (anpassung) and g' are the
absorption coefIicients.

Using Eq. (2.4) and also substituting the Bloch state
expansion of the wave function (2.6) into Eq. (2.1), pre-
multiplying by 1/V exp [

—i(k" + g) . r], and integrating
over the crystal volume, we obtain

n' is the amplitude of the ith Bloch state gV(r). Each
Bloch state is individually a solution to Eq. (2.1) and
has an associated complex wave vector k'. The boundary
conditions require that these Bloch wave vectors have the
same tangential component along the crystal surface, and
hence they can only dier by a component in the direction
along the (inwardly directed) surface normal n. With
these boundary conditions k' = I+A' n, where K is the
incident wave vector in the crystal corrected for re&action
such that K = kp + 2mVp/h . The complex quantities
A' can be written as

) [K —(k' + h) ]Cz — exp [i(h —g + k' —k") . r]dr
h v

2~ - - '1) Vf ) C& — exp [i(f + h —g+ k' —k'*) r]dr
f/0 h

, ) C~ — exp [—i(k" + g) . r]A(r, r') exp [i(k' + h) . r']drdr' = 0 .
v v

(2.8)
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We now make some assumptions about the scattering geometry. We assume that the real-space distracting planes
are perpendicular to the crystal surface. Therefore the reciprocal-space vectors h and I pertinent to the scattering lie
in a plane parallel to the crystal surface (i.e. , perpendicular to n). The plane defined by the h and g vectors is called
the zy plane. The zy plane in turn defines the z direction, and in this case n (and hence A n) is along the z direction.
If in addition we assume that the surface area A of the crystal is very large, the integrations over the crystal volume
in Eq. (2.8) reduce to

1 ~ .- -* 1
exp [i(h —g + k' —k'*) r]dr = — exp [i(h —g) . r ]dr — exp [i(k' —k") . z]dz

v A y *yt
0

= hh gI (t), (2.9)

where t is the thickness of the crystal in the direction of the surface normal n. We assume that t is much smaller
than the surface dimensions A of the crystal and we do not obtain a b function in this direction. This is a crucial
assumption, the importance of which has been previously emphasized. ' Physically, the assumption of a b function
in. the z direction would imply that the detector(s) in our scattering experiment is inside the crystal and that we could
resolve the different A"s, which is not possible. The dimensionless quantity L"(t) is given by

exp [i(A* —A'*) t] —1

i(A* —A'*)t
1 —exp( —2g't)

2n't (2.10)

where we have used Eq. (2.7). The scattering equations (2.8) reduce, with the assumptions given below them, to

[~' —(k'+ g)']L"(t)|-".'+, L"(t) ) .&.-h&h+ ).W;;ht-"h
hing h

(2.11)

where

W"& ——— exp [
—i(k'* + g) r]A(r, r') exp [i(k' + h) r']drdr' .

V
(2.12)

This is the general form of the dynamical scattering equations allowing for inelastic scattering, for the case of a crystal
of finite thickness t. These fundamental dynamical equations, which have to be solved in a self-consistent way, are a
generalization of those given by Yoshioka which in turn generalize those derived by Bethe.

B. Reduction of scattering equations to those of Yoshioka

The reduction of our equations to those of Yoshioka is now discussed. Since A(r, r ) given by Eq. (2.2) is not
Hermitian, W"h [Eq. (2.12)] is also not Hermitian. However, we may split W"i, into two parts which are individually
Hermitian as follows: W"h —(W"h) ~"l + i(W"&)~'l, where

(W"h) ~"& = — exp [
—i(k" + g) r] [A(r, r') + A'(r', r)] exp [i(k' + h) . r']drdr',

V v v
(2.is)

(W'.)"' =- exp [
—i(k" + g) r][A(r, r') —A'(r', r)] exp [i(k'+ h) . r']drdr' .

2iV v v
(2.14)

We note that for a centrosymmetric crystal, (W"h)~"l and (W*'h)~'l are both real quantities. The term (W"h)~'l
represents the actual inelastic scattering of the incident electron, while the terxn (W"&)~"l represents the virtualg,h
inelastic scattering. We note that [(W"h) ~"&

~

is several orders of magnitude smaller than ~(W"i, ) ~'l
~

at high incident
energies ' and so will be neglected for the remainder of this work. In turn ~(W"&)~'l

~

is usually an order of magnitude
smaller than the magnitude of the elastic potential coefficients ~Vs~.

'i
With the assumptions about the scattering geometry discussed above, and bearing in mind that the thickness of

the crystal is small compared to the surface dimensions, the (W"h)~'l can be written in the form [cf. Appendix A
and in particular Eq. (A26)]

where

(W;;i )"= L"(t)~;;h

4~ 1 1 ) +* (k*+g —K)+ o(k'+
rn, o,2 ~ (1 —o,)

- ~k'+ g —K'~' ~k'+ h —K'~' 8 K' —k )dK' .
~go

(2.i5)

(2.16)



52 INELASTIC SCATTERING OF FAST ELECTRONS BY CRYSTALS 3187

The Bohr radius ap —— (4mh2ep)/(me2), and a is the
band dispersion factor of the initial state. 9 The quantity
q = K —K' is the momentum transfer &om the incident
electron to the scattered electron. The transition matrix
element E p(k'+ h —K') between the ground state up(r)
and excited state u (r) of the crystal is given by

E p(k'+ h —K') = u *(r)exp [i(k'+ h —K') r]
v

xup(r)dr . (2.17)

[K —(k'+ g) ]C' + ) V"
h~g

+ 2 p X"hCi, ——0. (2.18)
h

To a good approximation for fast electrons ~k'~ = ~K~.
If in addition to this approximation we assume that the
A'n component of the wave vector k' only has a small
effect on the transition matrix elements of Eq. (2.17),
then the A' dependence of X"h becomes weak. Con-
sistent with this assumption is that I"(t) = 1. Ignor-
ing the i dependence we can write [from Eq. (2.15)]
X"h -+ Xs,h = (Wz, i, )~'l, and Eq. (2.18) reduces to

Ã' —(k'+ g)']C;+, ) .Vs-hCh
hing

) Ws hCh ——0, (2.19)
h

the form of the fundamental equations given by
Yoshioka.

III. CROSS SECTION FOR INELASTIC
SCATTERING

A. Cross section for absorptive scattering

The cross section for absorptive scattering of a par-
ticular type, or "absorption" &om the elastic scattered
electron Bux, is given by the number of electrons per
unit volume multiplied by the probability that an inelas-
tically scattered electron will cross the crystal surface,
per incident Aux per unit area, i.e.,

Using Eq. (2.15) the thickness-dependent factor in Eq.
(2.11) cancels and the dynainical scattering equations re-
duce to

where p is the number of electrons per unit volume and
v = hkp/m is the incident electron velocity. Furthermore,
j (r) is the electron probability current density vector
correspond. ing to an event that leaves the crystal in the
state n. In the usual way, j (r) can be defined as

j-(r) =, W.*(r)«-(r) —&-(r)«.*(r)] . (3.2)

The integral over the crystal surface S in Eq. (3.1)
summed over all n g 0 is the probability that an in-
elastically scattered electron will exit the crystal surface.
Because the total number of electrons is conserved. , the
net probability of any scattered electrons exiting the solid
is of course zero. Therefore

) j„(r) ds = — jp(r) . ds .
~0 S S

(3.3)

The sum of the electron probability currents Bowing out
&om the crystal by inelastic scattering must be equal to
the net Bux of electrons &om the elastic scattered part
@p(r) into (minus sign) the crystal. The electrons that
contribute to the inelastic scattering are efFectively ab-
sorbed in the crystal as far as the elastic scattering part
@p(r) is concerned. We can therefore write the inelastic
cross section in terms of the elastic electron probability
current density vector as

1o. = —— jp(r) ds.
V

(3.4)

0 @p (r) [A(r, r') —A'(r', r)]gp(r') drdr' .
v v

(3.6)

The quantity —1/ih[A(r, r') —A*(r', r)] expresses the spa-
tial distribution of the nonlocal "absorption power, " with
the amount of absorption depending on the values ef
vPp(r) at the points r and r'. i~

B. Cross section due to dynamical electrons

Furthermore, it can be shown after some algebra that

f jp(r) ds = —. @p(r) [A(r, r') —A*(r', r)]
S ih v v

x vjp(r') drdr' . (3.5)

Consequently the general expression fer the cress section
for inelastic scattering is given by

~) f i.(r) Zs

n+0
(3.1)

The cross section for inelastic scattering of the dynam-
ical fast electron Bloch states in the crystal can then be
written using Eq. (2.6) in Eq. (3.6) as

cry„„= NV, ) n'o~—' ) C'C&~' — exp [
—i(k~* + h) r][A(r, r') —A*(r', r)] exp [i(k' + g) . r']drdr' .

v v
~$2 g, h

(3.7)
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Prom Eq. (2.14) this becomes

o.gy„——NV, ) n'n~' ) C*C~'(Wh' )('}, (3.8)
0

~ l2 g,h

and we may rewrite this in turn as

NV, ) B'~ (t) ) O'C~~'X~~'
0

)2 g,h

where A&~' is given by Eq. (A27) and

B"(t) = a' n"L"(t),
with L'~ (t) as given by Eq. (A25). Letting

2m j'= j'+hg ~hg

(3.9)

(3.10)

(3.ii)

we then have

ops„——NV, ) B'~ (t) ) O'C~~*p~~'

g,h
(3.12)

Assuming, as before, that the i and j dependences of
the Xh~' are weak, we can drop the i and j dependenceh, g
in p,h' and write

C. Cross section due to diffuse background

Electrons may be scattered in such a way that they are
no longer described by a wave function of the form given
by Eq. (2.6). This is often referred to as "anomalous
absorption. " Due to this absorption, represented by the
absorption coeKcients g implicit in Eq. (2.6), the dy-
namical Bloch waves decrease in intensity as they prop-

I

ody„——NV, ) B*~(t)) O'C~*pg I,
g, h

which is similar to the result obtained using a different
approach in Ref. 19. This result can also be obtained
from the transition matrix element in Ref. 10 provided
the approximation below Eq. (2.3) is made.

agate further into the crystal. Ultimately, for suKciently
thick crystals, the cross section due to the electrons in
the dynamical Bloch waves opy„should approach zero.
However, the decrease in dynamical Bloch wave intensity
leads to a corresponding increase in intensity of a dif-
fuse background of electrons which have been absorbed.
These (in practice mostly TDS) electrons in the diffuse
background contribute to further inelastic scattering, and
must be included in the total cross section.

To obtain the cross section og;g for the electrons in the
diffuse background we require the wave function for these
electrons. After they have been absorbed, the electrons
propagate through the crystal along directions difFerent
from their initial direction. It is unlikely that these elec-
trons undergo strong Bragg reHection, and so they can be
described by plane waves and form a diffuse background.
We assume that the Anal states of the electrons in the
difFuse background can be written

'ltd'f (r) = ) n" (n r) exp (ik r) (3.i4)

where k are the (real) wave vectors of the electrons in
the diffuse background. The sum could be replaced by
an integral but the above form is appropriate for our
purposes. The amplitudes of these plane waves,

n" (ix. r) = a"[1—exp( —g"n. r)], (3.i5)

are a function of distance normal to (or depth into) the
crystal surface. The amplitudes of the diffusely scattered
waves are zero at the entrance surface, n" (0) = 0, and
all the electrons are in the dynamical beams. As the
dynamical waves propagate through the crystal the am-
plitudes of the diffusely scattered waves increase until, for
a sufIiciently thick crystal, they saturate to o. . Because
the individual plane waves in the diffuse background act
independently, the cross section for the difFuse electrons
0 Q' f is simply that obtained incoherently from the plane
waves of wave vector k" and amplitude, n (n r), i.e.,

os f — . ) Q
*(n . r) exp (—ik" . r) [A (r, r') —A* (r', r)]n" (n . r') exp (ik" r') drdr'

ihv
(3.i6)

Inserting n (n. r) into Eq. (3.16) we can separate this cross section into four terms and write

) ~

~2 [(~n)(i}n+n(~nn) (i} (~nn) (i} (~nn)(i}]
0

(3.17)

where

(~nn) (i} xp (—ik . r) [A(r, r') —A*(r', r)] exp (ik" . r')drdr',
2iV v v

(3.is)

(~n n) (i} exp (—ik . r) [A(r, r') —A*(r', r)] exp (ik r')drdr',
2iV v v

(3.i9)

(IVnn) (i} exp (—ik . r) [A(r, r') —A*(r', r)] exp (ik . r') drdr',
2iV v v

(3.20)
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and

(W,",")&'l = — . exp (—ik" . r) [A(r, r') —A' (r', r)] exp (i~k . r') drdr',
2iV (3.21)

withk =k +ig n.
Now Eq. (A26) can be applied to each of Eqs. (3.18)—(3.21) and we can write

= NV. ).In" I' [S ".
,
"o+ L""(t)S.","o —L""(t)(~".

,
". + 4,.")1, (3.22)

where

Q2 k Lnn (t)
(3.23)

and similarly for the other pp p terms. We have also made use of the properties [see Eq. (2.10)] I (t) = 1 [as L (t)
is constructed from a real wave vector] and L (t) = I (t).

At high incident energies ~k'~ = ]K] and ~k"
]
= ~K~. The latter is true because TDS is the dominant contribution to

absorption and, while TDS can be through large angles, it involves relatively little change in energy. We can then
drop the n and n dependence in the p, terms [but not in the I(t) terms]. The cross section for the diffuse electrons
can then be written as

NV~ ).In I [1 + L""(t) —2L""(t)]pp p . (3.24)

The diffuse electron plane wave amplitudes n" (n . r) and wave vectors k" are not known directly. However, they
can be related to the known scattered Bloch wave amplitudes. We know that an electron must be in one of the states
of either the dynamical or the diffuse background wave function. From conservation of particles the total probability
of 6nding an electron in any of these states must be equal to 1. We can write this as

1 = — ) ~n (n r) exp(ik r)] dr+ — ) n') C' exp[i(k'+ g) r] dr .
V V g

The integral involving the dynamical wave function becomes

(3.25)

) n') C* exp[i(k'+ g) . r] dr = ) B'~(t) ) O'C~* .~

~

g l2 g

The integral involving the diffuse background wave function can be written

(3.26)

) ~n [1 —exp (—rI z)] exp (ik" . r)~ dr = ) ]n
~

[1+L" (t) —2L" (t)] .~

~
~

V n

Conservation of particles [Eq. (3.25)] then entails that

(3.27)

) ~n" ~'[1+ L""(t)—2L""(t)]= 1 —) B*'(t)) O'C'*, (3.28)

so that Eq. (3.24) may be rewritten as

o.g;g = NV, 1 —) B'~(t) ) O'C~' pp p . (3.29)

D. Total cross section for inelastic scattering

The total cross section can be obtained &om Eqs. (3.13) and (3.29) in terms of the known Bloch wave amplitudes
and coefBcients as

O = ~dif + ~dyn

=NV & 1 —) B~(t)) C C~ happ+) B~(t)QC C~~ pgg
~)2 g ~)2 g, h

(3.30)



3190 L. J. ALLEN AND T. W. JOSEFSSON 52

While the ph I refer to the specific inelastic scattering
under consideration, the scattering coeKcients A' implicit
in the B'~(t) and the Bloch state coefIicients C' come
ft..om solution of the total scattering equations. Hence in
principle they include all absorptive scattering which is
concurrently occurring. If there is no diffraction, then
Eq. (3.30) reduces to the kinematic value

where we have let r' = r + s. Let us approximate the
right-hand side of Eq. (4.2) as follows:

xQp(r + R, ) V, , (4.3)
= ~v.po, o. (3.31)

In the limit as t ~ oo the B'~ (t) ~ 0 and we also obtain
the kinematic result given by Eq. (3.31).

IV. LOCAL APPROXIMATION

A. Approximately equivalent local potential

where R are real-space lattice vectors and V is the unit
cell volume. From Eq. (2.6) and as exp (ig . R ) = 1, it
follows that

@p(r+ R ) = Qn*) t
' exp[i(k*+g) . (r+ R )]

Nonlocal interactions are often approximated by lo-
cal potentials for ease of application or visualization.
We now construct a local potential VL, (r) approximately
equivalent to the nonlocal inelastic scattering potential
in Eq. (2.1), by which we mean that

= ) o.'exp(ik'. R )

x ) C' exp [i(k' + g) . r] . (4 4)

V (r)dpp(r) = f d(r, r')dp(r')dr'. (4 1)
Since ~A'n~ && ~K~, we make the assumption that

exp (ik' . R )
—= exp [i(K + A' n) . R ] = exp (iK R ) .

When we solve the scattering equations with this local
potential, we should then obtain coeFicients C' and wave
vectors k' that are similar to those obtained from the
nonlocal scattering potential. We consider the nonlocal
term as follows:

Equation (4.4) then becomes [using Eq. (2.6)]

v/Jp(r + R ) = exp (iK R )Qp(r)

(4.5)

(4 6)

The effect of exp(iK R ) is to translate the electron
wave function by a reciprocal lattice vector R (to a good
approximation). Therefore Eq. (4.3) can be written as

A(1' 1' + s)@p(1' + s)ds ) A(1' 1' + R ) exP (iK R )gp (1')V (4.7)

The inverse Fourier transform of Eq. (2.12) (ignoring the i dependence) is

A(r, r') = ——) Ws h exp [i(K + g) r] exp [
—i(K+ h) . r'] .

V (4.8)

It follows that

1
A(r, r+ R ) = ——) Ws h exp [i(g —h) r] exp( —iK. R ) exp( —ih R ) . (4.9)

Substituting Eq. (4.9) and Eq. (4.6) into Eq. (4.3) we obtain

fA(r, r+ s)@p(r + s)ds = —) Ws h exp [i(g —h) r]@p(r),
g, h

(4.10)

where we have used the relation P exp (ih . R ) = N and NV, = V. We therefore obtain the approximate equivalent
local potential [cf. Eq. (4.1)) as

VL, (r) = —) Ws h exp [i(g —h) . r) .
g,h

(4.11)

The S'I h are clearly the Fourier coeKcients of the equivalent local inelastic potential corresponding to the vectors
g —h [with sign convention as discussed for the Fourier coefficients of the elastic crystal potential after Eq. (2.4)].
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As such, the R'g h should depend only on the difference of the two vectors, I —h. Let us now make more explicit
why this is indeed the case. If we assume at the outset that A(r, r') is local, i.e. , given by VL, (r)b(r —r'), then Wg h
(ignoring the i dependence) becomes

Wg g = —— exp [
—i(K + g) . r]VI.(r)8(r —r') exp [i(K + h) r') drdr'

v v
1

exp [
—i(g —h) r]VI, (r)dr .

V v
(4.i2)

We see from inspection (i.e. , by direct substitution) that
Wg, h = Wz & p, and so we can write Eq. (4.11) as

VL, (r) = —) Wz h p exp [i(g —h) . r] .
g,h

(4.i3)

B. Cross section in the local approximation

In the local approximation we can rewrite the cross
section expression [Eq. (3.30)] as

+) B"(t) ) c~cf; P„~ I.
i~j g, h

(4.i4)

V. NONLOCALITY IN INNER-SHELL
IONIZATION CROSS SECTIONS

Applications of Eq. (3.30) have very recently been
made to energy-dispersive x-ray (EDX) analysiss ' ~ and

The superscript L denotes "local," and ph ——ph
Equation (4.14) is the expression used in previous work2
and in the case of a 8 function interaction (pp~ ph~

for all h, g) reduces to the expression obtained by Cherns
et a/. The work of Cherns et a/. has been elaborated on
by Taft@ and also Krishnan. An expression similar to
Eq. (4.14) has recently been used in Ref. 28.

The ph are related to the Fourier coeKcients of the
local potential by

Ph g
= ~,~

~h-g, O- (4.15)
0

We have discussed the local approximation for the coef-
ficients p&' for the inelastic scattering of interest (for ex-h, g
ample K-shell ionization). This inelastic scattering may
also be absorptive (for the given example of K-shell ion-
ization it is) and thus contributes to the absorption co-
efficients g' and q~ implicit in the B'~(t). Other absorp-
tive processes contributing to the absorption coefBcients
(TDS is the dominant contribution) may be treated as
nonlocal interactions or also in a local approximation.

Equation (4.14) can be derived more directly by assum-
ing a local potential at the outset but the approximations
made in assuming a local potential are then not as ap-
parent as they are here. The generalization of Eq. (4.14)
to explicitly include diffraction of the scattered electron
has been done in Ref. 29.

Rutherford backscattering, where the correct form for
the nonlocal cross section was conjectured from the cor-
responding local expression [Eq. (4.14)] used in previous
work, ' which in turn improved on earlier work only
containing the dynamical term. The rigorous proof
given in this paper puts the nonlocal expression on a solid
found. ation and the example we will now discuss shows
the importance of the more exact result.

We will now illustrate the theoretical results by an ap-
plication of the formalism to EELS, in particular for K-
shell ionization in aluminum. Our calculations are for 120
keV electrons incident on Al at room temperature and for
the case of a (111)systematic row. The scattering equa-
tions [Eq. (2.19)] were solved to obtain the Bloch state
coeKcients in a similar manner to that disscused in Ref.
31. The elastic potential was calculated in the standard
way for high energy electrons, &om the Doyle-Turner
x-ray scattering form factors for neutral atoms via the
Mott formula. The TDS form factors were calculated in
the Einstein model, with the Debye-Wailer parameter
taken &om Ref. 40. A collection aperture of 25 mrad has
been assumed and the energy window is 200 eV above the
ionization threshold. Some of our calculations can then
be compared with the experimental results of Stobbs and
Bourdillon. They used a slightly ofF-center collection
aperture with angular radius 25 mrad, allowing passage
of zeroth- and 6rst-order Bragg beams. In our calcula-
tions the detector is placed symetrically about the z axis
and also includes these two beams and it is reasonable
to compare the experimental results with our calcula-
tions. The appropriate form for the coefBcients ph' for
K-shell ionization is derived in Appendix B. They %ave
been evaluated using a hydrogenic model.

First the cross section (per atom) has been calculated
using Eq. (3.30) for a range of different incident beam di-
rections and thicknesses. Fifteen beams [or Bloch state
components in the summations in Eq. (3.30)) were re-
quired in the calculation to obtain fully converged results.
The contribution from the dynamic term in Eq. (3.30)
is shown in Fig. 1(a). Note the logarithmic scale for the
thickness of the crystal. The incident beam orientation
in the calculated cross section varies by up to approxi-
mately 60 mrad either side of the symmetrical position
(indicated by 0). A value of unity indicates that (111) is
in the exact Bragg orientation. Orientation dependence
(as a function of crystal thickness) in the cross section is
initially absent but then becomes increasingly important.
As the thickness continues to increase the dynamical con-
tribution to the cross section shows an overall decrease
due to absorptive scattering (in this case assumed to be
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TDS and K-shell ionization). The contribution to the
cross section due to the diAuse background of electrons
[Fig. 1(b)] increases with thickness, starting initially
kom zero. It starts to become important &om about 100

A. and becomes the dominant contribution to the cross
section for thick crystals. The total cross section, which
is just the sum of the dynamical and disuse components,
is shown in Fig. 1(c). For very thin crystals the cross
section has the kinematic value cr~;„= 3.15 x 10
and is orientation independent. For increasing thickness
it shows strong orientation dependence before once again
tending to the kinematic value for very large thicknesses.

The calculations in Fig. 1 were made assuming the K-
shell ionization interaction is nonlocal. In Fig. 2 we show
the appropriate form factor fh g defined in Eq. (B9) used
to calculate pb g for use in the cross section expression
[Eq. (3.30)]. If we choose to treat the ionization inter-
action in the local approximation discussed above and
calculate the cross sections via Eq. (4.14), then we are
making the approximation fg I fh g p. In Fig. 2 we
compare the nonlocal form factor fh I [Fig. (2a)] to the
corresponding value expected in the local approximation
fh s o [Fig. (2b)]. The diagonal values fg s are clearly
smaller than fo o for g g 0, contrary to what is expected
in the local approximation. However, the oK diagonal
terms (fh s, h g g) are not very different from the local
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for K-shell EELS for 120 keV electrons at room temperature
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tion value of unity indicates that (ill) is in the exact Bragg
orientation. Crystal thickness increases towards the front of
the plot. (b) Cross section for the diffuse background. Crys-
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FIG. 2. (a) The atomic A-shell ionization form factor fa, s,
for 120 keV electrons incident on Al. (b) The quantity fh
used in the local approximation to the ionization form factor.
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lated in both the local and nonlocal cases. The pertinent
thickness slice for the nonlocal case is also indicated in
Fig. 4(a). For this particular thickness, the local ap-
proximation to the cross section is significantly higher
than the nonlocal result. It should be pointed out that
an exact comparison with experiment is difBcult. This
is due to uncertanties in the exact crystal thickness and
the often quite large experimental uncertanties. These in
turn relate to diKculties in obtaining accurate systematic
row conditions unaffected by nonsystematic reHections,
etc. However, the local calculation appears not to fit
the experimental results as well as the nonlocal calcula-
tion does.

elastic scattering is assumed to be represented by a non-
local interaction.

A rigorous derivation has been made of the
cross section for any chosen specific type of inelas-
tic scattering [e.g. , inner-shell ionization, Rutherford
backscattering, ' dynamical TDS (Refs. 44—46)] which
also takes into account absorption occurring concurrently
in the crystal. The wide general applicability of this re-
sult is emphasized.

Furthermore, the assumptions made in representing
the inelastic scattering under consideration by a local
interaction have been made manifest here and we have
shown by means of an example that significant "nonlocal
effects" can be expected in certain situations.

VI. CONCLUSIONS

We have extended the work of Yoshioka to obtain gen-
eralized dynamical scattering equations, for scattering of
electrons &om a crystal of finite thickness, where the in-
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APPENDIX A: THE INELASTIC SCATTERING COEFFICIENTS

The main purpose of this appendix is a derivation of Eq. (2.1S) and the associated Eq. (2.16). Making use of the
standard Green's function identity

1 exp (ik„~r —r']) . 1 exp [iK' (r —r')]
4' ]r —r'] 6-so+ (2vr) K'2 —k„—i b

(A1)

in the definition of A(r, r ) in Eq. (2.2), we can write

A(r, r') —A*(r', r) = — ) Ho (r)H o(r')
mgO

1 exp [iK' . (r —r')], . 1 exp [iK' . (r —r')]
h~o+ (2m) K' —k —i8 h~o+ (2vr) It' —k +i8 (A2)

Using the standard relation

and its complex conjugate, we can rewrite Eq. (A2) in the form

A(r, r') —A'(r', r) = — ) Ho (r)H' o(r') exp [iK' . (r —r')]h(K' —k )dK' .
27r 2

m+0
(A4)

Therefore the inelastic scattering coefficient (W&~' )~'l [cf. Eq. (2.14)] becomes

( e )i'i =, , ) J g'e(k'+k —K)g e(k'+g —K)d(K —k )dK',
mgo

(A5)

where

g e(k'+ g —K') = f H' e(r)exp(i(k'+g —K') . r]dr. (A6)

We will now examine the form of E o(k' + g —K') in more detail. In an independent electron description of the
crystal (a good approximation for our purposes) we represent the many-electron wave function a (ri, . . . , rN ) of the
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crystal in terms of Bloch states b (p, r'), where p is the wave vector for the Bloch electron in the crystal. Due to the
periodicity of the Bloch states on the reciprocal lattice, b (p+ g, r') = b (p, r') for any reciprocal lattice vector g
and we can expand the crystal Bloch states in a Fourier series

b„(p„,r') = ) exp(ip„. R )u„(r' —R ), n=O, m, (A7)

where N is the number of lattice sites and R are the lattice vectors. We note that in the "tight-binding" approxima-
tion the Wannier functions u (r' —R ) are simply the atomic wave functions. For a transition in the crystal &om the
ground state with wave vector po to the state m with wave vector p and assuming that H'(r; ri, . . . , rN ) = H'(r —r'),
where

H'(r —r') =
4vreo~r —r'~

' (A8)

we can write the interaction matrix elements H' 0(r) [Eq. (2.3)] as

H' o(r) =
2 ) exp [i(po —p ) R ] u' (r' —R ),uo(r' —R )dr' .

4vr~pN

We have used the orthogonality property of the Wannier functions, t u' (r' —R )uo(r' —Rp)dr' = 0, unless n = P.
Inserting Eq. (A9) into E o(k' + g —K') [Eq. (A6)] we obtain, by integrating over r,

e 4'-'("'+' K') = 4.„~~k'+,-K")--'['(" '-) R-]

x u' (r' —R )uo(r' —R )exp[i(k'+g —K') r']dr'.
V

(A10)

Letting r' = R + (r' —R ), we can write Eq. (A10) as

2

E o(k'+g —K')=. ..) exp[i(po —p +k'+g —K') R ]F 0(k'+g —K'),
eoN k'+ g —K' 2 (A11)

where

E o(k'+ g —K') = u* (r')exp[i(k'+ g —K') r']uo(r')dr' .
V

(A12)

We now focus on the summation over the lattice sites n in Eq. (All). Writing ps = po —p

S = ) exp[i(po +k'+g —K') R ]

a
exp [i(po —K~ + A' n) . r]dr,

V
(A13)

assuming the argument of the exponent in the summand varies slowly over the unit cell. We have used the fact that
exp (ig R ) = 1, and C is a reciprocal lattice vector such that K~ = (K —K + p ) —C is a vector in the first
Brillouin zone. We now make the same assumptions about the scattering geometry that were made in Sec. II. We
assume that all the reciprocal lattice vectors which contribute to diffraction lie in a plane (the zy plane), and that
this plane is parallel to the crystal surface. The z direction is perpendicular to the xy plane, and hence along the
crystal surface normal n. The crystal surface is assumed to be very large (of area A), but strictly finite and of much
smaller dimension (thickness t) in the n direction. We then obtain, as A n now only has a component along the z
direction,

S = — exp [i(po —Kc) r „]dr „exp [i(po, —KG., + A')z]dz
0

h (pp —K~ ) „exp [i(po, —K~, + A') z]dz .(2~) 2

V 0

Inserting Eq. (A14) into Eq. (All) we obtain

e2 (2')z 1E~o(k'+ g —K ) = . . . 2b(po —K~) &E o(k'+ g —K') exp [i(po, —K~, + A')z]dz . (A15)
0
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Now substituting Eq. (A15) for E o(k'+ g —K') in Eq. (A5) but using Eq. (All) for E' 0(k~ + h —K') we obtain

(;) ~ e
&,

(2~) ) - +'o(k'+ h —K') +-o(k'+ g —K')
(2vr) h'V eoNp V, ~» + h —K'~' ~k'+ g —K'~

mgO

xb(po —K~) „) exp [
—i(p() —Kc + A~*z) . R ] exp [i(po, —Kg, + A')z]dz .

Ck
0

(A16)

The ground state of the crystal is speci6ed in this notation by the wave vector po, which is of course just convenient
notation for the multitude of allowed initial band states. Scattering from all these states is allowed, and so we must
sum over all possible initial band wave vectors po. In the limit of a large crystal, we replace this summation by an
integral, i.e. , P ~ V/(27r) J dpo. Due to the surface 8 function b'(po —Kc) z, we are left with an integral over

poz)

(,) ~ ( e '] (2vr) N V ). E' o(k~ +. h —K') E o(k' + g —K')
(2~)'&'V (eood) V t (2~)' - lk'+ h —K'I' Ik'+ g —K'I' b~Z" —I ' ~aK'

m+0
t t

~ ~

~

OO

exp[i(A'z' —Az*z)] exp[i(pe —lice, )(z —z')]dpe, )
dzdz'. (A17)

BEG
po

p~z
t9po

m
~ p~, po

(A18)

for nearly &ee dispersing final states of energy e
52' 2/2m, . From conservation of energy

In order to perform the integration over po, we proceed
as follows. From the definition of K~ we may write

where a is the dispersion factor of the initial band which
we may take to be approximately constant. This approx-
imation is valid only for linearly dispersing bands. We
note that for "flat" bands (such as those pertaining to
inner shell electrons) a=O. Integrating we then obtain

KG! app + c,
where c is a constant. Hence the integration over po can
be approximated by

it is clear that

Ep —E = r —~0, (A19)
exp [i(po, —Ki-, )(z —z')]dpo,

~rn

po

|98'0

po
(A2O) = exp [

—ic(z —z')] b(z —z') . (A23)
(1 —a)

]I9KG.' m 080
Bpo h2p Bpp

(A21)

because the incident electron energy Eo and scattered
electron energy E are known and are not explicitly a
function of po, . Therefore from Eq. (A18)

As pointed out by Young and Rez the delta function
h(z —z') implies that crystal layers of different z con-
tribute incoherently to the cross section.

Returning to Eq. (A17) and using Eq. (A23) we per-
form the integrations over z and z' as follows:

t t OO

exp [i(A'z' —Az'z)] exp [i(pe, —ECzz, )(z —z')]dpe ) dzdz'
0 0 —OO

t t
exp [i(A'z' —A'*z)] exp [ic(z —z')]b(z —z') dzdz'

(1 a)t ( ()

2'
exp [i(A' —A")z]dz

(1 —a)t

L"(t)
(1 —a)

where L'&(t) is given by
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exp [i(A' —A'*) t] —1L'~ t
i(A' —A&') t (A25)

Substituting Eq. (A24) into Eq. (A17) and gathering the constants, we obtain our final expression as

(W
'

)
~'l = L'~ (t)Xq (A26)

where

4g' 1 1 . I",{k&+h —K') E,(k'+ g —K')
8 K' —k dK'.

mao2 V (1 —a) ~k~ + h —K'~2 ~k'+ g —K'[ (A27)

APPENDIX B: THE INELASTIC
SCATTERING COEFFICIENTS

FOR INNER-SHELL IONIZATION

Here we derive the form of the ph' for inner-shell ion-h, g
ization from a particular atom species (denoted by )9) in
the crystal lattice. The general form [cf. Eq. (2.16) and
Eq. (3.11)] is

k, Va,' (1 —a)

xb(K' —k )dK', (B1)

where Q' = k' + g —K'. The "tight-binding" approxi-
mation describes the inner-shell electron states to a good
approximation. We replace the Wannier functions u (r)
and uo(r) occurring in the transition matrix elements
E 0(Q') [cf. Eq. (A12)], by the sum of atomic wave

functions u) (r) and u~o(r) at each atomic site wp {la-
beled by n) in the unit cell. We then obtain

For ionization we replace the summation over all dis-
crete Anal states m of the crystal, by the equivalent in-
tegral over all the possible final continuum state wave
vectors (denoted by m) of the ejected electron, g
V/(2n) I dtc, . Furthermore, the discrete atomic transi-
tion matrix elements [Eq. (B3)]must be replaced by their
equivalent continuum forms:

Fp(Q*, m) = QNVb~*(m, r)exp [iQ' . r]ug (r)dr .
V

(B4)

The final state wave function u) (r) has been replaced by
the dimensionless orthogonal plane wave continuum state
QNVb~(tc, r). The continuum state is normalized to the
crystal volume and hence gNV& (tc, r) is dimensionless.
We can then write

).Ce(Q»)~-e(Q;) =
2 .J +~'(4» ")

mgO

+-0(&;) = ) exp(ig. ~~.)+ o(&;)
x E~ (Q', dc, )d~ . (B5)

where

P (Q')e= j»d *(r)exp(eg' . r]»e(r)dr .

An additional factor of n is included to take into account
the number of electrons in a particular given shell in the
atom, e.g. , n=2 for the K shell. Before we proceed fur-
ther we evaluate the K' integration in Eq. (Bl), in terms
of the scattered electron wave vector k

K'
G(K')d(K' —)e )dK =/ 'G(K')d(K'e —k )dO» dK'e

G(k )der,
k

2

G(K') dA~
2

where we have relabled the scattered electron wave vector as I' for convenience.
We may now evaluate the p~&' from Eq. (Bl) by using Eq. (B6) and Eq. (B5), obtaining

(2~) koVa2 (1 —a)
(B7)

where dm = r dKdO„, and

%[site] = ) exp[—Mp(g —h)] exp [i(g —h) . wp„] . (BS)
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The Debye-Wailer factor Mp(g —h) has been inserted in Eq. (B8) following Ref. 9, to take into account the delocal-
ization of the ionization interaction at each atomic site, due to the thermal motion of the target atom.

In the high-incident-energy approximation ~Qg~ = ~Qz~ and we can neglect the i and j dependences in Eq. (B7).
Further setting a = 0 (a good approximation for tightly bound inner-shell states) gives the form of the ph z's for
inner-shell ionization from the atoms of species P,

4n . , z t' Fl '(Qh, ~)F~(gg, ~)

1
%[site] fh

0 c
(B9)

where fh g is the inner-shell ionization form factor.
The above expression for the inner-shell ionization coefEcients integrates over all possible scattered electron orienta-

tions and all possible energy losses. This is appropriate for experimental situations such as EDX spectroscopy where
the scattered electron is not detected. In many cases (such as for EELS) the scattered electron is detected within
a well-defined aperture and energy loss window above the ionization threshold energy. The appropriate inelastic
scattering coefBcients are then obtained simply by constraining the integrations over O~t and e appropriately.

C. J. Humphreys, Rep. Prog. Phys. 42, 1825 (197S).
Y. H. Ohtsuki, Charged Beam Interactions with Solids
(Taylor 4 Francis, London, 1983).
C. J. Rossouw and M. J. Whelan, Ultramicroscopy 6, 53
(1981).
M. J. Whelan, J. Appl. Phys. 36, 2099 (1965).
G. Radi, Acta Crystallogr. A 26, 41 (1970).
D. M. Bird and Q. A. King, Acta Crystallogr. A 46, 202
(1990).
H. Yoshioka, J. Phys. Soc. Jpn. 12, 618 (1957).
H. Bethe, Ann. Phys. (Leipzig) 87, 55 (1928).
D. Cherns, A. Howie, and M. H. Jacobs, Z. Naturforsch. A
28, 565 (1973).
T. Fujikawa and L. Hedin, Phys. Rev. B 40, 11507 (1989).
Z. L. Wang, Acta Crystallogr. A 46, 366 (1990).
Y. H. Ohtsuki and S. Yanagawa, J. Phys. Soc. Jpn. 21, 326
(1966).
P. H. Dederichs, Phys. Kondens. Mater. 5, 347 (1966).
D. J. Smart and C. J. Humphreys, in Electron Diffraction
2927—1977, edited by P. 3. Dobson, J. B. Pendry, and C. J.
Humphreys, IOP Conf. Proc. No. 41 (Institute of Physics,
Bristol, 1978), p. 145.
P. Rez, Acta Crystallogr. A 32, 48 (1978).
C-O. Almbladh and L. Hedin, in Handbook on Synchrotron
Radiation, edited by E-E. Koch (North-Holland, Amster-
dam, 1983), Vol. 1B, p. 607.
K. Kambe and K. Moliere, in Advances in Structure Re-
search by Digraction Methods, edited by R. Brill and R.
Mason (Pergamon, Oxford, 1970), Vol. 3, p. 53.
A. P. Young and P. Rez, J. Phys. C 8, Ll (1975).
L. J. Allen, I. E. Mc Carthy, V. W. Maslen, and C. J.
Rossouw, Aust. J. Phys. 43, 453 (1990).
T. W. Josefsson and A. E. Smith, Phys. Rev. B 50, 7322
(1994).
J. Gjpnnes, Acta Crystallogr. 20, 240 (1966).
C. R. Hall and P. B. Hirsch, Proc. R. Soc. London A 28B)
158 (1965).
C. 3. Humphreys and P. B. Hirsch, Philos. Mag. 18) 115
(1968).
H. Horiuchi, Prog. Theor. Phys. 64, 184 (1980).

L. J. Allen and C. J. Rossouw, Phys. Rev. B 47, 2446
(1993).
J. Taftg, Z. Naturforsch. A 34, 452 (1979).

"K. M. Krishnan, Ultramicroscopy 24, 125 (1988).
W. Niichter and W. Sigle, Philos. Mag. A 71, 165 (1995).
L. J. Allen, Ultramicroscopy 48, 97 (1993).
L. 3. Allen, T. W. Josefsson, and C. J. Rossouw, Ultrami-
croscopy 55, 258 (1994).
T. W. Josefsson, L. J. Allen, P. R. Miller, and C. J.
Rossouw, Phys. Rev. B 50, 6685 (1994).
C. J. Rossouw, P. R. Miller, T. W. Josefsson, and L. J.
Allen, Philos. Mag. A 70, 985 (1994).
V. W. Maslen and C. J. Rossouw, Philos. Mag. A 47, 119
(1983).
V. W. Maslen and C. J. Rossouw, Philos. Mag. A 49, 735
(1984).
C. J. Rossouw and V. W. Maslen, Philos. Mag. A 49, ?43
(1984).
V. W. Maslen, Philos. Mag. B 55, 491 (1987).
D. K. Saldin and P. Rez, Philos. Mag. B 55, 481 (1987).
P. A. Doyle and P. C. Turner, Acta Crystallogr. A 24, 390
(1968).
L. 3. Allen and C. J. Rossouw, Phys. Rev. B 39, 8313
(1989).
N. M. Butt, J. Bashir, B.T. M. Willis, and G. Heger, Acta
Crystallogr. A 44, 396 (1988).
W. M. Stobbs and A. J. Bourdillon, Ultramicroscopy 9,
303 (1982).
V. W. Maslen, J. Phys. B. 16, 2065 (1983).
S. J. Pennycook and D. E. Jesson, Ultramicroscopy 37, 14
(1991).
C. 3. Rossouw and L. A. Bursill, Proc. R. Soc. London A
408, 14S (1986).
Z. L. Wang and J. M. Cowley, Ultramicroscopy 31, 437
(1989).
D. D. Perovic, A. Howie, and C. J. Rossouw, Philos. Mag.
Lett. 67, 261 (1993).
C. J. Humphreys and M. J. Whelan, Philos. Mag. 20, 165
(1969).


