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Generalized fundamental equations for electron diffraction in crystals, which include the effect of
inelastic scattering described by a nonlocal interaction, are derived. An expression is obtained for
the cross section for any specific type of inelastic scattering (e.g., inner-shell ionization, Rutherford
backscattering). This result takes into account all other (background) inelastic scattering in the
crystal leading to absorption from the dynamical Bragg-reflected beams (in practice mainly due to
thermal diffuse scattering). There is a contribution to the cross section from all absorbed electrons,

which form a diffuse background, as well as from the dynamical electrons.

The approximations

involved in assuming that the interactions leading to inelastic scattering can be described by a
local potential are discussed, together with the corresponding expression for the cross section. It is
demonstrated by means of an example for K-shell electron energy loss spectroscopy that nonlocal

effects can be significant.

I. INTRODUCTION

The inelastic scattering of electrons in electron diffrac-
tion plays a vital role in many experimental procedures
involving the scattering of electrons in a crystalline envi-
ronment. Inelastic scattering not only leads to an energy
loss for the electrons. They may be scattered through an
angle large enough such that the electron is no longer part
of the dynamical wave function describing the diffraction
of the electrons. Electron microscopists say that such an
inelastic scattering event has led to absorption from dy-
namical beams (which is not true absorption in the usual
sense).! The main inelastic mechanisms we consider!:?
are (i) single-electron excitations, (ii) collective atomic
excitations [phonons, leading to thermal diffuse scat-
tering (TDS)], and (iii) collective electronic excitations
(plasmons). Plasmon excitations are not necessarily con-
sidered absorptive since the electrons are mostly scat-
tered through small angles.?

In this work we are mainly concerned with the scatter-
ing of fast electrons in crystalline solids. For electrons in
the energy range of several keV to MeV, exchange inter-
actions can be ignored. The Coulombic crystal potential
can be considered to be essentially local. The absorp-
tive scattering is also very often represented in terms of
a complex energy-dependent local potential.l*™® How-
ever, it is often not appreciated that, unlike scattering
from the crystal potential, inelastic scattering can have
substantial nonlocal character.

In Sec. II we derive general dynamical scattering equa-
tions for electrons incident on a crystal of a given finite
thickness which are a generalization of those given by
Yoshioka” which in turn are a generalization of those de-
rived by Bethe® in 1928. These fundamental scattering
equations follow from a Schrodinger equation containing
1

[V2+kg—2—m

0163-1829/95/52(5)/3184(15)/%06.00 52

i Haa(s)| wo(e) -

a nonlocal integral kernel that represents inelastic scat-
tering (including virtual inelastic scattering). We show
that, with appropriate assumptions and simplifications,
our dynamical scattering equations become independent
of thickness and reduce to those given by Yoshioka.

In Sec. IIT we derive a general form for the cross sec-
tion for any particular type of inelastic scattering in a
crystal from the nonlocal formulation obtained in Sec.
II. This general cross section expression consists of two
terms. One is due to inelastic scattering of the dynamical
Bloch waves describing electron diffraction. The other is
due to a diffuse background of electrons that have scat-
tered out of the dynamical waves, in practice mainly as
a consequence TDS.

In Sec. IV we show how local approximations may be
used to represent nonlocal inelastic scattering, making
clear the assumptions made. An expression for the cross
section is then obtained in terms of a local inelastic po-
tential which, if the local potential is represented by a ¢
function, reduces to the previous result of Cherns et al.®

In Sec. V we consider the effects of nonlocality in the
cross section by comparing nonlocal and local cross sec-
tions for K-shell ionization in electron energy loss spec-
troscopy (EELS) for 120 keV electrons incident on Al

II. FUNDAMENTAL SCATTERING EQUATIONS

A. Generalized fundamental scattering equations

As shown by Yoshioka,” the scattering of fast electrons
incident on a crystal, taking into account absorption, can
be described by an integro-differential equation of the
form

2m ’ Nt
Fz /A(r,r )po(r')dr' =0, (2.1)
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where 1 (r) describes elastic scattering of the fast electron. This result can be viewed as an equation for a one-electron

state with damping due to the nonlocal kernel,'®

m
A(r,r’) = ~oniZ D Hipm(r)
m#0

which is given by

exp (ikp|r — 1r'|)

mo(r’) e ] ) (2.2)

where k,,, is the magnitude of the wave vector of the scattered electron. In general the interaction matrix elements

H] . (r) are given by

H, .(r)= /a:‘n(rl,...,rN)H'(r;rl,...

where H'(r;r1,...,ry) describes the interaction of the
incident electron (coordinate r) with the crystal parti-
cles (coordinates r;) and a,(ri,...,rn) represents the
nth stationary state of the crystal. The approximation
has been made that only excitations from the ground
state contribute significantly to the scattering,!! i.e.,

o(r) >> H} (r) (n # 0). A treatment of inelastic
scattering which does not neglect the terms H), . (r) (n #
0) is discussed in Ref. 10. More exact but more compli-
cated forms for A(r,r’) can be obtained.10:12:13

For fast electrons the interaction matrix element
Hlq(r) can be assumed to represent the local crystal
potential due to elastic Coulomb scattering and ex-
change is ignored.*!® [At lower energies another non-
local term representing exchange could be included in
the Schrédinger equation or a local, approximately equiv-
alent, contribution could be included in H{y(r).] Be-
cause of the periodicity of the crystal lattice, Hjo(r) =
H{y(r+R,) for any lattice vector R, and H{,(r) can be
expanded in a Fourier series

Hio(r) = — 3 Viexp (ig - 7)., (2.4)
-4

where V are the Fourier coefficients and the g’s are re-
ciprocal lattice vectors. The minus sign has not been
absorbed into the Vg’s so that the usual definition of
the Fourier coefficients used in electron diffraction is
preserved.! The inelastic scattering of the fast electron is
represented by the additional term containing the non-
local kernel A(r,r’). In general A(r,r’) depends on the
energy of the incident electron. It has the periodicity

property
A(r, vy = A(r + Ro, ¥ + Ry, (2.5)

2 7 2 11 . i %
g[x — (k' +h) ]th[/exp[z(h—g+k —K*) - r]dr

,IN)an(r1,...,rN)dry,. .., dry (2.3)

for any lattice vector R,. The approximate equality re-
flects the fact that in principle such a symmetry is only
approximate. For example, after a core excitation the in-
teraction between the core hole and the valence electrons
destroys translational symmetry.'® However, such contri-
butions to A(r,r’) are small so that equality in Eq. (2.5)
is assumed from this point onwards, as done by others.”17
Because of the periodicity of Hyy(r) and A(r,r’), the gen-
eral solution to Eq. (2.1) can be written as a sum of Bloch
states ¢(r), such that

Po(r) = Z o Z C; expli(ki+g)-r] = Z a‘Pi(r) .
(2.6)

o' is the amplitude of the ith Bloch state ¢*(r). Each
Bloch state is individually a solution to Eq. (2.1) and
has an associated complex wave vector k’. The boundary
conditions require that these Bloch wave vectors have the
same tangential component along the crystal surface, and
hence they can only differ by a component in the direction
along the (inwardly directed) surface normal n. With
these boundary conditions k* = K + A*A, where K is the
incident wave vector in the crystal corrected for refraction
such that K? = k% + 2mV,/A%. The complex quantities
A% can be written as

No=qtin', (2.7)
where «* are the real parts (anpassung) and 7 are the
absorption coefficients.

Using Eq. (2.4) and also substituting the Bloch state
expansion of the wave function (2.6) into Eq. (2.1), pre-
multiplying by 1/V exp [—i(k** + g) - r], and integrating
over the crystal volume, we obtain

2m ,,,1 . i Tk
+E2—vazch7/vexp[z(f+h—g+k —k**) - r]dr

££0 h

2m

T B2
A h

Cfl% / / exp [—i(k*™* + g) - r]A(r, 1) exp [i(k* + h) - ¢']drdr’ =0 .
vV JV

(2.8)
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We now make some assumptions about the scattering geometry. We assume that the real-space diffracting planes
are perpendicular to the crystal surface. Therefore the reciprocal-space vectors h and g pertinent to the scattering lie
in a plane parallel to the crystal surface (i.e., perpendicular to fi). The plane defined by the h and g vectors is called
the zy plane. The zy plane in turn defines the z direction, and in this case fi (and hence A'f) is along the z direction.
If in addition we assume that the surface area A of the crystal is very large, the integrations over the crystal volume
in Eq. (2.8) reduce to

. . 1 [t . .
L / exp[i(h — g+ k* — k™) - rldr = L / exp [i(h — g) -rxy]dr,,y—/ exp [i(k* — k**) - z]dz
Viv A Ja tJo

= SngL(t), (2.9)

where t is the thickness of the crystal in the direction of the surface normal . We assume that ¢ is much smaller
than the surface dimensions A of the crystal and we do not obtain a § function in this direction. This is a crucial
assumption, the importance of which has been previously emphasized.!®'® Physically, the assumption of a § function
in the z direction would imply that the detector(s) in our scattering experiment is inside the crystal and that we could
resolve the different A*’s, which is not possible. The dimensionless quantity L¥*(t) is given by

exp [i(A* — A™*)t] —1 1 — exp(—2%°t)
i(Af — Xi*)t - 2n't

L¥(t) = , (2.10)

where we have used Eq. (2.7). The scattering equations (2.8) reduce, with the assumptions given below them, to

m lt 1t
[K? — (k' + g)?|L¥(t)CL + T |1 D Ve-nCi + ZW ‘WCil =0, (2.11)
h#g
where
Wen = —-‘-1; /V /V exp [—i(k™ + g) - r]A(r, ') exp [i(k* + h) - r']drdr’ . (2.12)

This is the general form of the dynamical scattering equations allowing for inelastic scattering, for the case of a crystal
of finite thickness t. These fundamental dynamical equations, which have to be solved in a self-consistent way, are a
generalization of those given by Yoshioka” which in turn generalize those derived by Bethe.®

B. Reduction of scattering equations to those of Yoshioka

The reduction of our equations to those of Yoshioka is now discussed. Since A(r,r’) given by Eq. (2.2) is not
Hermitian, W“h [Eq. (2.12)] is also not Hermitian. However, we may split W’fh into two parts which are individually

Hermitian as follows: Wi, = (Wi )" + (Wi, )®), where

( ;‘fh)(ﬂ——— / / exp [—i(k™* + g) - T][A(r, ') + A* (', )] exp [i(k' + h) - ']drdr’ , (2.13)

(W) © _‘27? / / exp [—i(k* + g) - TJ[A(r,r') — A* (', r)] exp [i(k + h) - '|drdr’ . (2.14)

We note that for a centrosymmetric crystal, (Wéfh)(’) and (Wéfh)(i) are both real quantities. The term (Wé‘;h)(i)
represents the actual inelastic scattering of the incident electron, while the term (Wéfh)(’) represents the virtual
inelastic scattering. We note that |(Wéfh)(’)| is several orders of magnitude smaller than |(W;fh)(i)| at high incident
energies'®?% and so will be neglected for the remainder of this work. In turn |(W, )| is usually an order of magnitude

smaller than the magnitude of the elastic potential coefficients |Vg|.1'14

With the assumptions about the scattering geometry discussed above, and bearing in mind that the thickness of
the crystal is small compared to the surface dimensions, the (W" )® can be written in the form [cf Appendix A
and in particular Eq. (A26)]

(Wn )(1.) _ Lu(t) gh? (2.15)
where
s 4?1 mo(K' + 8~ K') Fro(k' + h—K') & =y 15\
Xg,h = ma2 v (1-— a) Z / ki+g-— K'|? ki +h— K'|2 §(K'"® — kZ)dK' . (2.16)
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The Bohr radius ag = (47h%e)/(me?), and a is the
band dispersion factor of the initial state.'® The quantity
q = K — K’ is the momentum transfer from the incident
electron to the scattered electron. The transition matrix
element F,o(k?+h—K') between the ground state uo(r)
and excited state u,,(r) of the crystal is given by

Fpo(ki +h-K') = L Um*(r)exp [i(k' + h — K') - r]

Xug(r)dr . (2.17)

Using Eq. (2.15) the thickness-dependent factor in Eq.
(2.11) cancels and the dynamical scattering equations re-
duce to

i i 2m i
[K? - (k' +g)%]Cq + F2 D Ve-nCi,
h#g

2m i i
+ﬁ E XgnCn=0. (2.18)
h

To a good approximation for fast electrons |k*| ~ |K|.
If in addition to this approximation we assume that the
Aif component of the wave vector k? only has a small
effect on the transition matrix elements of Eq. (2.17),
then the A* dependence of X;’;h becomes weak. Con-
sistent with this assumption is that L¥(t) ~ 1. Ignor-
ing the i dependence we can write [from Eq. (2.15)]

#n = Xgn = (Wgn)®, and Eq. (2.18) reduces to

i i, 2m i
(K% — (k' +g)*|Cg + 7z > Ve-nCi
h#g

2m i
+0 D WeuCii=0, (2.19)
h

the form of the fundamental equations given by
Yoshioka.”

III. CROSS SECTION FOR INELASTIC
SCATTERING

A. Cross section for absorptive scattering

The cross section for absorptive scattering of a par-
ticular type, or “absorption” from the elastic scattered
electron flux, is given by the number of electrons per
unit volume multiplied by the probability that an inelas-
tically scattered electron will cross the crystal surface,
per incident flux per unit area, i.e.,

/(pv) ,
n#0

(3.1)

o= 1p> [5n(r)-ds
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where p is the number of electrons per unit volume and
v = hko/m is the incident electron velocity. Furthermore,
Jn(r) is the electron probability current density vector
corresponding to an event that leaves the crystal in the
state n. In the usual way, j,(r) can be defined as

3n(6) = SO Vn(®) — Yu (VR (32)

The integral over the crystal surface S in Eq. (3.1)
summed over all n # 0 is the probability that an in-
elastically scattered electron will exit the crystal surface.
Because the total number of electrons is conserved, the
net probability of any scattered electrons exiting the solid
is of course zero. Therefore

Z/sjn(r)'ds=—/sjo(r)-ds.

n#0

(3.3)

The sum of the electron probability currents flowing out
from the crystal by inelastic scattering must be equal to
the net flux of electrons from the elastic scattered part
¥o(r) into (minus sign) the crystal. The electrons that
contribute to the inelastic scattering are effectively ab-
sorbed in the crystal as far as the elastic scattering part
1o(r) is concerned. We can therefore write the inelastic
cross section in terms of the elastic electron probability
current density vector as

1 f.
o = —;/sJo(r)~ds.

Furthermore, it can be shown after some algebral” that

. 1 * *
/Jo(r) ds = o / / B3 (0)[A(x,r) — A°(,1)]
s mJjv Jv
xo(r')drdr’ . (3.5)
Consequently the general expression for the cross section
for inelastic scattering is given by

1 * N _ A*(r'.r r)drdr' .
Uz_%kl/'zpo(r)[A(r,r) A*(x',r)]¢o(r")drd,

(3.6)

The quantity —1/¢A[A(r,r’')—A*(r', r)] expresses the spa-
tial distribution of the nonlocal “absorption power,” with
the amount of absorption depending on the values of

1o(r) at the points r and r’.17

(3-4)

B. Cross section due to dynamical electrons

The cross section for inelastic scattering of the dynam-
ical fast electron Bloch states in the crystal can then be
written using Eq. (2.6) in Eq. (3.6) as

i g i gx 1 Lg% " i
Gayn = ~NVegze D aled* 3 CLO0 /V /v exp [—i(k?* + h) - F][A(r, ') — A" (', )] exp [i(k’ + g) - r']drdr’ .
i, gh

(3.7)
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From Eq. (2.14) this becomes

Tdyn = h2k Z a’*ZC‘C’* Wi )®, (3.8)
and we may rewrite this in turn as
2m i i ik i
Odyn = WNVCZB My cicirxi,, (39
0 i gh
where Xl’:g is given by Eq. (A27) and
Bii(t) = *'a?*L¥(t) , (3.10)
with L% (t) as given by Eq. (A25). Letting
ﬁszXl’"g = l‘;.,g , (3.11)
we then have
Tayn = NV. > BY(1) Z Celllthg - (312)

4,3

Assuming, as before, that the 7 and j dependences of
the Xl’lfg are weak, we can drop the ¢ and j dependence

in ,u,{:, g and write

Tayn =NV, B9 (t) Y CiCllung »
2% gh

(3.13)

which is similar to the result obtained using a different
approach in Ref. 19. This result can also be obtained
from the transition matrix element in Ref. 10 provided
the approximation below Eq. (2.3) is made.

C. Cross section due to diffuse background

Electrons may be scattered in such a way that they are
no longer described by a wave function of the form given
by Eq. (2.6). This is often referred to as “anomalous
absorption.” Due to this absorption, represented by the
absorption coefficients n* implicit in Eq. (2.6), the dy-
namical Bloch waves decrease in intensity as they prop-
J
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agate further into the crystal. Ultimately, for sufficiently
thick crystals, the cross section due to the electrons in
the dynamical Bloch waves o4y, should approach zero.
However, the decrease in dynamical Bloch wave intensity
leads to a corresponding increase in intensity of a dif-
fuse background of electrons which have been absorbed.
These (in practice mostly TDS) electrons in the diffuse
background contribute to further inelastic scattering, and
must be included in the total cross section.

To obtain the cross section og4;is for the electrons in the
diffuse background we require the wave function for these
electrons. After they have been absorbed, the electrons
propagate through the crystal along directions different
from their initial direction. It is unlikely that these elec-
trons undergo strong Bragg reflection, and so they can be
described by plane waves and form a diffuse background.
We assume that the final states of the electrons in the
diffuse background can be written

Pai(r) = Z a™(h-r)exp (ik™-r), (3.14)

where k™ are the (real) wave vectors of the electrons in
the diffuse background. The sum could be replaced by
an integral?! but the above form is appropriate for our
purposes. The amplitudes of these plane waves,

a*(-r)=a"[l —exp(—n"h-r)], (3.15)
are a function of distance normal to (or depth into) the
crystal surface. The amplitudes of the diffusely scattered
waves are zero at the entrance surface, o™(0) = 0, and
all the electrons are in the dynamical beams. As the
dynamical waves propagate through the crystal the am-
plitudes of the diffusely scattered waves increase until, for
a sufficiently thick crystal, they saturate to a™. Because
the individual plane waves in the diffuse background act
independently, the cross section for the diffuse electrons
o4if is simply that obtained incoherently from the plane
waves of wave vector k™ and amplitude, o™ (f1 - r), i.e.,

o n* n _ * . / L . /
gaif = — Z/ / (A -r)exp (—ik™ - r)[A(r, ') — A*(r/,r)]a” (A - ¢’) exp (¢k™ - ¢')drdr’ . (3.16)
Inserting o™(fi - r) into Eq. (3.16) we can separate this cross section into four terms and write
Tai = NVesm— hzk |a"|2[(ngg)(i) + (W)@ — (Wep)® — (Wes) @1, (3.17)
where
(Wg‘,{)’)(i) =5V / / exp (—ik™ - r)[A(r,r’) — A*(¢/,r)] exp (k™ - r')drdr’ , (3.18)
(Wee)® = %V / / exp ( *.r)[A(r, ') — A*(r',r)] exp (k" - ¢')drdr’ (3.19)
W) ® = _Eﬁ/—/ / exp (—ik" - r)[A(r,r') — A*(r',r)] exp (¢k™ - v')drdr’ (3.20)
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and
N (4 1 —n
Wes)® = 5 /‘; /‘; exp (—ik™ - r)[A(r,r') — A*(r',r)] exp (¢k - r')drdr’ (3.21)
with k" = k™ + in™h.
Now Eq. (A26) can be applied to each of Egs. (3.18)—(3.21) and we can write

gaie = NVe Y o™ [ugh + L™ ™ (t)ugs — L™ (8) (g5 + 1o,3)] » (3.22)
n
where
2m W¢e
nn __ )
M85 = Fag, Tom(r) ’ (3.23)

and similarly for the other pg o terms. We have also made use of the properties [see Eq. (2.10)] L™"(t) = 1 [as L™"(t)
is constructed from a real wave vector] and L™ ™(t) = L™"(t).

At high incident energies |k?| ~ |K| and |k"| & |K|. The latter is true because TDS is the dominant contribution to
absorption and, while TDS can be through large angles, it involves relatively little change in energy.22:23 We can then
drop the n and 7@ dependence in the u terms [but not in the L(t) terms]. The cross section for the diffuse electrons
can then be written as

gaie = NV Y |a™*[1 + L™7(t) — 27" (¢) ] uo,o - (3.24)

n
The diffuse electron plane wave amplitudes a™(fi - r) and wave vectors k™ are not known directly. However, they
can be related to the known scattered Bloch wave amplitudes. We know that an electron must be in one of the states

of either the dynamical or the diffuse background wave function. From conservation of particles the total probability
of finding an electron in any of these states must be equal to 1. We can write this as

_1 n/a ™ . 2 _1_
l-Vj‘;gla (f-r)exp (k™ - r)| dr+VA

The integral involving the dynamical wave function becomes

7).
Vv
The integral involving the diffuse background wave function can be written

= /V 3" lan[1 - exp (=7"2)] exp (ik™ - 1)[2dr = 3 o™ [2[L + L*™(8) — 2L (¢)] . (3.27)

Z a Z Ciexpli(k’ +g)-r]| dr. (3.25)
i 8

2
dr =Y B9(t)Y CiCi". (3.26)

%7 -4

oot Y Ciexplifki +g) 1]

Conservation of particles [Eq. (3.25)] then entails that

S ler P+ LT () — 2L (t)] =1 - Y BY(t) Y CiCi*, (3.28)
n i, g
so that Eq. (3.24) may be rewritten as
ggif = NV;; 1-— ZB” (t) ZC&C&” Ho,0 - (329)
1,3 g

D. Total cross section for inelastic scattering

The total cross section can be obtained from Egs. (3.13) and (3.29) in terms of the known Bloch wave amplitudes
and coefficients as

0 = 0dif + Odyn

=NV{ [1=-3"BY9(@t) S CLCI* | poo+ D B9 (1)) c;c,{*uh,g} . (3.30)
i, g i,J

gh
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While the png refer to the specific inelastic scattering
under consideration, the scattering coefficients A\* implicit
in the B (t) and the Bloch state coefficients Ci come
from solution of the total scattering equations. Hence in
principle they include all absorptive scattering which is
concurrently occurring. If there is no diffraction, then
Eq. (3.30) reduces to the kinematic value

Okin = N‘/cll,o’() . (331)

In the limit as t — oo the B%(¢) — 0 and we also obtain
the kinematic result given by Eq. (3.31).

IV. LOCAL APPROXIMATION
A. Approximately equivalent local potential

Nonlocal interactions are often approximated by lo-
cal potentials?* for ease of application or visualization.
We now construct a local potential Vi (r) approximately
equivalent to the nonlocal inelastic scattering potential
in Eq. (2.1), by which we mean that

Vi (£)bo(r) ~ / A, ' )o(r')dr’ . 4.1)
When we solve the scattering equations with this local
potential, we should then obtain coefficients Cg and wave
vectors k’ that are similar to those obtained from the

nonlocal scattering potential. We consider the nonlocal
term as follows:

/ Ar, ') o (r')dr’ = / A(r,r + 8)do(r +5)ds , (4.2)

J

/A(r, r + s)o(r + s)ds =~ Z A(r,r + Ry) exp (1K - Ry )Yo(r) Ve .
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where we have let r’ = r +s. Let us approximate the
right-hand side of Eq. (4.2) as follows:

/A(r, r + s)Yo(r + s)ds = Z A(r,r + R,)

Xo(r + Ra) Ve, (4.3)

where R, are real-space lattice vectors and V, is the unit
cell volume. From Eq. (2.6) and as exp (ig- Ry) = 1, it
follows that

Yo(r +Ry) = Zai Z C; exp [i(k' +g) - (r + Ry)]
i g
= Z o' exp (ik* - Ry)

X Z Ciexpli(k’ +g)-r]. (4.4)

Since |Af| < |K|, we make the assumption that
exp (ik' - Rq) = exp [i(K + A1) - Rq] = exp (iK - Rq) .
(4.5)
Equation (4.4) then becomes [using Eq. (2.6)]
Yo(r + Ry) = exp (K - Ro)9o(r) . (4.6)

The effect of exp (iK - R,) is to translate the electron
wave function by a reciprocal lattice vector R (to a good
approximation). Therefore Eq. (4.3) can be written as

(4.7)

The inverse Fourier transform of Eq. (2.12) (ignoring the i dependence) is

A(r,r') = —-% Z Wegnexp[i(K+g) -rlexp[—i(K +h)-r'].

g h

It follows that

A(r,r + Rya) = —% 3 Wenexp [i(g — h) - r]exp (—iK - Ra) exp (—ih - Ry) .

gh

(4.8)

(4.9)

Substituting Eq. (4.9) and Eq. (4.6) into Eq. (4.3) we obtain

/A(r, r+s)o(r +s)ds = — Z Wgnexp[i(g —h) - rlyo(r)

gh

(4.10)

where we have used the relation 3, exp (th- Ry) = N and NV, = V. We therefore obtain the approximate equivalent

local potential [cf. Eq. (4.1)] as

Vi(r) == Wenexpli(g —h)-r].

8 h

(4.11)

The Wy n are clearly the Fourier coefficients of the equivalent local inelastic potential corresponding to the vectors
g — h [with sign convention as discussed for the Fourier coefficients of the elastic crystal potential after Eq. (2.4)].
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As such, the Wy 1, should depend only on the difference of the two vectors, g — h. Let us now make more explicit
why this is indeed the case. If we assume at the outset that A(r,r’) is local, i.e., given by Vi(r)é(r — r’), then Wy,

(ignoring the ¢ dependence) becomes

Weg.n

= 2 [ expli(g - h) -x]Vi(r)dr .

Vv

We see from inspection (i.e., by direct substitution) that
We.h = Wg_n,0, and so we can write Eq. (4.11) as

Vi(r) = - Wg noexpli(g—h) - r].
g)h

(4.13)

B. Cross section in the local approximation

In the local approximation we can rewrite the cross
section expression [Eq. (3.30)] as

o= NVC{ [1 -Y " BY(t)Y) C;‘Cg*] py

2%
+Y BU(t) Y Cicy u,ﬁ_g} :
i,J g:h

The superscript L denotes “local,” and p,ﬁ_g = Uh-g,0-
Equation (4.14) is the expression used in previous work?®
and in the case of a § function interaction (uf ~ pﬁ_g
for all h, g) reduces to the expression obtained by Cherns
et al.® The work of Cherns et al. has been elaborated on
by Taftg?% and also Krishnan.2” An expression similar to
Eq. (4.14) has recently been used in Ref. 28.

The uﬁ_g are related to the Fourier coefficients of the
local potential by

(4.14)

L _ 2m
y‘h—g ﬁ2k0 Wh—g,O .
We have discussed the local approximation for the coef-
ficients y;3,, for the inelastic scattering of interest (for ex-
ample K-shell ionization). This inelastic scattering may
also be absorptive (for the given example of K-shell ion-
ization it is) and thus contributes to the absorption co-
efficients n° and 77 implicit in the B (t). Other absorp-
tive processes contributing to the absorption coefficients
(TDS is the dominant contribution) may be treated as
nonlocal interactions or also in a local approximation.
Equation (4.14) can be derived more directly by assum-
ing a local potential at the outset but the approximations
made in assuming a local potential are then not as ap-
parent as they are here. The generalization of Eq. (4.14)
to explicitly include diffraction of the scattered electron
has been done in Ref. 29.

(4.15)

V. NONLOCALITY IN INNER-SHELL
IONIZATION CROSS SECTIONS

(3.30) have very recently been
30,31 514

Applications of Eq.
made to energy-dispersive x-ray (EDX) analysis

_% ‘/; /V exp [—i(K + g) - r]VL(r)é(r — r’) exp [{(K + h) - r']drdr’

(4.12)

r

Rutherford backscattering,3? where the correct form for
the nonlocal cross section was conjectured from the cor-
responding local expression [Eq. (4.14)] used in previous
work,2%2° which in turn improved on earlier work only
containing the dynamical term.33737 The rigorous proof
given in this paper puts the nonlocal expression on a solid
foundation and the example we will now discuss shows
the importance of the more exact result.

We will now illustrate the theoretical results by an ap-
plication of the formalism to EELS, in particular for K-
shell ionization in aluminum. Our calculations are for 120
keV electrons incident on Al at room temperature and for
the case of a {111} systematic row. The scattering equa-
tions [Eq. (2.19)] were solved to obtain the Bloch state
coefficients in a similar manner to that disscused in Ref.
31. The elastic potential was calculated in the standard
way for high energy electrons, from the Doyle-Turner3®
x-ray scattering form factors for neutral atoms via the
Mott formula. The TDS form factors were calculated in
the Einstein model,3® with the Debye-Waller parameter
taken from Ref. 40. A collection aperture of 25 mrad has
been assumed and the energy window is 200 eV above the
ionization threshold. Some of our calculations can then
be compared with the experimental results of Stobbs and
Bourdillon.#! They used a slightly off-center collection
aperture with angular radius 25 mrad, allowing passage
of zeroth- and first-order Bragg beams. In our calcula-
tions the detector is placed symetrically about the z axis
and also includes these two beams and it is reasonable
to compare the experimental results with our calcula-
tions. The appropriate form for the coefficients pj, , for
K-shell ionization is derived in Appendix B. They’iave
been evaluated using a hydrogenic model.*?

First the cross section (per atom) has been calculated
using Eq. (3.30) for a range of different incident beam di-
rections and thicknesses. Fifteen beams [or Bloch state
components in the summations in Eq. (3.30)] were re-
quired in the calculation to obtain fully converged results.
The contribution from the dynamic term in Eq. (3.30)
is shown in Fig. 1(a). Note the logarithmic scale for the
thickness of the crystal. The incident beam orientation
in the calculated cross section varies by up to approxi-
mately 60 mrad either side of the symmetrical position
(indicated by 0). A value of unity indicates that (111) is
in the exact Bragg orientation. Orientation dependence
(as a function of crystal thickness) in the cross section is
initially absent but then becomes increasingly important.
As the thickness continues to increase the dynamical con-
tribution to the cross section shows an overall decrease
due to absorptive scattering (in this case assumed to be
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TDS and K-shell ionization). The contribution to the A and becomes the dominant contribution to the cross
cross section due to the diffuse background of electrons section for thick crystals. The total cross section, which
g y
[Fig. 1(b)] increases with thickness, starting initially is just the sum of the dynamical and diffuse components,
from zero. It starts to become important from about 100 is shown in Fig. 1(c). For very thin crystals the cross

P g y y
section has the kinematic value oy, = 3.15 x 1076 A2,
50 and is orientation independent. For increasing thickness
& (a) A it shows strong orientation dependence before once again
°<T [N tending to the kinematic value for very large thicknesses
T T g . t Tae Y ‘arge )
T +.0 i «/////I////l/{////;/;//’;;'lol':‘:“::"’?",/'f""//// i The calculations in Fig. 1 were made assuming the K-
© i ‘//7/////////////”["0‘0“0’0'0//////////{,/’/ shell ionization interaction is nonlocal. In Fig. 2 we show
T 30 i /////I////////ll/'l""l“:"!'f/”//l i the appropriate form factor fy, g defined in Eq. (B9) used
£ il i PProp X Jhe . (B9) use
2 L ,,%%”'Z//////m“,%,/W/ﬂ///”///%&,{%a.j;;%;}@%%' to calculate up g for use in the cross section expression
° 20 WQOW%“%%%%W%W%%”@ [Eq. (3.30)]. If we choose to treat the ionization inter-
a /W@’W“W%ﬁWW%z%W%%WMM 10 action in the local approximation discussed above and
c /4 U 4 . .
5 1.0 W%gﬂ’/%%%%%%%%%%%%%ﬁ% 102 calculate the cross sections via Eq. (4.14), then we are
ey J e il . . . .
.*ﬂ%%%ﬁw%ﬁﬁwf},%;’m/}",},’/lmﬂﬂ 3 making the approximation fug = fn—g,0. In Fig. 2 we
0.0 T Gy - 10° s : o
- iy h .
5 ~.‘I///I///, \//_///%.’0 . Ny compare th‘e nonlocal form fac'tor fug [Fig (Za)J to ?he
0 L 7% 10 & corresponding value expected in the local approximation
(1 4 B fu—g,0 [Fig. (2b)]. The diagonal values fg g are clearly
1) Orienta; S smaller than fg o for g # 0, contrary to what is expected
50 ! in the local approximation. However, the off diagonal
—~ 5.
« terms (fn,g, h # g) are not very different from the local
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FIG. 1. (a) Dynamical part of the cross section per atom
for K-shell EELS for 120 keV electrons at room temperature
on Al and for a {111} systematic row orientation. An orienta-
tion value of unity indicates that (111) is in the exact Bragg
orientation. Crystal thickness increases towards the front of
the plot. (b) Cross section for the diffuse background. Crys-
tal thickness increases towards the back of the plot. (c) The
total cross section per atom.

FIG. 2. (a) The atomic K-shell ionization form factor fn,g,
for 120 keV electrons incident on Al. (b) The quantity fh—g,0
used in the local approximation to the ionization form factor.
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approximation fi_go. We note that the diagonal terms
fg,g for g # 0 only occur in the dynamical component
of the cross section, and hence any manifestation of in-

accuracy in the local approximation fg ¢ ~ fo,0 will only
show itself in this term.
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FIG. 3. (a) Total cross section per atom for K-shell EELS
for 120 keV electrons on Al at room temperature and for a
{111} systematic row orientation calculated in the local ap-
proximation. (b) Total cross section using the nonlocal for-
malism. (c) Difference between the local and nonlocal cases
plotted as a percentage of the kinematic value.
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The implications of the local approximation are shown
in Fig. 3. The cross section in the local approximation
is shown in Fig. 3(a) and can be compared with the full
nonlocal result shown in Fig. 3(b). While overall the two
cross sections are similar, there is more structure in the
nonlocal case as successive Brillouin zone boundaries are
crossed. The comparison is made more explicit in Fig.
3(c) where the difference between local and nonlocal cross
sections is shown as a percentage of the kinematic value.
This effectively scales the difference between the local
and nonlocal cross sections to give some measure of how
important the differences between the two cases are.

We note, referring to Fig. 1(c), that there is consid-
erable variation in structure in the cross section between
about 200 and 1000 A. This is shown in more detail on
a linear scale in Fig. 4(a). Experimental data taken by
Stobbs and Bourdillon*! for a sample of thickness ap-
proximately equal to one extinction distance (= 600 A)
are compared in Fig. 4(b) with the cross section calcu-

o
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-6 22
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4.0

5.0

2 D
20N
\“\\\3\\3\\ ! \ \
\
/

A
AR \\‘\\\
W\ \\“\‘\\
X W il
\ il
A\

=4\
N

=
.

S
(l/"\\\\ \\\\\\t\\\\\\\\
i\ \\\\}\\\ )

\) W
!

=

A
4\\:\‘\ \

K
S
=
S
=

—— nonlocal
local
kinematic
exp.

(111) orientation

FIG. 4. (a) Total cross section per atom for K-shell EELS

for 120 keV electrons on Al at room temperature and for a
{111} systematic row orientation calculated using the nonlo-
cal formalism. (b) Comparison of nonlocal and local results

with experiment for a thickness of 600 A. The kinematic result
is also shown.
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lated in both the local and nonlocal cases. The pertinent
thickness slice for the nonlocal case is also indicated in
Fig. 4(a). For this particular thickness, the local ap-
proximation to the cross section is significantly higher
than the nonlocal result. It should be pointed out that
an exact comparison with experiment is difficult. This
is due to uncertanties in the exact crystal thickness and
the often quite large experimental uncertanties. These in
turn relate to difficulties in obtaining accurate systematic
row conditions unaffected by nonsystematic reflections,
etc.3? However, the local calculation appears not to fit
the experimental results as well as the nonlocal calcula-
tion does.

VI. CONCLUSIONS

We have extended the work of Yoshioka to obtain gen-
eralized dynamical scattering equations, for scattering of
electrons from a crystal of finite thickness, where the in-
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elastic scattering is assumed to be represented by a non-
local interaction.

A rigorous derivation has been made of the
cross section for any chosen specific type of inelas-
tic scattering [e.g., inner-shell ionization, Rutherford
backscattering,324® dynamical TDS (Refs. 44-46)] which
also takes into account absorption occurring concurrently
in the crystal. The wide general applicability of this re-
sult is emphasized.

Furthermore, the assumptions made in representing
the inelastic scattering under consideration by a local
interaction have been made manifest here and we have
shown by means of an example that significant “nonlocal
effects” can be expected in certain situations.
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APPENDIX A: THE INELASTIC SCATTERING COEFFICIENTS

The main purpose of this appendix is a derivation of Eq. (2.15) and the associated Eq. (2.16).

standard Green’s function identity

Making use of the

1 exp (ikn|r —r'|) . 1 exp[iK'-(r—1')] ,_,
4 e — /| N 61_1)r(1)1+ (2m)3 K2 — k2 — 4§ K, (A1)
in the definition of A(r,r') in Eq. (2.2), we can write
Alr,¥) = A (e 0) = — 20 S Hl (1) Hpo (<)
m#0
1 exp[iK'-(r—1r')] ., 1 exp[iK'-(r—1')] ,_,
1 d .
{si‘é’+ (2m)3 / K7 k2 —5 K ~,im oo / K72 vis K (A2)
Using the standard relation
. fl@)  _ L
S Gy 1 S @P g —irf@)d@—b) (A3)
and its complex conjugate, we can rewrite Eq. (A2) in the form
2
Afr,r') — A*(c'r) = =22 ST Hj (0 Hip (t) 7o og (2 m / exp [iK' - (r — ¥')|6(K" — k2,)dK’ . (A4)
mz#0
Therefore the inelastic scattering coefficient (le;fs)(i) [cf. Eq. (2.14)] becomes
Ji (i) — 7 _w! i _w! 2 _ 1.2 !
Wity (%)thv Z / mo(k? +h — K')Eno (k' + g — K')§(K'? — k2,)dK’ (A5)
where
Bmo(K + g — K') = / H.o(r) exp[i(k’ + g — K') - x]dr . (A6)
v

We will now examine the form of E,,o (ki + g — K') in more detail. In an independent electron description of the

crystal (a good approximation for our purposes) we represent the many-electron wave function a,,(r1,...,rn

) of the
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crystal in terms of Bloch states b,,(p,r’), where p is the wave vector for the Bloch electron in the crystal. Due to the
periodicity of the Bloch states on the reciprocal lattice, by, (p + g,1') = by (p,r’) for any reciprocal lattice vector g
and we can expand the crystal Bloch states in a Fourier series

1
bn(p'ru rl) = TN Zexp (ipn : Ra)un(rl - Ra) 9 n= Oa m, (A7)

where N is the number of lattice sites and R, are the lattice vectors. We note that in the “tight-binding” approxima-
tion the Wannier functions u, (r' —R,) are simply the atomic wave functions.*” For a transition in the crystal from the
ground state with wave vector py to the state m with wave vector p,, and assuming that H'(r;ry,...,ry) = H'(r—r’'),
where

e?

H'(r—r') = (A8)

dmeglr — /|’
we can write the interaction matrix elements H,,o(r) [Eq. (2.3)] as

e? ) . 1
ol®) = gy Za:exp [i(Po — Prm) - Ral] /V (5 = Ro) ol — R (A9)
We have used the orthogonality property of the Wannier functions, [ u;,(r' — Ra)uo(r’ — Rg)dr’ = 0, unless o = 3.
Inserting Eq. (A9) into E,o(k* + g — K’) [Eq. (A6)] we obtain, by integrating over r,

i e? 47 .
Emo(k' +g—K') = 4meoN ki + g — K/|? Z exp [i(Po — Pm) - Ral
x / ul (' — Ra)uo(r’ — Ra)exp [i(k + g — K') - ']dr’ . (A10)
\ 4

Letting r’ = R, + (r' — Rq), we can write Eq. (A10) as

: 1
itg-K)= "
Emol +8 — K =Nt

'—-———?‘_——I(—;I—z Z exp [Z(po — Pm + ki + g — K’) . Ra]Fmo(ki + g — KI) ) (All)

where
Fro(ki +g - K') = / ut, (')exp [i(K + g — K') - F]uo(r')dr’ . (A12)
v
We now focus on the summation over the lattice sites o in Eq. (A11). Writing pom = Po — Pm.,

S = Zexp [i(Pom + k' + g8 — K') - R4]

~ —1—/ exp [i(po — Kg + A*h) - r]dr, (A13)
Ve Jv

assuming the argument of the exponent in the summand varies slowly over the unit cell. We have used the fact that
exp (ig - Ra) = 1, and G is a reciprocal lattice vector such that K¢ = (K’ — K + p») — G is a vector in the first
Brillouin zone. We now make the same assumptions about the scattering geometry that were made in Sec. II. We
assume that all the reciprocal lattice vectors which contribute to diffraction lie in a plane (the zy plane), and that
this plane is parallel to the crystal surface. The z direction is perpendicular to the zy plane, and hence along the
crystal surface normal fi. The crystal surface is assumed to be very large (of area A), but strictly finite and of much
smaller dimension (thickness t) in the f direction. We then obtain, as A‘fi now only has a component along the z
direction,

1 . t _ .
S = ‘—/-/ exp [i(po — Kg) .rmy]drmy/ exp [i(po, — Kg, + At)z]dz
cJA 0

(2”)2 ¢ . i
——V—é(po —Kg)ay | exp [i(po, — K. + A")z]dz . (A14)

Inserting Eq. (A14) into Eq. (A11) we obtain

e? (2m)? 1

EmO(kz‘*_g_K’):EON V:: Ik’+g—K'

t
|2(5(P0 —Kg)eyFmo(k* + g — K')/ exp [i(po, — Ka, + /\i)z]dz . (A15)
0



L.J. ALLEN AND T. W. JOSEFSSON 52
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Now substituting Eq. (A15) for E,,o(k? + g — K’) in Eq. (A5) but using Eq. (A11) for E},o(k? + h — K’) we obtain

) | .
(2m)? Fro(® +h—K') Fro(k' +g—K') . 15
) V. ,,%;0/ G +h-K}  Jiotg-K[ K ~En)dK

2
di V() _ m e
(Whie) (2m)2R2V (eoN
t
x0(po — Ka)ay Zexp [—i(po — Kg + N*Z) - Ra]/ exp [¢(po, — Kg, + A*)z]dz . (A16)
0

(23

The ground state of the crystal is specified in this notation by the wave vector po, which is of course just convenient
notation for the multitude of allowed initial band states. Scattering from all these states is allowed, and so we must
sum over all possible initial band wave vectors po. In the limit of a large crystal, we replace this summation by an
integral, i.e., >, — V/(27)? [ dpo. Due to the surface § function §(po — Kg)zy, we are left with an integral over

Poz;

2\ 2 2
sy m (e \ (@2r)N V /
(Wi'e) (27)2R2V (60N> V. t (27)3 mz;;o

X ‘/Ot /ot exp [i(A'2' — A7*2)] {/_Z exp [t(po, — Ka.)(z — z')]dpgz} dzdz' .

In order to perform the integration over po, we proceed
as follows. From the definition of Kg we may write

BKGZ _ 8pmz
dpo, Opo,
m Oen,

PO , A18
h2py, , Opo, (A18)

for nearly free dispersing final states of energy e,, =
A%p,2/2m. From conservation of energy

E() - Em =Em — €0, (Alg)
it is clear that
Oem Oeo
— T 3 A20
apoz apoz ( )

because the incident electron energy F, and scattered
electron energy E,, are known and are not explicitly a
function of po,. Therefore from Eq. (A18)

BKGZ m an
~ ~a A21
8p02 thmz apoz ’ ( )

J

Froki +h—K') Fo(ki+g—K’)

§(K'? — k2)dK’

i +h—KT [ +g- K’

(A17)

where a is the dispersion factor of the initial band which
we may take to be approximately constant. This approx-
imation is valid only for linearly dispersing bands. We
note that for “flat” bands (such as those pertaining to
inner shell electrons) a=0. Integrating we then obtain

Kg, =~ apo, + c, (A22)
where c is a constant. Hence the integration over pg, can
be approximated by

/_ ” expli(po, — Ke.)(z — 2')]dpo,

2T

~ exp [—ic(z — 2)] )

5(z—2"). (A23)

As pointed out by Young and Rez!® the delta function
0(z — 2') implies that crystal layers of different 2z con-
tribute incoherently to the cross section.

Returning to Eq. (A17) and using Eq. (A23) we per-
form the integrations over z and 2z’ as follows:

—tl—At /Ot exp [i(Xiz' — A*2)] {/_Z exp [i(po, — Ka,)(z — Z’)]dpo,} dzds’

2

~ (I——jraﬁl [) exp [i(A'2 — M*2)] exp [ic(z — 2')]0(z — 2')dzdz'

2m

_ /Ot exp [i(\ — A7*)2]dz

(1—a)t

= (12~7ra) L),

where L% (t) is given by

(A24)
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exp [{(Af — M)t — 1

Li(t) =

Substituting Eq. (A24) into Eq. (A17) and gathering the constants, we obtain our final expression as

where

(7 = A)e (A25)
(Wi')© = L9 ()X, | (a26)
F*o(k? + h - K') F, (k! - K’

i 4R 11

h’gzmag—f(l—a)";()/

APPENDIX B: THE INELASTIC
SCATTERING COEFFICIENTS
FOR INNER-SHELL IONIZATION

Here we derive the form of the p,f:, g for inner-shell ion-
ization from a particular atom species (denoted by 3) in
the crystal lattice. The general form [cf. Eq. (2.16) and
Eq. (3.11)] is

i = 8 ; 1 Z / FmO(. ) FmO(Q:;)
s kvaii-a 2/ TjQip QP

x8(K"? — k2,)dK', (B1)

where Q’g = k! + g — K'. The “tight-binding” approxi-
mation describes the inner-shell electron states to a good
approximation. We replace the Wannier functions u,, (r)
and wuo(r) occurring in the transition matrix elements
Frno(Q}) [cf. Eq. (A12)], by the sum of atomic wave

functions uB,(r) and u?(r) at each atomic site T4, (la-
beled by n) in the unit cell. We then obtain

Fro(Qg) = D exp (ig - 70,)Fro(Qg) »  (B2)
where

Fio(Q)) = [ uf" @)expliQ} -sluf(r)dr . (B3)
\ %4

|

ki +h— K'|2

ki +g— K2

For ionization we replace the summation over all dis-
crete final states m of the crystal, by the equivalent in-
tegral over all the possible final continuum state wave
vectors (denoted by «) of the ejected electron, ), ., —
V/(27)? [ dx. Furthermore, the discrete atomic transi-
tion matrix elements [Eq. (B3)] must be replaced by their
equivalent continuum forms:

FB(Q;, K) = /V VNVbP*(k,r)exp [iQ; -r]ul (r)dr .
(B4)

The final state wave function 42, (r) has been replaced by
the dimensionless orthogonal plane wave continuum state
VNV (k,r). The continuum state is normalized to the
crystal volume and hence vV NVb(k,r) is dimensionless.
We can then write

.~ i niN .~
> FRH@QUFA(QY) = Gy [ P (@)
m#0

xFP(Q, k)dK . (B5)
An additional factor of n is included to take into account
the number of electrons in a particular given shell in the
atom, e.g., n=2 for the K shell. Before we proceed fur-
ther we evaluate the K’ integration in Eq. (B1), in terms
of the scattered electron wave vector k,,:

!
/ G(K')S(K" — k2,)dK' = / KTG(K’)J(K” — k2)dQx dK"

-

7m G(km)dﬂkm

where we have relabled the scattered electron wave vector as K’ for convenience.

4n 1

where dk = k2dkdQ,, and

!
- / %G(K’)dﬂm, (B6)
We may now evaluate the ”ﬁs from Eq. (B1) by using Eq. (B6) and Eq. (B5), obtaining
g FA*(Q! k) FP(Qi,k
ul = 3 .7-'[site]/K"n2 / / (thn) ‘(Qg )dQ,e dQg | dk , (B7)
€ (2m)3koVead (1 - a) |QuI171Q% I
(B8)

Flsite] = Z exp[—Mpg(g — h)|exp[i(g —h) - 73,] -
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The Debye-Waller factor Mg(g — h) has been inserted in Eq. (B8) following Ref. 9, to take into account the delocal-
ization of the ionization interaction at each atomic site, due to the thermal motion of the target atom.

In the high-incident-energy approximation |Q;| ~ |Qg| and we can neglect the ¢ and j dependences in Eq. (B7).
Further setting @ = 0 (a good approximation for tightly bound inner-shell states) gives the form of the upg’s for
inner-shell ionization from the atoms of species 3,

_ 4n s ' Fﬁ*(Qh?"“’)FB(Q 7K’)
Hh,g = ——(27r)3kcha(2)f[Slte] /K I‘Cz [/ (/ |Qh|2|Qg|2 L3 dQn> dQKl] dk

1
= kch}_[Site]‘fh’g , (B9)
where fp, 4 is the inner-shell ionization form factor.

The above expression for the inner-shell ionization coefficients integrates over all possible scattered electron orienta-
tions and all possible energy losses. This is appropriate for experimental situations such as EDX spectroscopy where
the scattered electron is not detected. In many cases (such as for EELS) the scattered electron is detected within
a well-defined aperture and energy loss window above the ionization threshold energy. The appropriate inelastic

scattering coefficients are then obtained simply by constraining the integrations over Qg+ and s appropriately.2®
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