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Anisotroyic Heisenberg ferromagnetic model in two dimensions
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We have studied the behavior of the magnetization as a function of temperature of a two-dimensional
anisotropic Heisenberg ferromagnetic model within the Green s-function formalism. We have shown
that our magnetization curves do not present any plateau in the limit of very small anisotropies, as pre-
dicted by the real-space renormalization-group calculations. We compare our results with the recent ex-
perimental measurements performed on quasi-two-dimensional films. We also consider the asymptotic
spin-wave limit to explain the low-temperature experimental data.

I. INTRODUCTION

The low-dimensional magnetic systems have received a
great deal of attention in recent years. Several theoretical
techniques have been employed to understand these sys-
tems: high-temperature series expansions, ' Monte Carlo
simulations, renormalization group, and Green's-
function formalism are some of the methods used in
these studies. In this work we apply the formalism of
Green's function to calculate the magnetization as a func-
tion of temperature of the anisotropic Heisenberg model.
Our motivation to study this problem is the recent real-
space renormalization-group calculation, which shows
that, in the limit of small anisotropies, the magnetization
curves exhibit a plateau as a function of temperature
These calculations were used to fit the experimental data
of Mauri et aI. on quasi-bidimensional ferromagnetic
systems. We show that, with the aid of Green's-function
formalism, the plateau does not appear and we are able to
fit the experimental data of Mauri et al. We also discuss
the spin-wave limit and its relation with the experimental
data mentioned above.
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where the summation is over the set of k vectors inside
the first Brillouin zone. In this way we find that

Gq(E) = &s'&
E Eq—

where g and m are two lattice sites, and Gs (E)
is the Fourier transform of the Green's function
« S,+ (r),s (t') )).

In order to solve the system of equations generated by
Eq. (2), we need to break the chain of Green's functions.
In this paper we consider the simplest decoupling
scheme, the random-phase approximation (RPA), where
the longitudinal and transversal components of the spin
operators at different sites of the lattice are uncorrelated,
that is,

«s;s,+;s- »=&s; &«s,+;s- &) .

Taking into account the translational symmetry of the
lattice we can write that

where

II. CALCULATIONS

We consider the following Hamiltonian of a two-
dimensional anisotropic Heisenberg ferromagnetic model:

H= —g [W(S;+S. +S; S+)+JS,'S'],
(ij)

where the summation is over the nearest-neighbor pairs
of —,

' spins, J is the exchange coupling between neighbor-
ing spins, and 8'/J measures the degree of exchange an-
isotropy. When W/J ranges from 0 to 1, we go from the
Ising to the Heisenberg ferromagnetic model.

The equation of motion for the Fourier transform of
the Green's function can be written as

EG (E)= &[S+,S ])+«[S, (t),H);S (0)]))

(2)

Eq =2z & S') (J—8'yq)

is the magnon energy spectrum, and yk is the structure
factor of the lattice with coordination number z.

With the help of the spectral density function, defined

J(E)= „ lim[6 (E +i@) G(E —ie) ]—,—1 '~o

we can find the equilibrium correlation function
& S S ), through

&s s+&= f J(E)e dE. (g)

As for spin S =
—,
' we can write that

&s'& =-' —&s-s+
&

we finally arrive at the following expression for the mag-
netization:
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III. RESULTS

In thhe region of ver lovery low temperatures
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where wee have defined that
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FIG. 2. Reduced critical temperature of the anisotropic
Heisenberg ferromagnetic model as a function of the ratio 8'/J
that measures the degree of exchange anisotropy.

T « T„where T, is the critical temperature. However,
the critical temperature of the Permalloy film is about
340 K, and the lower measurement was performed at 80
K, which corresponds to 24% of the surface critical tem-
perature of the Permalloy film. Due to this fact, we agree
with Mauri et al. , that the spin-wave expansions are not
suitable to fit their experimental data. However, as the
Green's-function formalism covers all range of tempera-
tures, it was possible to fit their experimental data. As a
matter of comparison we also have plotted in the same
figure the real-space renormalization-group calculation.

FIG. 3. Reduced magnetization as a function of reduced tem-
perature. The continuous curve is our Green's-function calcula-
tion, the dashed line is the real-space renormalization-group re-
sult (Ref. 5), and the small squares are the experimental data
(Ref. 6) of 1.6 monolayers of Permalloy. We have taken

J, /Jb =0.66, 6=0.20, and T, is the bulk critical temperature of
Permalloy.

el. We have shown that the magnetization decreases
smoothly towards the critical temperature for any value
of the anisotropy parameter. This behavior is di6'erent

from that observed in the real-space renormalization cal-
culations, where a plateau appears in the magnetization
curves for small values of the exchange anisotropy. Our
results also fit reasonably well the recent magnetization
data obtained for a two-dimensional Permalloy film.

IV. CONCLUSIONS

In this work we have applied the Green's-function
method to find the magnetization as a function of temper-
ature for the anisotropic Heisenberg ferromagnetic mod-
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