PHYSICAL REVIEW B

VOLUME 52, NUMBER 1

1 JULY 1995-1

Anisotropic Heisenberg ferromagnetic model in two dimensions
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We have studied the behavior of the magnetization as a function of temperature of a two-dimensional
anisotropic Heisenberg ferromagnetic model within the Green’s-function formalism. We have shown
that our magnetization curves do not present any plateau in the limit of very small anisotropies, as pre-
dicted by the real-space renormalization-group calculations. We compare our results with the recent ex-
perimental measurements performed on quasi-two-dimensional films. We also consider the asymptotic
spin-wave limit to explain the low-temperature experimental data.

I. INTRODUCTION

The low-dimensional magnetic systems have received a
great deal of attention in recent years. Several theoretical
techniques have been employed to understand these sys-
tems: high-temperature series expansions,’ Monte Carlo
simulations,? renormalization group,® and Green’s-
function formalism* are some of the methods used in
these studies. In this work we apply the formalism of
Green’s function to calculate the magnetization as a func-
tion of temperature of the anisotropic Heisenberg model.
Our motivation to study this problem is the recent real-
space renormalization-group calculation,® which shows
that, in the limit of small anisotropies, the magnetization
curves exhibit a plateau as a function of temperature
These calculations were used to fit the experimental data
of Mauri et al.® on quasi-bidimensional ferromagnetic
systems. We show that, with the aid of Green’s-function
formalism, the plateau does not appear and we are able to
fit the experimental data of Mauri et al.® We also discuss
the spin-wave limit and its relation with the experimental
data mentioned above.

II. CALCULATIONS

We consider the following Hamiltonian of a two-
dimensional anisotropic Heisenberg ferromagnetic model:

H=— 3 [W(S;"S; +878)+JS/S7], (1
(ij)
where the summation is over the nearest-neighbor pairs
of 1 spins, J is the exchange coupling between neighbor-
ing spins, and W /J measures the degree of exchange an-
isotropy. When W /J ranges from O to 1, we go from the
Ising to the Heisenberg ferromagnetic model.
The equation of motion for the Fourier transform of
the Green’s function’ can be written as

EGgm(E)=5—([S] 8 D+ (IS (0, HES 7 01N ,
(2)
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where g and m are two lattice sites, and Ggm(E )
is the Fourier transform of the Green’s function
(87 (0),Sm )N,

In order to solve the system of equations generated by
Eq. (2), we need to break the chain of Green’s functions.
In this paper we consider the simplest decoupling
scheme, the random-phase approximation (RPA), where
the longitudinal and transversal components of the spin
operators at different sites of the lattice are uncorrelated,®
that is,

(S8 ;S a N=(SL)(S{" ;S M . 3)

Taking into account the translational symmetry of the
lattice we can write that

Gyn(E)= S Gy(E)e™X ™ , @)
k

where the summation is over the set of k vectors inside
the first Brillouin zone. In this way we find that

_ (8% 1
Gi(E) m (E—E,)’ ©®
where
E=2z(S*)(J —Wry,) (6

is the magnon energy spectrum, and y, is the structure
factor of the lattice with coordination number z.

With the help of the spectral density function,® defined
as

J(E)zsz—i—nmmw+ie)—G(E—ie)], )

1 e—0

we can find the equilibrium correlation function
(§~S*), through

(S_S+>:f+mJ(E)€E/k T

B dE . (8)

As for spin § =1 we can write that
(§5)=1-(Ss78%), )

we finally arrive at the following expression for the mag-
netization:
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(10)

By replacing the summation by an integral over the two-
dimensional Brillouin zone, we can write that

1 v BE,

2(S?) - (2m)? Yz

coth d’%k , (11)

where v is the volume of the unitary cell. This equation
gives us the magnetization as a function of temperature
and can be solved self-consistently.

III. RESULTS
In the region of very low temperatures, that is, for

22J(S*) /kg T >>1

and considering a square lattice of lattice spacing a,
where

7,kzé[cos(kxa)+cos(kya)] s (12)

we can expand the integral, in Eq. (11), in a power series.
After some algebraic manipulations we obtain the follow-
ing asymptotic expansion:

(sy=t-1_7_z,

) (13)

where we have defined that

o

= 3 SR (14)
=1

with A=1—W/J, and 7=k T /zJ is the reduced temper-
ature.

As the energy spectrum has a gap at k=0, which de-
pends on the magnitude of the anisotropy A, the magneti-
zation decreases exponentially at very low temperatures
for any value of the gap, except at the singular point
A=0. For this particular value, the two-dimensional in-
tegral, given in Eq. (11), diverges, and the isotropic
Heisenberg ferromagnetic model cannot sustain a long-
range order at finite temperatures, according to the Mer-
min and Wagner theorem.’

On the other hand, near the critical temperature,
where (S?) goes to zero, we can again expand the argu-
ment into the integral, in Eq. (11), because now it is very
small. In this case, it is easy to show that

A

T

V4

n

3r T 12
(S?)= a1 1——0— R (15)
where
1 2v d’k
—= 16)
T,  (2w)? fzn[l—(W/J)n] (

d%k . (17)

2v w
A= G 17T
As we can see, the Green’s-function formalism, in the
RPA scheme, gives the classical exponent B=1 for the
magnetization.

In Fig. 1, we show the behavior of the magnetization as
a function of temperature for different values of the an-
isotropy. These curves are obtained by solving self-
consistently Eq. (11) for each value of temperature and
of the anisotropy parameter. In order to perform these
calculations we have replaced the integration over k in-
side the first Brillouin zone by a discrete sum of highly
symmetric set of special points. We have taken three mil-
lion points inside the first Brillouin zone after extending
the method of generating special points provided by
Chadi and Cohen.!® Even for the quasi-isotropic Heisen-
berg ferromagnetic model, curve F, we do not observe
any plateau, as foreseen by the real-space
renormalization-group calculations.’ In Fig. 2 we exhibit
the curve of critical temperature as a function of anisot-
ropy. As to be expected, when W /J—1, the critical
temperature goes to zero.

Finally, in Fig. 3, we apply our results to the experi-
mental points of Mauri et al. for the uncoupled Permal-
loy film of 1.6 monolayer thick. Our curve was con-
structed by taking A=0.2 and J; /J, =0.66, where J; and
J, are the surface and bulk exchange couplings of the
Permalloy film, respectively. Our results fit reasonably
well the experimental data in the range of temperatures
considered. Mauri et al.® have pointed out that the
spin-wave calculations do not work very well for this sys-
tem. As we know, the spin-wave theory, gives asymptot-
ic expansions, like that in Eq. (13), which are valid only
in the range of very small temperatures, that is, for
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FIG. 1. Spontaneous magnetization curves for the anisotrop-
ic Heisenberg ferromagnetic model. Here A=1— W /J mea-
sures the degree of exchange anisotropy. Curve 4 (A=1.0), B
(0.8), C(0.4), D (0.1), E(0.01), and F (0.001).
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FIG. 2. Reduced critical temperature of the anisotropic
Heisenberg ferromagnetic model as a function of the ratio W/J
that measures the degree of exchange anisotropy.

T <<T,, where T, is the critical temperature. However,
the critical temperature of the Permalloy film is about
340 K, and the lower measurement was performed at 80
K, which corresponds to 24% of the surface critical tem-
perature of the Permalloy film. Due to this fact, we agree
with Mauri et al.,% that the spin-wave expansions are not
suitable to fit their experimental data. However, as the
Green’s-function formalism covers all range of tempera-
tures, it was possible to fit their experimental data. As a
matter of comparison we also have plotted in the same
figure the real-space renormalization-group calculation.’

IV. CONCLUSIONS

In this work we have applied the Green’s-function
method to find the magnetization as a function of temper-
ature for the anisotropic Heisenberg ferromagnetic mod-
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FIG. 3. Reduced magnetization as a function of reduced tem-
perature. The continuous curve is our Green’s-function calcula-
tion, the dashed line is the real-space renormalization-group re-
sult (Ref. 5), and the small squares are the experimental data
(Ref. 6) of 1.6 monolayers of Permalloy. We have taken
J,/J,=0.66, A=0.20, and T, is the bulk critical temperature of
Permalloy.

el. We have shown that the magnetization decreases
smoothly towards the critical temperature for any value
of the anisotropy parameter. This behavior is different
from that observed in the real-space renormalization cal-
culations, where a plateau appears in the magnetization
curves for small values of the exchange anisotropy. Our
results also fit reasonably well the recent magnetization
data obtained for a two-dimensional Permalloy film.
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