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Entropy of spin models by the Monte Carlo method
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We introduce a method to calculate the entropy and the free energy of spin systexns by the Monte
Carlo method. The method is used to determine the entropy of the antiferromagnetic Ising model
subject to an external field on triangular and face-centered-cubic lattices.

I. INTRODUCTION

The Monte Carlo method is an algorithm capable of
numerical estimation of any quantity which can be writ-
ten as the average of a state function. The estimation of
the entropy, however, is a difBcult task since there is no
state function whose average is the entropy. The same
can be said about the free energy. To overcome this dif-
Bculty, direct and indirect methods were introduced to
calculate the entropy of lattice spin systems by Monte
Carlo. Direct methods use a quantity related to en-
tropy or free energy, which can be estimated from Monte
Carlo. In indirect methods, ' the entropy or the free
energy is obtained by integrating numerically a quantity
which can be obtained from Monte Carlo.

Here we introduce a direct method of evaluating the
free energy of spin systems. The method uses a rela-
tionship between the largest eigenvalue of the transfer
matrix and the averages of certain state functions. The
free energy is then obtained by taking the logarithm of
the largest eigenvalue. The method is here applied to
the cases of two frustrated Ising spin systems defined
on a triangular and on a face-centered-cubic (fcc) lattice
with nearest-neighbor antiferromagnetic interactions and
subject to an external field.

The triangular Ising antiferromagnetic in zero field is
known to be disordered at all temperatures and to have
a residual entropy. ' In the presence of a Beld H, there
is an ordered ferrimagnetic state at low temperature as
long as the Beld is smaller than the critical Geld H, .
The low-temperature ordered state is separated from the
paramagnetic state by a line of second-order phase tran-
sition. At the critical field and zero temperature, the
state is highly degenerate with a nonzero entropy.

The fcc Ising antiferromagnetic in a field has been
intensively studied ' ' ' ' ' because, in the
lattice-gas language, it describes the ordering of binary
alloys such as copper gold. At zero Beld. , a Brst-order
transition occurs at a nonzero temperature Tq. In the
presence of a Beld H, the model exhibits three first-order
transition lines that meet at a triple point. One line ter-
minates at H = 0 and temperature Tq, whereas the other
two lines terminate at zero temperature at the critical
Gelds Hq and H2. At these two terminal points there is
a residual entropy.

II. LARGEST TRANSFER MATRIX
EIGENVALUE

1
P(+1~ +2i" )+K) T(+1 ~ +2)T(+» +&)" T(+K~ +1) 1 (1)Z

where T(r, , rs) is the element of the transfer matrix T
and

is the partition function. The marginal probability dis-
tributions P(rq) and P(rq, r2) are given by

and

1
P(T] &T2) = —T(ry&72)T (T2&ry). (4)

Next we use the spectral development of the matrix T
given by

T(7;, r, ) = ) Pg(ri)AA:P'„(r, ),

where Pq(rq) is the normalized eigenvector and Aq is the
corresponding eigenvalue of T, to write

and

P(+&) +2) T(+» +2) ) 4'&(+2)~k 4'k(+&)'

Taking into account that

Let us consider an Ising system whose partition func-
tion can be written as the trace of a product of transfer
matrices. Consider a lattice composed of K layers of N
sites each. The probability P(rq, r2, ..., &ted) of the state
7 y, 7 2, ..., 7~ of the system, where ~g is the configuration
of the 8th layer, is given by
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we obtain, in the limit K ~ oo,

P(~1) = 4o(71)4()(rl)

0.80

0.60—

o H/J=3 (L=9)
~ H/J=3 (L=18)
o H/J=3 (L=27)
~ H/J=O (L=9)
0 H/J=6 (L=18)

and 0.40

P ('Tl, 'r2 ) = T(7 1 ~ r2 )40 (7 2 )A o Q() (rl ) ) (10)

where Ao is the largest eigenvalue of T and $0 the leading
eigenvector.

For v2 ——w1 this equation can be written in the form

P (rl &
7 1) —T ( rl &

'rl )P ( rl ) A 0

0.20

0.00
0.0 1.0 2.0

kT/J
3.0 4.0 5.0

from which we get

(h (rl I r2 )) —A 0 (T(rl, 7 1 ) ) . (12)

P[~1, ((~1)] = T[~1, ((~1)]AO 'P(rl)

This formula allows the calculation of the largest eigen-
value of T from the Monte Carlo estimation of the av-
erages (h(71, w2)) and (T(rl, ~1)). In actual calculations,
where K is finite but large, the errors will be of the or-
der (Al/Ao) where Al is the second largest eigenvalue
of T. The free energy per site f can then be calculated
by using the relation Pf = (—ln Ao)/¹

Suppose that there is a transformation v'1 +72 ——((-wl)
which leaves Po(vl), or equivalently P(~1), invariant. In
this case, from Eq. (10), we get

FIG. l. Entropy per site s versus temperature T for the an-
tiferromagnetic Ising model on a triangular lattice for several
values of the external field H. The inset shows the entropy
versus temperature for the case H = 3J around the transition
point.

where P = 1/kT. From the largest eingenvalue Ao of T
estimated from Monte Carlo by using formula (14) we
determined the free energy per site f by

1
ln Ap.

from which we obtain

(h[((&1),&2]) = &o (T[~1,((&1)])

which is an alternative to formula (12).

(14)

Prom the estimate of the energy per site u and the free
energy f we get the entropy per site s by

8—= Pu-Pf.
k

III. TRIANGULAR ISING ANTIFERROMAGNET

We have simulated the triangular Ising antiferromag-
netic in a square lattice with I x K sites by using the
Metropolis algorithm. The Hamiltonian reads

I K

) ) (J~jk(~j,k+1 + +j+1,k + aj+l, k+1) Hojk))
j=1 k=1

where o~p ——+1, J ) 0, and periodic boundary condi-
tions are used. The transfer matrix T is given by

L

T((a,k), (o'~. k+1)) = exp. ) [ PJo, k(a~ k+—1
j=l

+~j+is+ ~i+ia+i) + 0+,&i@i),

Figure 1 shows the entropy as a function of temper-
ature for three values of the field. We used lattices of
sizes 9 x 81, 18 x 81, and 27 x 81. Along H = 0 and
H = H = 6J there is no phase transition and the system
is disordered for all temperatures. For these two cases
there is a residual entropy at zero temperature. Our es-
tilnates of the residual entropies are s/k = 0.3229(4) for
H = 0 and s/k = 0.3333(1) for H = 6J. In these cases
the exact values are known as value 0.323 0659... (Ref. 9)
and 0.333 27... (Ref. 14), respectively.

In contrast to the two cases above the system or-
ders when 0 ( H & 6J for sufhcient low temperatures.
Along H = 3J, there is a continuous transition around
kT/J = 1.4 and the entropy vanishes at zero tempera-
ture. The inflection point of the entropy indicates the
critical temperature.

IV. fcc ISING ANTIFERROMAGNET

The fcc Ising antiferromagnet was simulated in a cubic
lattice with L, x I x K sites. The Hamiltonian is given
by
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L L K
A=) ) )

i=i j=l k=1
(19)

0.6

where

R,jk = —IIo',jk + J& qk(&'q, k+X + o';j+X,k

+oi+1,jk+ &i+1,j+1,k+ +i,j +1,k+1 + Oi+1,j+1,k+1) 1

04

(20) 0.2

where periodic boundary conditions are used. The trans-
fer matrix T is given by

L L

T((a,jk), (0';j k+q)) = exP &
—P) ) 'R,.jk & . (21)

0.0
0.0 2.0 4.0

i=i j=l

From the estimate of the largest eigenvalue Ao of T we
determined the free energy per site by

FIG. 2. Entropy per site 8 versus temperature T for the
antiferromagnetic Ising model on a face-centered-cubic lattice
for several values of the external field H.

(22)

where N = L and the entropy by Eq. (18).
Figure 2 shows the entropy versus temperature for

three values of the Geld for a lattice with 4 x 4 x 16
spins. At H = H2 ——12J the system displays a para-
magnetic phase at all temperatures. At zero tempera-
ture there is a residual entropy which we estimated to
be s/k = 0.2498(3). This value should be compared to
other Monte Carlo estimation such as s/k = 0.24989(2).
For H ( 12J the system is ordered if the temperature is
small enough. The phase transition from the disordered
to ordered state is of the first order. At H = Hl ——4J,
there is a residual entropy estimated to be s/k = 0.235(1)
which we compare to another Monte Carlo estimation
s/k = 0.239(l).s At H = 0, the entropy vanishes at zero
temperature and there is a first-order phase transition
around kT/J = 1.7.

V. CONCLUSION

We introduce a direct method to estimate the en-
tropy of spin models from Monte Carlo simulation. The
method was applied to the antiferromagnetic Ising model
on triangular and fcc lattices. The results are in agree-
ment with the exact results and results coming from other
Monte Carlo simulations.
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