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Nonmonotonic dependence of magnetic viscosity on thermal relaxation rate
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Magnetic viscosity is studied as a function of the conditions under which the measured sample
is prepared and it is shown that rapidly relaxing components cannot contribute to the observed
relaxation process. The resultant magnetic viscosity then does not monotonically increase with
increasing thermal relaxation rate but exhibits a local maximum associated with the transition
between the fast and slow relaxation regimes. Related transitional phenomena and experimental
results are discussed.

In a recent paper Ibrahim et al. reported on observa-
tions of magnetic viscosity in nanoscale FeOOH particles.
The authors measured the magnetic viscosity S(T) as
function of temperature and found it to exhibit a promi-
nent local maximum in the vicinity of the blocking tem-
perature of the sample. By contrast, theoretical studies
predict monotonous temperature dependence,

S(T) (x T~,

where for the exponent one usually takes the value

p = 1 though also the value p + 1/2 has been reported.
Ibrahim et al. thus state that their data cannot be inter-
preted within the present theory of magnetic viscosity.

We show here that relation (1) is associated with a spe-
cial and, in general, rather unrealistic set of initial con-
ditions imposed on the measured sample and that devia-
tions from these initial conditions lead quite naturally to
nonmonotonic temperature dependence of S(T). As an
example we trace the experimental procedure of Ibrahim
et al. and in a simple model calculation we reproduce
(qualitatively) their experimental results. We find that
the occurrence of a local maximum in the function S(T)
heralds a transition between two relaxation regimes and
compare this eBect with previously studied transitional
behavior of magnetic switching field distribution ' and
initial dc susceptibility. The work is concluded by a brief
discussion of the dependence of magnetic viscosity on
applied external field where analogous behavior is well
known.

For simplicity we assume an ensemble of identical, non-
interacting uniaxial particles with energies E = KV(1—
(xs) HM Vo.'3 Here K is the anisotropy constant, V
the activation volume, M, the saturation magnetization,
H is an external Geld applied in the z direction parallel
to the particle's easy axis, and o.3 is the direction co-
sine of the magnetization vector. The nucleation Geld of
the particle is H = 2K/M, and we introduce the re-
duced field h = H/H . At sufficiently low temperatures,
in fields ~h~ ( 1, the particle has essentially only two
states (levels) with magnetization parallel, respectively,
antiparallel, to the applied Geld. The probabilities nq

and n2 ——1 —nq of finding the particle in one of the two
available states is given by the master equation

dni/dt = —Ki2ni + lc2in2 ———I'ni + K2i, (2)

where I' = r z2 + K2&, the rates of thermally acti-
vated transitions between the two levels are
fo exp[ —Q(1 + h) ] and Q = KV/T (A:tr = 1). For the
prefactor we choose the value ' fo ——e Hz. The mean
magnetization of the ensemble is M(t) = M, [ni(t)—
n2(t)].

In order to model a real system we shall now assume
that the activation volume V has a log-normal distribu-
tion within the ensemble:

P(V) = JVV exp[—(2o. ) ln (V/V())],

(M(t)) = (E (V)e ~ ~') + (M.q(V)),

where AM(V) = M;„(V)—M,q(V), the equilibrium mag-
netization M,„(V) M, tanh2Qh and M;„(V) is the
initial mean magnetization of a particle with activation
volume V. The magnetic viscosity S is then defined as
the peak value of the function

S(t) =—(9(M(t) )
0 ln(t/t() )

a~(V)r(V)~e I ~')

(to is an arbitrary time scale), i.e., by the relation S =
maxi S(t).

The integral (5) is usually studied s' for b, M = M,
(a saturated array in zero field) or for AM = 2M, (a

where JV is a normalization constant. The most probable
activation volume V„= e Vo while the average activa-
tion volume (V) = e )' Vo. For simplicity we neglect
all variations of the nucleation field and assume that all
particles contribute the same magnetic moment, regard-
less of their activation volume. At constant T and 6 the
mean reduced magnetization of the ensemble is obtained
by averaging the solution of Eq. (2) over the distribution
(3):
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saturated array in a reversing field) and in this case
S = b,~ max'(I'te "

) oc T~ in accordance with Eq. (1).
In general, however, it is certainly not true that all par-
ticles are in their saturated state at the initial instant of
measurement. The variation of LM with V then depends
on the sample preparation (history) and this dependence
modifies the temperature properties of the magnetic vis-
cosity S(T). In particular, rapidly switching components
of the ensemble may reach thermal equilibrium before the
magnetic viscosity measurement is undertaken and these
components therefore do not contribute to the observed
relaxation process, introducing, in efI'ect, a cutofF into the
function AM.

As an example we review here the experimental pro-
cedure of Ibrahim et al. : The sample is cooled in ap-
plied field h. ( 1 until the measurement temperature is
reached, then the field is reversed (h —+ —h ) and a mea-
surement of magnetic viscosity is carried out under the
constant reversing field —6 . We shall assume that the
applied field reverses as h(t) = h cos 27r ft so that the fi-
nite reversal duration is td = 1/(2f ). The nonequilibrium
magnetization corresponding to the minor hysteresis loop
driven by this field is obtained by numerical integration
of Eq. (2). For definiteness we also assume that the cool-
ing sample remains in thermal equilibrium at the con-
stant applied field 6 and this assumption yields the ini-
tial condition for the hysteresis loop calculation. The
resultant final magnetization at time t = td (in reversing
field —h ) represents the initial magnetization M;„(V)
for the subsequent magnetic viscosity measurement. Ob-
viously, a slowly relaxing particle with large V cannot re-
lax appreciably during the field reversal and AM & 2M„
while for a rapidly relaxing particle one has AM = 0
which is the above-mentioned cutofI'. Sample plots of the

function D~(T/KV, f) lobtained by integrating Eq. (2)]
are shown in Fig. I for three values of the sweep rate f
Note that only very small particles can reverse during a
fast sweep and AM 2M, over a larger temperature in-
terval. The average in Eq. (5) is conveniently carried out
using 16-point Gaussian quadratures whence the mag-
netic viscosity S(T) = maxi S(t, T) follows (see Fig. 1).
The small V (large T) cutoff in AM(T/KV) now gives
rise to the prominent peak associated with a transition
from the low temperature region of slow reversals to the
high temperature region of fast reversals, i.e. , with the
blocking temperature (at given sweep rate) as reported
by Ibrahim et al.

Analogous nonmonotonic dependence of magnetic vis-
cosity on temperature is to be expected whenever the
function A~(T/KV) appreciably decreases over the
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FIG. 1. The single-particle function A~(T/KV) (dashed
line, V = V~) and the magnetic viscosity S(t) (solid line)
vs scaled temperature. Sweep rate f = 1 Hz (*), 50 Hz
(no marks), and 10 Hz (O). The amplitude h = 0.3 and
o = 0.28. The arrows mark values at the (f-dependent) tem-
perature for which (M;„(V)) = 0.

FIG. 2. Top: The single-particle function A~(h ) (dashed
line, KV/7 = 25) and magnetic viscosity S(T) (solid
lines, KV„/T = 25) vs field amplitude. The model ex-
perimental conditions are described in text. Magnetic
viscosity S(T) along a major hysteresis loop driven by
field h(t) = —cos 2m ft The arrows mark. values at the
(f-dependent) coercive fields. Markings as in Fig. 1.
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measured temperature interval and our results remain
essentially unchanged if we assume that the magnetic
moment of the particle is proportional to the activation
volume V, i.e. , if in place of Eq. (5) we write

though the local peak of S(T) becomes in this case some-
what sharper. In either case, however, the peak in the
transition region is smooth and we find no reason to in-
troduce a singular critical point into the function S(T)
as proposed by Ibrahim et al.

The presence of a local maximum in the function S(T)
is by no means the only exceptional phenomenon accom-
panying a transition between two relaxation regimes; in-
deed, such effects seem to be the rule rather than an
exception: The peak value of the switching field distri-
bution (SFD) measured along a major hysteresis loop
varies at low temperatures as T ~ and at high tem-
peratures as T i. In the transition region (around the
f-dependent blocking temperature) the SFD peak value
exhibits a local minimum and a local maximum.

Another transition effect was recently predicted by
Klik and Chang who studied thermal relaxation in
weakly coupled uniaxial particles using a multidimen-
sional master equation formalism. The particles were de-
posited on a regular planar lattice and Klik and Chang
found that stretching of the lattice may change the ef-
fective number of levels (states) contributing to the re-
laxation process and that this change is again accompa-
nied by a local maximum and minimum in the SFD peak
value. The transition between the two relaxation regimes
distinguished by the number of contributing evels thus
has a similar effect on the SFD function as a transition
from low to high temperature magnetization reversals;
however, the former transition was also found to be ac-

companied by significant enhancement of the initial dc
susceptibility.

We wish to conclude this paper by citing a transition
phenomenon associated with variations of the applied
field. To this end we consider the following (model) ex-
perimental conditions: I et a sample be initially in ther-
mal equilibrium in applied field h, & 1. The field is
reversed and magnetic viscosity is measured in the field
—6 as before, this time, however, at constant tempera-
ture as a function of 6 . In our model calculation we as-
sumed that the sweep rate is constant, independent of the
amplitude h, and in Fig. 2 we plot the function AM (h )
which vanishes at h = 0 and also at sufficiently large re-
versing fields where the particle certainly switches during
the field sweep. The magnetic viscosity S(h ), computed
from the function S(t) of Eq. (5), has then a local maxi-
mum in the transition region between slow (small revers-
ing field but large Aiis) and fast (large reversing field but
AM -+ 0) relaxation regimes. The function S(h ) shown
in Fig. 2 is, not surprisingly, similar to magnetic viscos-
ity measured along the major hysteresis loop which has
a local maximum near coercivity (see Fig. 2) though in
this case AM(h) does not vanish at zero field.

In summary one may say that the nonmonotonic be-
havior of magnetic viscosity is due to the presence of
two competing processes: The function I'te ~~ yields a
contribution which monotonically increases with increas-
ing decay rate I'. On the contrary, the function LM
simultaneously decreases since all rapidly relaxing com-
ponents reached thermal equilibrium during the prepa-
ration of the sample, i.e., before the actual measurement
commenced.
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