PHYSICAL REVIEW B

VOLUME 52, NUMBER 35

1 AUGUST 1995-1

One-dimensional Ising model with long-range interactions: A renormalization-group
treatment

Sergio A. Cannas™
Facultad de Matemdtica, Astronomia y Fisica, Universidad Nacional de Cérdoba, Haya de la Torre y Medina Allende S/N,
Ciudad Universitaria, 5000 Cérdoba, Argentina! and Centro Brasileiro de Pesquisas Fisicas, Rua Xavier Sigaud 150,
22290-180 Rio de Janiero, Brazil
(Received 9 February 1995)

The one-dimensional Ising model with ferromagnetic interactions which decay as 1/r* is consid-
ered. Using a real-space renormalization group scheme (RG) we calculate the critical temperature
and the correlation-length critical exponent as a function of a. General asymptotic properties are
obtained for arbitrary values of the rescaling length b of the RG transformation. Several rigorous
results are recovered exactly in the limit & — co. We obtain a b = oo extrapolation of the critical
temperature for arbitrary values of @ > 1, which we conjecture approximates with high precision
the exact one. In particular, we obtain the value T./J = m%/12 for the 1/r? model.

The spin-1/2 Ising model (with arbitrary interactions)
is perhaps the most successful one in statistical mechan-
ics. Despite its (relative) simplicity (which has allowed
the testing of an enormous quantity of new methods and
theories), it has been used to model such a variety of
interacting systems exhibiting cooperative phenomena
(ranging from simple ferromagnetism to complex spin
glasses) that it can be considered the paradigm of a model
system in statistical mechanics, on an equal footing with
the harmonic oscillator in quantum mechanics.

Even though there is an enormous amount of known re-
sults about this model, there exists some important prop-
erties about which little is known. One of these problems
concern the critical behavior of Ising ferrromagnets with
long-range interactions, which means systems described
by the Hamiltonian

H=-J E %SISJ (Si=:t1,Vi;J>0;a>0),
re
(@g) ™
(1)

where 7;; is the distance (in crystal units) between sites
7 and j, and where the sum Z(i,j) runs over all distinct
pairs of sites on a d-dimensional simple hypercubic lat-
tice. The @ — oo limit corresponds to the first-neighbor
model. The o = 0 limit corresponds to an infinite-range
ferromagnet which, after a rescaling J — J/N, yields
basically the mean field approach. For @ — d* the crit-
ical temperature T,(a) diverges and remains infinite for
a < d'. In other words, all the thermodynamic func-
tions diverge and the usual Boltzmann-Gibbs statistical
formalism turns out to be inadequate for this problem. A
very interesting proposal about an alternative thermody-
namic formulation using Tsallis ¢ statistics can be found
in Ref. 1. :

Besides their fundamental theoretical interest in
physics, spin models with long-range interactions which
decay slowly are of interest nowadays, in view of their re-
lationship with neural systems modeling,? where far away
localized neurons interact through a post-synaptic poten-
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tial which decays slowly along the axon. Other related
problems are spin systems with RKKY-like interactions,
1/rg; cos(ari;), which are present in spin glasses.3

In this work we address the one-dimensional problem
(hence, r;; =| ¢ — 7 |= 1,2,3,...). Let us first sum-
marize the known results up to the present: (i) it has
been proved that, for 1 < a < 2, this model can ex-
hibit long-range order at finite temperatures,*° while for
a > 2 it has no phase transition at finite temperature,
more precisely, T. = 0 (short-range interactions); (ii) for
a = 2 the spontaneous magnetization is discontinuous
at T = T. # 0 (the so-called Thouless effect);® (iii) for
1 < a < 1.5 the critical exponents are classical;® (iv)
the region 1.5 < a < 2 shows nontrivial critical expo-
nents, which are not known exactly. Approximate results
in the latter region were obtained by finite-range scal-
ing approximations” or by € expansions around a = 1.5
(Ref. 8) and a = 2 (Ref. 9) where the critical behavior is
of essentially singularity type.°

This problem is of considerable theoretical interest
in order to understand the critical behavior of higher-
dimensional spin models with long-range interactions.
In particular, the @ = 2 case is of particular inter-
est, because it can be mapped into the spin-1/2 Kondo
problem.!?

We use a real-space renormalization group (RG)
method in order to calculate the critical temperature and
the corresponding critical exponent (i.e., the universality
class) of the (long-range) phase transition. This tech-
nique, based on a Kadanoff-block construction using the
majority rule, is a very well known one and was intro-
duced by Niemeijer and van Leeuwen!2.

First, we define Kadanoff blocks of length & > 1, as
shown in Fig. 1 for the particular case b = 3; b is always
an odd number which characterizes the rescaling length
of the RG transformation. We will assign a block-spin
variable S7 = %1 to every block I. Let us denote by
St (i=1,2,...,b; I =1,2,...,N/b) the (site) spins be-
longing to the block I. Then, defining the dimensionless
Hamiltonian
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FIG. 1. Kadanoff blocks of length & = 3 in the

one-dimensional lattice; 77 is the distance between the blocks
I and J.
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with K = 8J (8 = 1/kpT; hereafter we take kg = 1), a
renormalized (block) Hamiltonian is determined by the
following RG transformation:

M+ = Trsry P ({81}, {57}) €™, ©

where Trysry denotes a sum over all the configurations

S S sS40, (@)
el

jeJ Y

of site spins S7, C is a constant, and

b
P ({S{}, {51}) = H% l:l + S} sgn (Z Sll)jl (4)

I =1

is a weight function which characterizes the majority-rule
recipes.!?

The Hamiltonian H can be divided into two parts: H =
Ho + V, where Ho = 3, H{ and V = Y Vir Hg
includes only the interactions between spins inside the
block I, whereas Vy; includes the interactions between
spins belonging to different blocks I and J. We then
introduce the following expectation value:

(©)o = 5 Trisny P ({SIH{S1) exp [#o ({STY)] ©,
Q

Zo = Trysry P ({87}, {S1}) exp [Ho ({S{})] . (6)
Then, Eq. (3) can be written as
Mt = 7, <ev>0. (M

Using a cumulant expansion of <ev> o» @ first-order ap-
proximation of #' can be obtained as

H = (V), = Z Vr11)o - (8)

(I,9)

Notice that this approach retains the long-range charac-
ter of the interactions. This fact will allow us to catch, at
least qualitatively, the correct behavior of the long-range
phase transition.

Since the expectation value (5) is carried out with a -

block-independent probability distribution, we have

Viro =K 33 (5D (5, ®)

iel jeJ Y

Let 777 be the distance between the center sites of the
blocks I and J (see Fig. 1), measured in units of the
rescaling length b. We have r;; =bry;—(b—1), bryy —

(b—2), cobrrg—=1,brry, brrg+1, ...bTIJ+(b~1).
Then, for r;; >> 1 we can approximate
Tij %b’!‘]] (10)

and consequently
K
Vo~ jaar SN (ST (57,
1J ier jed

It can be easily verified that <Si1>0 = a;(K) S}, where
a;(K) does not depend on the block I. Replacing into
Eq. (8) we obtain

H = Ky(K) S = SiSh, (1)
(o) "1
where
b 2
, K
Ky(K) = 3 [Z ai(K)] (12)
=1

is our RG recurrence equation.

Let us discuss the approximation (10). We have seen
that r;; = b[rry + z], where x = 0,%+(1 — 1/b),£(1 —
2/b),...,%£1/b. Hence, it is expected to obtain good
results for high values of «, where [r;; + z]* = r§;.
Moreover, the approximation will be systematically im-
proved for increasingly high values of . The greatest
error in (10) occurs when rr; = 1 and z = —(1 — 1/b),
where 73 = 11is approximated by rf; ~ b*. This case,
however, corresponds to the interaction between first-
neighbor sites belonging to adjacent blocks; such short-
range interactions have no effect on the critical behavior
of the one-dimensional system, at least as far as the crit-
ical exponents are concerned.

Notice that the majority rule is applied exactly inside
each block; i.e., expression (6) gives the exact partition
function of a system of noninteracting blocks of length b
(except for an irrelevant factor of 2). Hence, approxima-
tion (8) corresponds to an exact averaging of the first-
order cumulant of the interaction term between blocks.
Since the ntP cumulant is of order 1/b™*, approximation
(8) can be seen as the leading order in a series expansion
of Eq. (3) in powers of 1/b*. Therefore, it is expected
that the results will be systematically improved for in-
creasingly high values of b.

We now analyze the recurrence equation (12) and its
fixed points K* = K{(K*). The qualitative behavior of
K(K) can be appreciated in Fig. 2, where it is depicted
for the particular case b = 5 and typical values of a.
It shows two trivial fixed points: K = 0 (T' = oo) and
K = oo (T = 0). For low temperatures K > 1 we have
a;(K) ~ 1V 4; from Eq. (12) we obtain the asymptotic
behavior K} (K) ~ b2~*K. For low values of a the slope
of Ki(K) at K = 0 is greater than one and it does not
present a (nontrivial) fixed point for finite values of K. In
this case the fixed point K = 0 is repulsive and therefore
T. = oo. For intermediate values of a, K} (K) possesses
a nontrivial fixed point at finite K = K.(«a). For a > 2
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FIG. 2. Recurrence equation K;(K) for b = 5. The num-
bers beneath the curves correspond to the values of a.

there is again no fixed point at finite K. In this case,
however, the fixed point K = 0 is attractive and therefore
T. = 0 for all values of b, recovering the exact result.
Summarizing, there exists some value a;(b) such that (i)
T. = oo for a < a1(b); (ii) there is a phase transition at
finite temperature T.(a) for a;(b) < a < 2; (iii) T, = 0
for a > 2.

The borderline value a;(b) is determined by the con-
dition dK|/dK |k=o= 1. This equation can be easily
solved by noting that a;(0) = ~(b) V i. Hence, from
Eq. (12) we obtain dK}/dK |x=o= b*~*vy(b)? and there-
fore

- In y(b)
After some algebra we find
b—1)!
’Y(b) = 'b_(l b—)l nZ’
2071 (5 ))

Using Stirling’s asymptotic expansion for & > 1 we find
¥(b) ~ 2/y/m b~'/2 and we recover the exact result
a1(b) — 1 in the limit b — oo. Using Eq. (12) we com-
puted T.(a) numerically for several values of . The cor-
responding results are shown in Fig. 3.

For o — 2™ we see that K. — oco. In such limit the re-
currence equation (12) presents the following asymptotic
behavior:

2
KL (K) ~ —g; [b — 4 B®) K] ,
where B(b) = 2 Ei;ll 1/n2; B(b) K is the energy differ-
ence between the ground state and the first excited state
of H{, in the limit & — 2. The asymptotic behavior of
T.(a) for & — 27 is then given by the Cauchy function

2—a~ A(b) e B® /T (13)

with A(b) = 8/(b In b). In the limit b — oo we have
B — 7%/3 and A — 0. The coefficient A(b) determines

FIG. 3. Critical temperature Tc(a)/J vs « for different val-
ues of the rescaling length b. The dashed line corresponds
to an extrapolation of the numerical results for b — oo (see
Fig. 4).

the region near @ = 2 in which the asymptotic regime
(13) holds; therefore, for b — oo such behavior disap-
pears, suggesting a nonuniform convergence to a finite
value T, (a = 2) # 0, consistent with the exact result.

For a — af (b) we see that K, — 0. Then, expanding
(12) around K = 0 we obtain T./J ~ C(b)/[a — a1(b)],
where

2 b-n
cb) = blnb nZ:]. nea(d)’
In the limit b — oo we have C'(b) — 2. Since a;(b) — 1,
we can estimate the exact asymptotic behavior:

2
T.)J ~ ——
/3~ (14)

for « — 1. This result reproduces the asymptotic be-
havior derived from a closed-form approximation in Ref.
13: T./J ~ 2¢(a) ~ 2/(a — 1), where ((«) is the Rie-
mann zeta function.' Now, we can use the above-derived
asymptotic behavior to extrapolate the full curve T¢(c)
vs a for b — oo. First, we define the rescaled variables
z=(2-0a)/[2—ai1(d)] and y = T./J [2 — a1(b)]/C(b),
so that y(z) ~ 1/(1 —z) for ¢ — 1 V b. In Fig. 4 we
plotted y(z) vs z for different values of b. All the curves
fall into a single one for b > 5 (solid line in Fig. 4).
Transforming back such a curve into the (7., a) variables
we obtain a good estimate of the exact critical tempera-
ture for a € (1,2), except in the neighborhood of a = 2,
where our calculation yields T.(2) = 0 for all finite values
of b. The extrapolated curve is depicted in Fig. 3 as a
dashed line. The critical temperature at a = 2 can be es-
timated as follows. First, we make a linear extrapolation
of the inflection point of the Cauchy function (13) into
the a = 2 axis, for finite b. Then, we take the b — oo
limit, obtaining the value T, = B(oco)/4 = m?/12 ~ 0.823
(see Fig. 3). This value is within the uncertainty of the
Anderson and Yuval estimate T,/J = 0.79 £ 0.05.11
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FIG. 4. Rescaled critical temperature.
b > 5 fall into the solid line.

All curves with

Finally, we calculate the correlation-length critical ex-
ponent

In b

V) = @Ky aR )

The numerical results are depicted in Fig. 5 for several
values of b; the results are compared with the exact one
Vex = 1/(ac — 1), for 1 < a < 1.5 (Ref. 6), and the
asymptotic result from Kosterlitz vx ~ [2(2—a)] /2 for
a — 2.2 For finite b we find v ~ 1/[ac — 1 (b)]. Therefore,
for b — oo we recover the exact result in the a ~ 1
region. Rescaling v using the last asymptotic behaviour
we obtain an extrapolated curve v(«) in the b — oo limit
(see Fig. 5). Such a curve presents a minimum for o ~
1.64 and reproduces the expected behaviors for a ~ 1
and a ~ 2, but it presents a little departure from the
exact result for o ~ 1.5.

The approach adopted here gives an estimate of the
critical properties of the model as a function of a, based
on an extrapolation of a systematic series of RG cal-
culations. The analytic asymptotic results, obtained in
the b — oo limit, give confidence in the validity of the
method, by recovering several known results. There-
fore, we believe the obtained critical temperature approx-
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FIG. 5. Correlation-length critical exponent v(a) vs o Vex
refers to the exact result for 1 < a < 1.5 and vk to the
Kosterlitz’s (Ref. 9) asymptotic result.

imates with high precision the exact one. In particular,
we conjecture that T.(a = 2) = w2/12 reproduces the
exact value.

This work can be extended to higher-dimensional spin
models with long-range interactions, where less rigorous
information than in the one-dimensional case is known;
it can also be used to treat more complex interactions
like the RKKY one. Some works along these lines are in
progress and will be published elsewhere.
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