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The one-dimensional Ising model with ferromagnetic interactions which decay as 1/r is consid-
ered. Using a real-space renormalization group scheme (RG) we calculate the critical temperature
and the correlation-length critical exponent as a function of o.. General asymptotic properties are
obtained for arbitrary values of the rescaling length b of the RG transformation. Several rigorous
results are recovered exactly in the limit b —+ oo. We obtain a b = oo extrapolation of the critical
temperature for arbitrary values of o. ) 1, which we conjecture approximates with high precision
the exact one. In particular, we obtain the value T,/J = vr /12 for the 1/r model.

The spin-1/2 Ising model (with arbitrary interactions)
is perhaps the most successful one in statistical mechan-
ics. Despite its (relative) simplicity (which has allowed
the testing of an enormous quantity of new methods and
theories), it has been used to model such a variety of
interacting systems exhibiting cooperative phenomena
(ranging from simple ferromagnetisrn to complex spin
glasses) that it can be considered the paradigm of a model
system in statistical mechanics, on an equal footing with
the harmonic oscillator in quantum mechanics.

Even though there is an enormous amount of known re-
sults about this model, there exists some important prop-
erties about which little is known. One of these problems
concern the critical behavior of Ising ferrromagnets with
long-range interactions, which means systems described
by the Hamiltonian

where r,s is the distance (in crystal units) between sites
i and j, and where the sum Pl, l

runs over all distinct
pairs of sites on a d-dimensional simple hypercubic lat-
tice. The o. ~ oo limit corresponds to the first-neighbor
model. The n = 0 limit corresponds to an infinite-range
ferromagnet which, after a rescaling J ~ J/N, yields
basically the mean field approach. For o. —+ d+ the crit-
ical temperature T, (n) diverges and remains infinite for
0, & d . In other words, all the thermodynamic func-
tions diverge and the usual Boltzmann-Gibbs statistical
formalism turns out to be inadequate for this problem. A
very interesting proposal about an alternative thermody-
namic formulation using Tsallis q statistics can be found
in Ref. 1.

Besides their fundamental theoretical interest in
physics, spin models with long-range interactions which
decay slowly are of interest nowadays, in view of their re-
lationship with neural systems modeling, where far away
localized neurons interact through a post-synaptic poten-

tial which decays slowly along the axon. Other related
problems are spin systems with RKKY-like interactions,
1/r;. cos(ar;s), which are present in spin glasses.

In this work we address the one-dimensional problem
(hence, r,i =~ i —j ~= 1, 2, 3, . . .). Let us first sum-
marize the known results up to the present: (i) it has
been proved that, for 1 & o. & 2, this model can ex-
hibit long-range order at finite temperatures, 's while for
n ) 2 it has no phase transition at finite temperature,
more precisely, T, = 0 (short-range interactions); (ii) for
o. = 2 the spontaneous magnetization is discontinuous
at T = T, g 0 (the so-called Thouless effect);s (iii) for
1 & n & 1.5 the critical exponents are classical; (iv)
the region 1.5 & o. & 2 shows nontrivial critical expo-
nents, which are not known exactly. Approximate results
in the latter region were obtained by finite-range scal-
ing approximations or by ~ expansions around o. = 1.5
(Ref. 8) and n = 2 (Ref. 9) where the critical behavior is
of essentially singularity type.

This problem is of considerable theoretical interest
in order to understand the critical behavior of higher-
dimensional spin models with long-range interactions.
In particular, the o. = 2 case is of particular inter-
est, because it can be mapped into the spin-1/2 Kondo
problem.

We use a real-space renormalization group (RG)
method in order to calculate the critical temperature and
the corresponding critical exponent (i.e. , the universality
class) of the (long-range) phase transition. This tech-
nique, based on a KadanofI'-block construction using the
majority rule, is a very well known one and was intro-
duced by Niemeijer and van Leeuwen

First, we define KadanoK blocks of length 6 ) 1, as
shown in Fig. 1 for the particular case 6 = 3; 6 is always
an odd number which characterizes the rescaling length
of the RG transformation. We will assign a block-spin
variable SI ——+1 to every block I. Let us denote by
S; (i = 1, 2, . . . , b; I = 1, 2, . . . , N/b) the (site) spins be-
longing to the block l. Then, defining the dimensionless
Hamiltonian
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Let rIJ be the distance between the center sites of the
blocks I and J (see Fig. 1), measured in units of the
rescaling length b. We have r,~

= b rIJ —(b —1), b rlJ—
(b —2), . . . , b rig —1, b rig, b rig + 1, . . . b rig + (b —1).
Then, for rIJ )) 1 we can approximate

FIG. 1. Kadanoff blocks of length 6 = 3 in the
one-dimensional lattice; rl J is the distance between the blocks
I and J.

and consequently

b (10)

N/6 N/6

K)-: ).).).„.S.'S;
I=1 J=1 i&I jg J

(2)

with K = PJ (P = 1/k~T; hereafter we take k~ = 1), a
renormalized (block) Hamiltonian is determined by the
following RG transformation:

v„),=, ) ) (s,'), (s,'), .
IJ

It can be easily verified that (SI) = a;(K) SI, where

a, (K) does not depend on the block I. Replacing into
Eq. (8) we obtain

m' = Kb(K) ) S'Is
(I J) IJ"'"= ~&.;,~((s;),(s,')) ",

where Tr~&I~ denotes a sum over all the configurations
of site spins S;. , C is a constant, and

where

Ki, (K) = ) a;(K)
K

(12)

I'((s,'), (s,')) = + SI sgn ) S
I &,=i

(4)

is a weight function which characterizes the majority-rule
recipes.

The Hamiltonian 'R can be divided into two parts: 'R =
Rp + V, where 'Rp ——Pl 'Rp and V = P(1 J) VIJ Rp
includes only the interactions between spins inside the
block I, whereas VIJ includes the interactions between
spins belonging to different blocks I and J. We then
introduce the following expectation value:

1 T „,, I ((S,'), (S,')) exp ~, ((S,')) V,

with

Z, = T &„,I ({S,'), ~S,')).xp ~, ((S,'))].
Then, Eq. (3) can be written as

,w +c z ( i)

'R' = (V), = ) (Vlg)p.
(I,J)

(8)

Notice that this approach retains the long-range charac-
ter of the interactions. This fact will allow us to catch, at
least qualitatively, the correct behavior of the long-range
phase transition.

Since the expectation value (5) is carried out with a
block-independent probability distribution, we have

„),=K ) ) (s,'), (s,') .
igI qg J

Using a cumulant expansion of (e~), a first order ap--
proximation of 'R' can be obtained as

is our RG recurrence equation.
Let us discuss the approximation (10). We have seen

that r;~ = b[rIJ + xj, where z = 0, +(1 —1/b), +(1—
2/b), . . . , +1/b Hen. ce, it is expected to obtain good
results for high values of n, where [rig + x] rl&.
Moreover, the approximation will be systematically im-
proved for increasingly high values of b. The greatest
error in (10) occurs when rig = 1 and T = —(1 —1/b),
where r,- - = 1 is approximated by r; b . This case,
however, corresponds to the interaction between first-
neighbor sites belonging to adjacent blocks; such short-
range interactions have no efI'ect on the critical behavior
of the one-dimensional system, at least as far as the crit-
ical exponents are concerned.

Notice that the majority rule is applied exactly inside
each block; i.e. , expression (6) gives the exact partition
function of a system of noninteracting blocks of length b

(except for an irrelevant factor of 2). Hence, approxima-
tion (8) corresponds to an exact averaging of the first-
order cumulant of the interaction term between blocks.
Since the n~" cumulant is of order 1/b, approximation
(8) can be seen as the leading order in a series expansion
of Eq. (3) in powers of 1/b . Therefore, it is expected
that the results will be systematically improved for in-
creasingly high values of b.

We now analyze the recurrence equation (12) and its
fixed points K* = K&(K*). The qualitative behavior of
K&(K) can be appreciated in Fig. 2, where it is depicted
for the particular case b = 5 and typical values of o..
It shows two trivial fixed points: K = 0 (T = oo) and
K = oo (T = 0). For low temperatures K )& 1 we have
a, (K) 1 V i; from Eq. (12) we obtain the asymptotic
behavior K&(K) b K. For low values of n the slope
of K&(K) at K' = 0 is greater than one and it does not
present a (nontrivial) fixed point for finite values of K. In
this case the fixed point K = 0 is repulsive and therefore
Tc = oo. For intermediate values of n, K&(K) possesses
a nontrivial fixed point at finite K = K (n). For n ) 2



3O36 BRIEF REPORTS

20

52

Iation

15—

I-b )0

0
0

Z2/12

1.5 2.0 2.5

FIG. 2. Recurecurrence equation K' K
bers beneath the cu

or b = 5. The num-
e curves correspond to hon o t e values of o, .

ere is again no fixed point at finite K
thfid

ere exists some value o.

nq( ); (ii) there is a h
6 t t t T()
fo &2

The borderline value o.i&b is
'/

~
~—p = 1. This e uation

E

q b ly

. (12) bt i dK'/dK
fore

jjK o
——b2 p(b) 2 and there-

., (b) =2 1+'"'(')
ln b

After ssome algebra we find

(b —1)'
2b —1 (b—1

2

Using Stirling's asymptotic ex ans'

responding results ar
erica y or several valva ues of b. The cor-

or o. —+ 2 we see that K —+ oo. In su

behavior:
presents thee following asymptotic

(~) b 4 B(b)K-K - 2
e

where B(b) = 2 P /
ence between the ro

„,1 n2; B~t~ a is the energy difFer-
e ground state and the first e

h 1' ' Th ymptotic behavio of
is then given by the Ce auchy function

with A(b) = 8/(b ln b) In the li.mit b

he coefficient A(b) determines

CX

FIG. 3. Crit ical temperature T, o. J vs
l' l

to a
P

Fig. 4).
n o e numerical results for b —+ oo (see

0.5 1.0

the re ion nee ic e asymptotic regime
p-

g a nonuniform conver g o fii
, consistent with t

For o. m o;+ 6
t e exact result.

we see that K, m 0. T
( ) dK=o b

b—1
2 ). b —n

S»S -~- ~b~
m=1

In the 1limit 6 ~ oo we have C 6 ~ 2.
the e exact asymptotic behavior.

T/1 (14)
A —1

for o. ~ 1. This r

t f tio i4 No
b h

c ion. ow, we can use th
avior to extra olatea '

p a e the full curve T o,C

Tr fo i b k hac suc a curve into the
obt i ood es imate of the ex

, except in the nei hbg

e critical temperature
d fll Fows. irst, we make a line

f h 8 poin o the Cauch fu
or nite b. Then we

( )

limit, obtaining th
en, we take the b —+ oo

ing evaueT =B oo

( Fi . ). Thiis value is within the
'

e
Ad o dY 1n uva estimate T,/ J = 0 79 + 0 05



52

1O

F REPORTS

20

3037

0
o.O O.2 O. 4. 0.6 O. g 1.0

F'inall

rves with

y, we calculate
ponent

a e the correlat'e a ion-length
' ex-critical ex-

)~(~-~ (b))

FIG. 4 L~escale
n

critical tern e
into the solid line

pprox

*Eeectronic add: nne a ress: cann
d

. D. Nobre and C.. Tsallis, Ph

F
T 11' J S y'

T ll' J Ph
) 019 (1992).

~ (
E 1 d 198

er-m, 1 (1982 .
py, Large D

d T. Spencer C

N a, ymmetries Briseesa, m s risees (Hermann Pn, aris, 19?6 i p

ln 6

~/ K~Ic)ln (dK' d

merical results ar p
va . e results ar.„= 1/(n —1'

or sever

1.64 and rereproduces th
en s a minimu

he expected b

ex
ut it res

e ehaviors
p ents a 1 ttl d

approach ado e

m e

op
properties of t~

e gives an esti

o rapolation of

oo imit fid

y recove
'

ln
yo

1 }1 b ained criti 1 ternin a emperature a

15—

10

0
0.5 1.0 1.5

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

~/ K

b=oo e xtrapolat'
I

i OIl.

2.0 2.5

orrelation-1
f h

i z s R . asymptotic result.

mac and K. UzelacZ. Glum
M E Fih S M . Nickel, Ph s.. Ma andB. G ys. Rev. Lett.

. Ph . A14 14
Anderson and

T Niem
" an G. Yuval

eyer and J M J. 5'a L

i3 8

. M ~ n eeuwen, Ph s

. J. Hileya d . . o

ys. Rev. 31

oyce, Proc. Ph

14

o, . ys. Soc.. London 85

e authors . o to not calculate th

ca rive with litt
one- imensi

e reference.
rom Eq. (20) in t e-in the above-

imates with hi him igh precision the
t thtT

e. n partI. cula ,

ue.
This work

reproduces the

r can be exte

in

ional spin
i ong-ran e i

ig er-dimensi

it
h

can also be
one-dimens

s rigorous

li
reat mo

works a,l
ro

one. Some
re comp ex inter

ese lines are in

I ' '"debtede e to Constan '
any fru tful

I acknowled
critical read'

i ul problem.
g of the

8 1 dP
manuscript.

F 8
0 r

es igaciones C' t'fi T
a, and a

ecnolo ic
grant from S

gia e la U
ecretaria i

gentina
ni acional de C r-e ordoba (Ar-


