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Decimation studies of Bloch electrons in a magnetic field: Higher-order limit cycles
underlying the phase diagram
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A decimation method is applied to the tight binding model describing the two-dimensional elec-
tron gas with next-nearest-neighbor interaction in the presence of an inverse golden mean magnetic
Bux. The critical phase with fractal spectrum and wave function exists in a 6nite window in two-
dimensional parameter space introducing universal features. Our decimation scheme identifies new
quantitative universality classes characterized by the limit cycles of the decimation equations. The
limit cycles describe the self-similarity of the wave functions and devide thexn into three broader
qualitative classes where the wave functions are either symmetric, asymmetric, or exhibit a type of
shifted symmetry. We conjecture that the rest of the critical phase, where the fractal wave functions
do not exhibit self-similarity, is characterized by strange attractors of the renormalization equations.
The results are compared with those of Han et al [Phy.s. Rev. B 50, 11365 (1994)] on the same
model.

The two-dimensional electron gas with irrational mag-
netic Aux is a well-known paradigm in the study of
systems with two competing periodicities. The mag-
netic field results in reducing the problem to a one-
dimensional tight binding model (TBM) known as the
Harper equation. The Harper equation exhibits both ex-
tended (E) and localized (L) states. At the onset of tran-
sition corresponding to a periodic potential with square
symmetry, the states are critical (C) with fractal spectra
and wave functions. The scaling properties of the devil
staircase spectra and the wave functions have been stud-
ied extensively using various renormalization group (RG)
methods.

The Harper equation describes not only the Bloch elec-
tron problem but also the isotropic XY quantum spin
model in a modulating magnetic field which is incom-
mensurate with respect to the lattice. Recently, it was
shown that the presence of anisotropy in spin space fat-
tened the critical point of the Harper equation resulting
in a phase diagram where E, L, and C phases all existed
in a finite parameter interval. The existence of a fat C
phase provided a new scenario for the breakdown of ana-
lyticity in incommensurate systems. Furthermore, based
on numerical results obtained using a new decimation
method, ' it was argued that the fat C phase was de-
scribed by four distinct universality classes characterized
by limit cycles of the RG fIow.

Very recently, the fat C phase was reported also in
the original Bloch electron context by Han et al. The
C phase was observed considering Bloch electrons on
a square lattice where the coupling t b to next-nearest-
neighbor (NNN) sites exceeded a certain threshold value
compared to the nearest-neighbor (NN) couplings t and
tb. The associated TBM has the form

(t + 2t b cos(2~[o (i + 2) + P]))g,+g

+(t + 2t bcos(2m. [o.(i —2) + p]))Q;
+2tb cos [2m (o i + p)]Q; = Eg;, (1)

where cr is the magnetic Aux. Figure 1 shows the phase
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FIG. 1. The phase diagram of the electron gas. The solid
lines BC, AC, and CE are respectively the E-L, E-C, and
C-L transition lines. The dark solid circles describe the points
where decimation equations exhibit limit cycles. With the ex-
ception of the point C, the BC line is described by the Harper
universality class. The period of a limit cycle is indicated in
a bracket close to the point: (p), (p], and [p] brackets respec-
tively describe symmetric, asymmetric, and shifted symmetry
cycles of period p.

diagram of the model in the two-dimensional space of the
parameters A = ~ and o. = 2~~. The Harper equation
corresponds to the limit o. = 0 where the NNN coupling
term is zero. The phase diagram was obtained using an-
alytical methods to obtain the scaling behavior of the
total bandwidth (TBW) and the Lyapunov exponents
and carrying out a numerical multifractal analysis. The
lines AC (E Ctransi-tion) and CE (C Ltransitio-n) were
found to be bicritical; i.e. , the TBW scaled with the sys-
tem size with the exponent b = 2. This was in contrast
with the critical line BC separating the E and L phases
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where the exponent was known to be unity. Further-
more, oscillatory behavior superposed on the power law
dependence showed up in the bicritical case. For the se-
quence o = 1/q (q = 1, 2, 3, ...) the observed periodicities
were understood from a WKB analysis. However, the
origin of the regular periodicities for the Fibonacci se-
quence remained rather unclear although the oscillations
were conjectured to be related to the number theoretic
properties of the Fibonacci numbers. Within the region
bounded by the lines AC and CE and the o. axis, where
the NNN coupling dominated, the numerical results sug-
gested that the TBW scaled with a noninteger exponent.
In this region, the oscillations around the power law were
generally irregular except for some special points (e.g. ,

at point G a period 4 was observed). In the multifractal
analysis there were complications as well due to a lack of
convergence in the f (n) curve with the size of the system.
However, this regime was conjectured to be critical.

We apply decimation methods to the TBM given by
Eq. (1) with o' = (v 5 —1)/2. Our motivation is to
confirm the existence of the critical phase and determine
universality classes within this phase. Unlike a previous
study which investigated the scaling properties of the
fractal set of eigenvalue8, we study the scaling properties
of the fractal eigenstates. Our exact decimation equations
which take into account the underlying incommensurate
frequency o can be iterated numerically for extremely
large system sizes. In this approach, the self-similar wave
functions are expected to lead to a limit cycle in the
RG equations. The limit cycles can be used to extract
information on the scaling of a wave function and hence
they characterize the corresponding universality classes.

Our decimation approach describes the scaling proper-
ties of the wave functions for a specific value of energy. In
the critical phase, the self-similar behavior is usually ob-
served only for the minimum and maximum energy states
and also for the band center if E = 0 is an eigenenergy.
In our studies below, we will focus on the quantum state
corresponding to E;„. In addition to fixing the quan-
tum state, one has to also fix the phase factor P in Eq.
(1). It has been pointed out in previous studies that
the wave function g; obtained by iterating the TBM di-
verges unless the phase factor P is tuned to some critical
value P, . In the Harper model, P, = — for the negative
band edge. For this value, the main peak is centrally lo-
cated and the wave function is symmetric about i = 0. In
the study of the quantum spin model, the phase factor
had to be varied continuously in the fat C phase so that
the main peak could be centrally located and the result-
ing wave function became bounded. Determination of P
was essential in order to find the RG limit cycles and
to compute the universal scaling ratios. In general the
phase factor P for obtaining a symmetric wave function
need not be identical to the phase factor resulting in a
bounded wave function.

We consider an infinite lattice which extends in both
positive and negative directions from the i = 0 site. In
the decimation scheme, all sites except those labeled by
positive as well as negative Fibonacci numbers are deci-
mated. The resulting TBM connecting the wave function
g at two neighboring Fibonacci sites can be written as

g(i + I" +g ) = c+ (i)@(i+ I'„) + d+ (i)g(i), (2)
&('- +-")=;(')~('- ~.) + d;(')~(').

The index n above refers to the level of decimation. For
the Harper model it suffices to define only one set of the
"decimation functions" c (i) and d (i) because of the
symmetry of the bounded wave function about i = 0. For
the TBM (1) such a symmetry cannot always be found
and therefore we have to introduce separate decimation
functions for the positive (+) and the negative (—) side.

Using the defining property of the Fibonacci numbers,
E +i ——E + P i, the following recursion relations are
obtained analytically for c and d„(we will omit the +, —
indices if the equations do not depend upon them)

c„+~(i) = c„(i + I"„)c„~(i+ I"„)—d„'(i)d„+g(i),
d-+~(i) = —d-(i) ld-(i+ +-) (4)

+ -('++-)d-- ( +&-)l .'(') (5)
For a fixed i, the above coupled equations for the deci-
mation functions de6.ne a RG How which asymptotically
(n ~ oo) converge on an attractor. In our earlier studies,
the E, C, and I phases were distinguished by distinct at-
tractors of the RG fIow. In the Harper as well as in the
quantum spin case, the C phase was characterized by a
nontrivial asymptotic p cycle at the band edges with p
equal to 3 or 6. As discussed in our earlier paper, the
conjecture for the existence of limit cycle provides a very
efIicient Newton method where the energy as well as the
cycle can be determined self-consistently to a very high
precision.

The existence of a nontrivial p cycle for the decimation
functions can be used to define the scaling ratios

lim ~g(F„„)/g(0)~, j = 0, . . . , p —l. (6)
This equation describes the decay of the wave function
with respect to the central peak and therefore the defini-
tion is meaningful only for the critical value of the phase
factor P, leading to a bounded wave function. A well-
defined limit (i exists for an integer p for which asymp-
totically g(I" +„) g(I' ). The scaling ratios are useful
in comparing diferent universality classes.

By studying the asymptotic behavior of the decima-
tion functions we can con6rm the structure of the phase
diagram in Fig. 1: For fractal wave functions the as-
sociated decimation functions exhibit nontrivial limiting
behavior, thereby distinguishing the C states from the E
and L states. As summarized in the phase diagram, some
of the points in the C phase exhibit limit cycles. For the
phase factor P = 1/2, points B and C were found to ex-
hibit a period-3 limit cycle while for point A the period
was 6. On the other hand, we found period 12 for M, E,
G, H, I, J, and K. All these limit cycles, obtained with
P = 1/2, resulted in the decimation functions which were
equal on the positive and negative side and the corre-
sponding wave functions were symmetrical about i = 0.

With the exception of the wave functions at B, C,
K, and H, the symmetric wave functions for P = 1/2
are unbounded. However, by tuning the phase factor P
to a critical value P„bounded wave functions can be
obtained as summarized in Fig. 1 and in Table I. It
turns out that the bounded wave functions obtained with

different from 1/2 are not symmetric about i = 0 and
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TABLE I. Special points of the phase diagram and the cor-
responding parameter values. We also show the cycle length
at the critical value P, of the phase factor and the TBW cy-
cle, which refers to the length of the oscillation in the TBW
as obtained from Ref. 8.

B
C'

A
M
F

FI
I
J
K

1
1

1/2
0
1
2
0
1

0

1
2
2
2

1/2
1/2
1/4

0.3202185
5/18
1/3
1/2
1/4
3/8
1/2

Cycle

3
3
6

24
24
24
12
12
12
12

TBW cycle

the corresponding decimation functions on the positive
and negative side are difI'erent. These asymmetric wave
functions fall into two difFerent categories. For points
A and J, the wave function is completely asymmetric
about i = 0 with totally different scaling factors ( on
the positive and negative side (Fig. 2). At these points
the "asymmetric" cycle of the decimation functions ob-
served at P, has the same length as the "symmetric" one
at P =1/2.

For all the other points the asymmetry is associated
with a constant shift between the wave functions on the
positive and negative sides. Numerical iteration of the
TBM (1) shows that the wave functions on the positive
and negative side are asymptotically related by

&(+-) = &(—+-+ ) (7)
and the corresponding decimation functions satisfy the
equations .+(o) = . .(0) d. (0) = d. .(0) (8)
i.e. , asymptotically there is a shift of 8 levels between the
positive and negative decimation functions. Moreover, in
the above + and —can be interchanged with the same
shift s, which implies that c+(0) = c +, (0) = c++2, (0),
i.e., the asymptotic period p = 28.

The phenomenon of shifted symmetry helps in locat-
ing the limit cycles of period 24 at points E, G, and the
middle point M of the line AC. With double-precision

arithmatics, the decimation equations can be iterated ac-
curately only about 23 times so that the full asymptotic
cycle cannot be seen on one side only. More iterations can
be carried out using quadruple precision but at present
we cannot go much beyond the 28th decimation level
(corresponding to the system size 1028455) because of
the CPU time limitation. However, even with some ini-
tial transients, we can see the asymptotic cycle clearly
due to the constant shift between the decimation func-
tions on the positive and negative sides. For all the points
I', G, and M the shift s is found to be equal to the pe-
riod of the symmetric limit cycle appearing at P = 1/2.
Therefore, in these cases the phenomenon of shifted sym-
metry results in a doubling of the period of a limit cy-
cle for the decimation functions. However, for the point
I the shift is one-half of the symmetric period so that
the asymmetric and the symmetric periods have equal
lengths.

Comparison of the limit cycles and the scaling ratios at
various points shows that the points A, C, M, I", G, H,
I, J, and K de6ne nine new universality classes difI'erent
from Harper. These quantitative universality classes can
be divided into broader qualitative classes of symmetric,
asymmetric, and shifted-symmetry wave functions. An
example of each case is shown in Fig. 2.

With the exception of the points discussed above (i.e. ,
the points marked by solid circles in the phase diagram),
the iteration of the decimation functions in the rest of
the C phase did not show any limit cycles. Particularly
difIicult was the study of the AC line where the existence
of limit cycles at A, C, and the point M was confirmed
with the quadruple precision. However, for the rest of the
points on this line, the RG iterates came close to the limit
cycles of A, C, and M but never converged to any of them
[see Fig. 3(a)]. The decimation functions for the lines
AM and MC plotted separately converged on a same
invariant set. Analogous results were obtained for the
line CE where the RG iterates did not converge on a limit
cycle except at the points C, K, and II [see Fig. 3(b)].
Furthermore, the iterates of the RG equations for the
region bounded by AC and CE converged on yet another
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FIG. 2. The absolute value of the wave function at the points C (a), 1 (b), and G (c) at E = E;„The phase factor P .is
chosen so that the main peak is centrally located resulting in a bounded wave function (see Table I). (a) is an example of a
fully symmetric wave function. (b) is completely asymmetric resulting in different scaling factors on the positive and negative
side. (c) is associated with the shifted symmetry where the same ('s appear on both sides but the corresponding lattice sites
are shifted by a Axed number of decimation levels.
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FIG. 3. (a) The inverse dec-
imation function 1/c„(0) vs
1/c +q(0) (P = 1/2) along the
bicritical line AC. The limit
cycles for the points M, A,
and C are respectively shown
by small, medium, and large
crosses. (b) Corresponding re-
sults for the interior of the crit-
ical phase bounded by the AC
and CE lines. The dark dots
show the data for the CE line,
excluding the points C, K, and
H.

invariant set which appeared independent of the chosen
parameter values at which the decimation equations were
iterated. This suggested that the observed behavior was
not due to long transients. Although the possibility of
limit cycles of order higher than 24 cannot be completely
ruled out, we believe that the iterates of AC and CE and
the region bounded by them converge on three different
invariant sets. It is interesting to note that the invariant
set of the CE line encircles the invariant set of the region
bounded by AC and CE.

In summary, our decimation scheme conclusively shows
that the Bloch electron problem with NNN interactions
results in various new universality classes. The wave
function corresponding to a band edge is self-similar at
isolated points (see Table I) of the phase diagram where
the RG flow converges on a limit cycle. Some of these
special points were pointed out in a previous study of
the Inodel where they were signaled by periodic oscilla-
tions of the TBW superposed on a power law behavior.
The previous studies were rather inconclusive in the in-
terior of the critical phase. We show that most of this
region can be described by an infinite invariant set of
the RG flow. To the best of our knowledge, this is the
first example of a quasiperiodic model where the golden
mean incommensurability does not result in self-similar
wave functions at the band edges. Our studies provide
a unique characterization of these fractal states in terms
of an invariant bounded set of the RG equations.

A number of open problems remain. (i), we cannot
rule out the existence of additional limit cycles in the

critical phase and hence Table I may not be complete.
The existence of limit cycles at certain isolated points
for which P is a rational number (with the exception of
point M) suggests that these points may correspond to
special symmetries of the TBM. These special character-
istics may also explain why the wave functions at certain
points are symmetric, asymmetric, or possess the shifted
symmetry. (ii), the relationship between the limit cycles
of the decimation equations and the periodic oscillations
in the TBW (Ref. 8) is not fully understood as seen from
Table I. Furthermore, the scaling exponent for the TBW
was found to be different on the CD line from the rest
of the interior of the C phase. However, for both regions
the scaling properties of the wave function seem to be
described by the same invariant set. (iii), it would be
interesting to linearize the RG operator around some of
the new limit cycles using the local form of the operator
introduced in Ref. 5.

There have been various attempts to obtain experi-
mental realization of the critical phase of the Harper
model in 2D mesoscopic systems. Calculation of the
transport properties in a quantum dot system could pro-
vide a possible experimental means to confirm the phase
diagram of the generalized Harper model where the crit-
ical phase exists in a finite region in parameter space.
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