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A simple and fast method is given for the extraction of extended x-ray-absorption fine structure from
x-ray-reflectivity spectra. The method is based on the description of the x-ray-reflectivity fine structure
as a linear superposition of the fine structures in the real and in the imaginary part of the refractive in-

dex. It is applicable at all glancing angles, i.e., above as well as below the critical angle. Besides the
smooth part of the refractive index, no other additional information is necessary. As an example, results
obtained with calculated nickel data are presented.

I. INTRODUCTION

Whereas the extended x-ray-absorption fine structure
(EXAFS) can be easily obtained from an absorption or a
fluorescence measurement, an analogous spectrum ob-
tained in the reflection mode cannot be straightforwardly
evaluated. The reason for that is that, in contrast to the
absorption, the x-ray reAectivity depends on both the real
and the imaginary part of the refractive index. As a
consequence, x-ray-refiectivity fine structure (XRFS)
spectra cannot directly be compared with the EXAFS
theory. In this paper, we present a fast and straightfor-
ward method for the extraction of EXAFS from XRFS
spectra obtained with homogeneous materials in the hard
energy range.

II. LINEAR APPROXIMATION FOR XRFS

The optical properties of condensed matter in the x-ray
energy range are described by the complex, energy-
dependent index of refraction n =1—5 —iP. Above an
absorption edge, both 5(E) and 13(E) exhibit EXAFS-like
oscillatory structures. ' However, the name EXAFS is
usually connected with the fine structure in the absorp-
tion p(E) or, equivalently, in the P(E): P=pk, /4~ (A, is
the wavelength). If we denote the oscillatory parts in
P(E) and 5(E) by bP and b5, respectively, then we have
P(E ) =Po+ b P and 5(E)=50+ b5, where Po and 50 are

Despite this complicated form, b,R (E) was found to be,
to a good approximation, a linear superposition of b,P(E)
and 55(E) bR(E)=ah5(E)+bbP(E), where the pa-
rameters a and b depend, for a given system, only on
O. ' An improved approximation is obtained if the
reflectivity fine structure normalized with respect to Ro
(yR ) is considered,

with

R (E)—Ro(E)
R (E)

b,R (E)
Ro(E)

the smooth, atomiclike backgrounds. P(E) and 5(E) are
not independent; they form a Kramers-Kronig transform
pair. The same is also valid for I513(E) and b,5(E). As a
consequence, b,5(E) contains no new information com-
pared to hP(E).

Above an absorption edge, the x-ray reflectivity R can
be split into a smooth part R 0 and an oscillatory part AR
with R =Ro+AR. In our considerations, R denotes the
Fresnel refIectivity from an interface between vacuum
and a homogeneous, half-infinite, and isotropic medium.
While Ro is a function of Po and 50 only (with the glanc-
ing angle 0 as a parameter), the fine structure in R is a
function of the smooth part as well as of the oscillatory
part of the refractive index:

hR (E;0)=R(5(E),P(E);0)—Ro(50(E),PD(E);0) . (1)
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The error of the approximation given by Eq. (3),

th
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III. EXTRACTION OF EXAFS
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bp(E) from the measured x-ray-reflectivity fine structure
is similar to that of the linear approximation of Eq. (3)
(Fig. 2) and is very good for all glancing angles.
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IV. EXAMPLE

Figure 4 shows fit results according to Eqs. (4) and (5)
with calculated nickel data. The absorption data p(E)
were obtained with a metal foil from a transmission
EXAFS spectrum and the smooth part po(E) was deter-
mined using a standard EXAFS procedure. In order to
obtain 5(E) and 5O(E), the p(E) and po(E) functions were
first extrapolated to 1 and 50 keV below and above the
measured spectrum, respectively, using the Victoreen
functions and subsequently Kramers-Kronig
transformed. With these data, the gz(E) function was
then calculated according to Eq. (2) for the glancing an-
gle of 6.3 mrad. The gz(E) function and its Kramers-
Kronig transform, as well as 5o(E) and po(E), were the
inputs for a parameter-searching procedure.

V. CONCLUSIONS
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FIG. 4. Fine structure in the absorption for nickel: original
data (dotted) and extracted according to Eqs. (4) and (5) from
the gz function calculated for 0=6.3 mrad (solid).
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We have shown a fast and straightforward method for
the extraction of EXAFS from the x-ray-reflectivity data.
No additional data, except the measured spectrum and
the smooth parts of the refractive index, are required.
The method is based on a description of the normalized
x-ray-refIectivity fine structure as a linear superposition
of the fine structures in the real and imaginary parts of
the refractive index. It is well suited for reAectivity data
obtained at all glancing angles.

APPENDIX

Consider two oscillatory functions a and p that form a
Kramers-Kronig transform pair, i.e., a=KK(P), and a
linear superposition of them with nonzero coefficients a
and b: F =a a+ b p. Suppose there were two other
nonzero numbers c and d with F =ca+ dP. Then we had
a=p(d b) j(a —c)—, in contradiction to the above
definition of a as the Kramers-Kronig transform of p.
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