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We study the long-range behavior of spin correlations in low-dimensional spin- —antiferromagnets

with both Ising anisotropy and spatial anisotropy. We represent the spin operators in terms of spin-
density operators and spin-phase operators. Then for spin- —antiferromagnets, within a simple harmonic

approximation, we obtain expressions for the spin correlations in the ground state. For the one-
dimensional linear chain, we find that the two leading terms in spin correlation are (

—1)"c/r"—c, /r'
for large distance r. The power q depends on the Ising anisotropy, and g=0.405 at XY point and
q=1.062 at Heisenberg point. For the two-dimensional square lattice, there is long-range staggered
magnetization, and the dependence of magnetization on Ising anisotropy is given. For the crossover
from one-dimensional linear chain to two-dimensional square lattice, we find that the disorder-order
transition occurs as long as the interchain coupling is introduced. We believe that our method gives a
unified approach to the long-range behavior of spin correlations in low-dimensional spin-

2
antiferromag-

nets.

I. INTRODVCTION

In the past few years there has been increasing interest
in the study of low-dimensional spin- —, Heisenberg anti-
ferromagnets, because of their relevance to the undoped
high-temperature superconducting cuprate. In these sys-
tems, the physical pictures obtained from the classical ap-
proach are often greatly modified or even contradicted as
a result of strong quantum Auctuations and topological
e6ects. Haldane' conjectured that the one-dimensional
integer-spin chain with nearest-neighbor coupling has an
energy gap in the spin excitation spectrum and that the
spin correlation decays exponentially with distance,
whereas half-odd-integer-spin chain is gapless and the
spin correlation decreases algebraically with distance. In
two-dimensional square lattices (SL s), it is well estab-
lished that the spin excitation is gapless and there is
long-range antiferromagnetic order (LRO) in the ground
state, regardless of the magnitude of spins. For the case
of integer spins, Schwinger-boson mean-field theory has
proved qualitatively correct for both the one-dimensional
linear chain (LC) and the SL. In the crossover from the
LC to the SL, it is believed that a finite critical interchain
coupling is required to undergo the transition from the
disordered phase in one dimension to the ordered phase
in two dimensions. For the spin- —,

' case, a representative
of half-odd-integer spins, there is an exact solution in one
dimension, but exact calculation of the spin correlation
has not been obtained. The most powerful analytical
method used is the bosonization technique, ' which gives
the quantitatively correct behavior of the spin correlation

in one dimension. However, this method is dificult to ex-
tend to higher dimensions. In the SL, the established
conclusion that there is LRO in the ground state vali-
dates some analytical methods based on the assumption
of the existence of LRO, such as spin-wave theory. In
the crossover from the LC to the SL, there are still con-
troversies on whether there is a finite critical interchain
coupling in the disorder-order transition. Therefore a
unified approach which can recover the results of both
the LC and the SL is necessary to provide more reliable
conclusions on this problem.

In this work, we study the spin correlations of low-
dimensional spin- —, antiferromagnets with both Ising an-

isotropy 6 and spatial anisotropy u. We represent the
spin operators in terms of spin-density operators and
their Hermitian conjugate, spin-phase operators. For
spin —„within a simple harmonic approximation, we ob-
tain expressions for the spin correlations. In the ground
state of the LC, the spin correlation has the form
(
—I)"clr" c, /r +O—(r ") for large distance r, with

depending on 6 and g =0.405 at the XY' point,
g=1.062 at the Heisenberg point. The first term in the
spin correlation was predicted by Haldane' with g = 1 at
the Heisenberg point. The dependence of g on 6 was ob-
tained by Luther and Peschel using the Abelian bosoniza-
tion technique. The second term is consistent with vari-
ous theoretical results. ' '" In the ground state of the SL,
it is generally believed that there is long-range staggered
magnetization. In the crossover from the LC to the SL,
we find that the disorder-order transition occurs as long
as an interchain coupling is introduced. This conclusion
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is reliable, since the same approximation recovers the
correct results of both the LC and the SL, the two limit-
ing cases of the crossover from the LC to the SL. The
physical reason is that the spin- —, LC antiferrornagnet is
at its critical point. Therefore it is unstable against any
finite interchain coupling. We think that our treatment,
which takes the ubiquitous spin Auctuations as a starting
point and does not assume the existence of LRO, pro-
vides a unified approach to the long-range behavior of
spin correlations in low-dimensional spin- —, antiferromag-
nets.

The rest of the paper is organized as follows. In the
next section we give the formalism and the self-consistent
equations within a harmonic approximation in detail.
Section III gives results for the LC, the SL, and the cross-
over from the LC to the SL. Section IV is a summary,

II. FORMALISM
AND THE HARMONIC APPROXIMATION

The low-dimensional spin- —,
' antiferromagnets we con-

sider are defined on a two-dimensional lattice of X sites
by the Hamiltonian

H=g Js(S S;+s+SfS~+s+bS S+s),

S;+=( —1) '(S+g; )'~ exp( i 8—; )(S—g; )'

S, =( —1) '(S —
g, )' exp(i8; )(S+g; )'

(2a)

(2c)

together with the constraint
S

(g; —n)=O,
n= —S

(2d)

constitutes a faithful representation of the spin opera-
tors. ' Here M; =x;+y; is the Manhattan distance of the
lattice. In this representation, Hamiltonian (1) becomes

where S; are spin-S operators, 5 =+x, +y denotes the
four nearest-neighbor sites, and 5 represents the Ising an-
isotropy, 6=0 for the XP model and 6=1 for the
Heisenberg model. J& is defined as J+„=1,J+ =a, with
o.' denoting the spatial anisotropy, a=0 for the LC, +=1
for the SL, and 0& o.( 1 for the crossover from the LC to
the SL.

We introduce two Hermitian operators g; and 8;, with
the commutation relations [g;,g~]=[8;,8 ]=0, [g;,8 ]
=i 5;J; i.e., g; and 8; are conjugate with each other. Then
the transformation

S
H=g Js ——( S+g;)' e '(S —g;)'~ (S g;+s—)'~ e '+'(S+g;+s)'~ +H. c. +bg;g;+s+A, ; g (g; n)—, (3)

i, 5 n= —S

where A, ; are Lagrange multipliers to ensure the con-
straint (2d).

Hamiltonian (3) involves the coupling of 2N variables.
In the case of S=—,', the constraint (2d) is quadratic,

g,
—

—,
' =0. We make the following approximations: (a) a

long-wavelength approximation of phase operators, i.e.,

—'e '+' ' +H. c. =1—
—,'(8, +s —8;)i((9. —0. )

i(, 0,.+~
—0,. ) .

(b) The coefficient of e '+ ' in the first term of Hamil-
tonian (3), which is a function of g,. and g;+s, is replaced
by its average. Under the constraint (2d),

( —,'+g;)'"(-,'+g;, )'"=(—,'+g; )( —,'+g;, ) =-,'+ & g;g;

and (c) the Lagrange multipliers /(, , are replaced by a stat-
ic and uniform value A, . Under these approximations,
apart from a constant, Hamiltonian (3) for S=

—,
' is

HHA x Js[( + (kiki+5 ~ )(8 8'+5)

+kg, g, +s+/(.g, ] .

g, =N-'"yg, e' " 8 =N-'"y8„e' ";
k k

then,

HHA=y(AO —Ak)8k8 /, +[2k(1+a)+8„]g„g
k

where

Ak =g Js( —,'+ as )e'"
6

Bk =g JSbe'
6

and a&=(g;g;+&). Under the transformation

pk —(ak/2) (gk l8 k /ak )

13k =(ak/2)' (g k+i8k/ak),

gk and 8k can be expressed in terms of pk and /3k,

4=(2ak) '"«k+& +—k»

(6a)

(6b)

(8a)

This is nothing but X coupled harmonic oscillators.
Accordingly, we term the above approximations as a har-
monic approximation. Hamiltonian (4) can be diagonal-
ized in momentum representation. Let

8k = —i(ak/2)' (48k
—p k) . (8b)

Substituting (8a) and (8b) into (5) and choosing ak so that
the oA-diagonal terms in HHA vanish, then we have
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ak = [(2A(1+a)+8k )/( 30 —Ak )]'

And (5) becomes

HH~ =X Ek(&k ~k+ 2» (10)

where

Ek =2[(2A(1+a)+8k )( Ao —Ak ) ]'

is the energy spectrum of excitation.
The Z-component spin correlation in the ground state

1s

(sp„') =(g,g„)
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FIG. 1. Parameters A, and a vs Ising anisotropy 6 for LC's.

Therefore the parameters A, and a& for given 6 and a
are determined by the self-consistent equations

III. RESULTS FOR VARIOUS CASES

A. Independent linear chain

1 1 1

Xk 2ak
(13a) In the case of the LC, a=0. Let a+„=(fog'+ ) =a;

then,

(13b)

The XY'-component spin correlation can be obtained
from

(S,+S„-&=( —1)"-'(e' " ' )

and

Al, =2( —,'+ a)cosk„,

Bk =2k cosk~,

A, +6 cosk

( —,'+a)(1 —cosk )

(16a)

(16b)

(16c)

(14)

where spin-phase correlation

((8,—80) ) =—g (8„8 „)[2—2cos(k r)]2 =1

=—g a„[1—cos(k r)] .
1

k
(15)

For given 6 and cz, the parameters k and a& are deter-
mined by (13a) and (13b). The spin correlations are given
by (12), (14), and (15). In the next section, the solutions
for the cases of the LC, the SL, and the crossover from
the LC to the SL are presented in detail.

eik. r

1

4wr

and the spin-phase correlation is

Substituting (16a)—(16c) into the self-consistent equa-
tions (13a) and (13b), we obtain A, and a for given b.. At
the XF point, 6=0, A, =0.540, a = —0.083, and at the
Heisenberg point, 5= 1, A. = 1.046, a = —0. 158. The
dependence of A, and a on 6 in the interval 0(5~ 1 is
shown in Fig. 1.

From (12), the Z-component spin correlation is

( —,'+a)(1 —cosk )
(Sz z)

2N ~k A, + b, cosk„

2( —'+a)
+O(r '), r»1,

A, +b, cosk
(80—8„) X k ( —,'+a)(1 —cosk„)

1/2

[1—cos(k r)]

2 1+6
2( —,'+a) (18)
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where C =0.5772 is Euler's constant. So the XY-
component spin correlation is

Ak =4( —,'+a)yk, (22a)

(22b)

r»1, (19)
A, +hyk

( —,'+a)(1 —yk )
(22c)

1 A, +6
71=

2( —,'+ a)

1/2

1 1 A, +6
c =—exp

2 n 2( —,'+a)
1/2

(C+in~)

where exponent g and constant c are

(20a)

(20b)

where yk=(cosk +cosk )/2. Substituting (22a) —(22c)
into (13a) and (13b), we get A, and a for a given b, . For ex-
ample, at the XYpoint, 6=0, X=0.784, a = —0.037, and
at the Heisenberg point, 6=1, A, =1.040, a= —0.082.
The dependence of A, and a on 6 is shown in Fig. 3.

From (12), we have

Figure 2 shows the dependence of the exponent q on 5
for 0~ 6 ~ 1. At the XY point, 6=0, g=0 405,
c =0.249. At the Heisenberg point, 5= 1, g = 1.062,
c =0.161.

From (17) and (19), the total spin correlation, to the
first two leading terms for a large distance r, is readily ex-
pressed as

(21)

1= lim
r oo 2N

( —,'+ a)(1—y„)
+ark

e ik. r

=0.
From (15), we have the spin-phase correlation

((8„—80) ) = lim ((8„—80) )
P'~ QO

(23)

Such a long-range power law decay of the spin correla-
tion with distance was predicted by Haldane for the half-
odd-integer-spin LC at the Heisenberg point with g = 1.'

At the XY point, McCoy first obtained the exact value
Using the Abelian bosonization technique, Luth-

er and Peschel obtained g= —,'[(m+26, )/(m —2b, )]'~ in

the continuum limit and g= —,'+(1/m. ) arcsinb, in the

discrete limit. The second term in (21), which comes
from the Z-component spin correlation, is in agreement
with the numerical results of Liang' and the analytical
results of AfBeck."

B. Square lattice

A, +6yk
(4+a)(1—y„)

and the XY-component spin correlation

' 1/2

(24)

lim (So+S„)=( —1)"—,'exp( —
—,'((8 —80) ) ) .

r~ oo

(25)

From (23)—(25), for r ~~, we find that the spin corre-
lation is determined by its XY component. It does not
vanish for two infinitely separated sites; i.e., there is LRO
in the ground state. The corresponding staggered magne-
tization is

In the case of the SL, o.=1. From the symmetry of
(13b), let a„=(go(+ ) =a =(gg+ ) =a; then, m =(—,')' exp( —

—,'((8„—80) )) . (26)

1.0 —0.030

0.9

0.8 1.0 -0.045

0.7

0.6
A, 0.9 -0.060

0.5

'So 0.2 0.4 0.6 0.8 1.0

0.8 -0.075

FIG. 2. Exponent g vs 6 for LC's. The solid line is our re-
sult. The dashed line is the result in Ref. 5,
g=

2 +(1/m) arcsinA.
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FIG. 3. Parameters k and a vs Ising anisotropy 6 for SL's.
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0.40 C. Crossover from the LC to the SL
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FIG. 4. Dependence of staggered magnetization m on 6 for
SL's.

In the ground state of the SL, the existence of LRO
was exactly proved by Kubo and Kishi for 0~ 6 ~0. 13.
At the XYpoint, 6=0, m =0.382, and at the Heisenberg
point, 6= 1, m =0.297, which is very close to the
second-order spin wave results m =0.3007.' The depen-
dence of staggered magnetization m on 6 is shown in Fig.
4. and

Ak =2( —,'+a„)cosk„+2a(—,'+a» )cosk»,

B =k2(c sok, +ac sok ),
(27a)

(27b)

Since for the spin- —,
' Heisenberg model LRO does not

exist in the ground state of the LC, but does exist in the
ground state of the SL, it is natural to ask whether there
is a finite interchain coupling a, at which the disorder-
order transition occurs. Sakai and Takahashi, combin-
ing a mean-field treatment with one-dimensional exact di-
agonalization, found that once the interchain coupling
was introduced, LRO persists; i.e., a, =0. Azzous, using
a mean-field approximation in the Wigner-Jordan fer-
mion representation, reached the same conclusion. Very
recently, Parola, Sorella, and Zhang proposed that there
is a disorder-order transition at a finite interchain cou-
pling a, =0.1.

Since our method gives the correct results of both the
LC and the SL, we naturally use it to deal with the case
of the crossover from the LC to the SL. Without loss of
generality, we only confine our discussions to the Heisen-
berg model, i.e., let 6=1. To find out the behavior of
spin correlations in the crossover from the LC to the SL,
i.e., 0&a&1, set a =(fog+„) and a =(go/+ ); then,

A,(1+a)+cosk +acosk
( —,'+a )(1—cosk„)+a( —,'+a )(1—cosk )

(27c)

From (27c) and the self-consistent equations (13a) and (13b), A, , a, and a can be determined once a is given. For ex-
ample, a=0. 1, X=1.0457, a = —0. 1302, and a = —0.0311. For 0(a ( 1, the values of a„and a„ interpolate between
the values of the LC and the SL.

Similar to those of the SL, we have

(28)

' 1/2
1 A(1+a)+cosk +a cosk((e„—o, )' =—yN k ( —,'+a„)(1—cosk„)+a( —,'+a )(1 cosk )— (29)

The long-range behavior of the spin correlation is also
dominated by the XY component. The staggered magne-
tization is

m = ( —,
' )' exp( —

—,
' ((8 —&o) ) ) (30)

Note that as long as a&0, both a„and a do not van-
ish, and the spin correlation for two infinitely separated
sites approaches a finite value. The staggered magnetiza-
tion m is nonzero for arbitrarily small interchain cou-
pling. Therefore the critical value of the interchain cou-
pling is equal to zero. Any finite value of a will give rise
to a finite staggered magnetization m. For example,
a=1.0X10, A, =1.046, a = —0. 158, a = —8. 14
X 10, and m =0.02. Figure 5 shows the dependence of

m ona.
Our result is in agreement with those of Sakai and

Takahashi and Azzouz. We think that our result is
more reliable since the same method gives the quantita-
tively correct behavior of the two opposite limiting cases
of the crossover from the LC to the SL. The spin- —,

' re-
sults are different from those of integer spins, in which a
finite critical value of interchain coupling is required to
establish the ordered phase. The physical reason is as fol-
lows. For the spin- —,

' LC, the gapless excitation and alge-
braical decay of the spin correlation imply that the spin
correlation length is infinite. Although there is no true
LRO, it is at the critical point and unstable against any
finite interchain coupling. But for integer-spin linear
chains, there is an excitation gap, and the spin correlation
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FIG. 5. Staggered magnetization m vs spatial anisotropy a
for the crossover from LC's to SL's.

decreases exponentially with distance. Therefore a finite
interchain coupling is required to make the gap to vanish
and LRO to appear.

For the crossover from the LC to the SL, there is LRO
for any finite interchain coupling.

In our harmonic approximation, the starting point is
the existence of local spin fluctuations, which are ubiqui-
tous in low-dimensional antiferromagnetic systems. Al-
though we do not assume the existence of LRO, it does
emerge for the SL. Our method is particularly applicable
to low-dimensional antiferromagnetic systems, where the
existence of LRO is not yet as clear as in three dimen-
sions. Unlike the bosonization technique, which
represents the Wigner-Jordan fermions in terms of boson
operators, we directly use the boson nature of the spin
operators. Therefore it is readily valid in dimensions
higher than 1, as our results indicated. The remaining
problem concerning the extension to spins higher than —,

'

is that the constraint (2d), although different for half-
odd-integer spins and integer spins [i.e., the constraint
(2d) is even power of spin density for half-odd-integer
spins and is odd power of spin density for integer spins],
is a power of a spin density larger than 2 for S & —,'. This
may invalidate the simple harmonic approximation.

IV. SUMMARY

We studied the spin correlations for the LC, the SL,
and the crossover from the LC to the SL. Within a sim-
ple harmonic approximation, we found that the spin
correlation decreases algebraically with distance for the
LC, whereas for the SL, there is LRO in the ground state.
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