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Influence of multiple elastic and inelastic scattering on photoelectron line shape
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The inQuence of multiple elastic and inelastic scattering on photoelectron spectra from semi-
infinite random solids has been investigated. A theoretical expression describing the energy and
angular yield has been derived which adequately accounts for the anisotropic source emission of
photoelectrons. Comparison of theory with results from an efBcient Monte Carlo code yields very
satisfactory agreement. The resulting energy and angular distribution for four subshell transitions in
gold are presented. A pronounced dependence of the particle transport on the line shape is seen in
the results for different geometries. As an application of the presented theory, a procedure to correct
the observable experimental spectrum in the quasielastic regime for multiple elastic and inelastic
collisions is developed and tested. In all studied cases the proposed approach yields background
corrected spectra agreeing within 3'%%uo with the original line shape, while methods not accounting
for the anisotropic source emission generally display discrepancies of up to 30% in the background
intensity. The main advantage of the proposed approach lies in its generality. It not only accurately
describes the inBuence of particle transport on the energy and angular distribution of Auger electrons
and photoelectrons, but can also be applied in a straightforward manner to many other spectroscopic
techniques using electrons, ious, or other probing particles.

I. XNTjR,GDUCTIGN

Photoelectron spectroscopy is an important tool for
the study of the electronic structure of condensed matter
and is moreover a widely used technique for quantita-
tive surface analysis. In line-shape analysis as well as in
quantitative peak area evaluation, an accurate theoret-
ical description for the angular and energy distribution
is important for the interpretation of experimental data.
The spectral features are, to a large extent, determined
by the transport of signal electrons between generation
in the solid and escape &om the surface. Multiple elas-
tic and inelastic collisions significantly modify the parti-
cle energy and angular distribution, leading to a distinct
difFerence between the observable experimental spectrum
and the true intrinsic spectrum.

Although several empirical methods to extract the nec-
essary information Rom experimental data have been
proposed in the past, until recently there has ex-
isted no theoretical description accounting for the rele-
vant transport phenomena involved in the photoelectron
emission process. In this connection, it seems useful to re-
call that &om the theoretical point of view three regimes
for electron transport may be distinguished, governed by
the so-called scattering parameter

Here A; is the electron inelastic mean free path (IMFP)
and At, is the transport mean free path, determining the
(large aiigle) deflection probability. The limit of strong
absorption is attained for small values of the scattering
parameter (y (& 1) when the electron trajectories do not
display significant deHections owing to the large prob-

ability for energy loss. Therefore, for small scattering
parameters, elastic scattering may be neglected and the
strong absorption regime coincides with the straight line
approximation. In the opposite limiting case of large
scattering parameters, on the contrary, electron deHec-
tion will dominate the transport process and the trajec-
tories will be diKusionlike. In this case the difFusion or
Pq approximation provides an accurate description of the
phenomenon.

Unfortunately, the overwhelming majority of photo-
electron transitions is associated with a scattering pa-
rameter of the order of unity, y 0.5, thereby invalidat-
ing both the straight line and the diffusion approxima-
tion. Recently, the question of how to appropriately ad-
dress the case of intermediate scattering parameters was
resolved by introduction of the so-called generalized ra-
diative field similarity principle. This principle states
that an accurate approximate solution to the transport
equation may be. found by replacing the elastic cross sec-
tion by any approximate cross section subject to three
conditions: (1) For small scattering parameters the solu-
tions should reduce to the straight line case; (2) for large
scattering parameters the original radiative field simi-
larity should be fulfilled, and (3) the source distribu-
tion in the transport equation should be a smooth func-
tion of the emission angle. Thus this principle immedi-
ately rules out the straight line and difFusion approaches
as accurate approximations. The latter is extensively
used, however, and easy to use background subtraction
procedures have been derived in the framework of this
approximation. On the other hand, the generalized
radiative field similarity principle fully substantiates the
so-called transport approximation with the essential pro-
vision that the source angular distribution should be suf-
ficiently smooth. Several authors have used the transport
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approximation to study various problems connected with
medium energy electron transport. ' ~ 6' ' Recently a
simple and efFectjve description of isotropic Auger emis-
sion was developed in the framework of the transport
approximation in Ref. 7. Comparison with Monte Carlo
(MC) model calculations demonstrated the high accu-
racy of this method and in particular substantiated the
emission angle dependence of the shape of the energy
distribution this theory predicts, a previously unknown
efFect.

None of the aforementioned approaches accounts for
the fact that the source distribution in the photoelectron
emission process is anjsotropjc in general. Meanwhile, ex-
tensive investigations concerning the inHuence of electron
transport on the angular distribution of photoelectrons
revealed that elastic scattering signi6cantly modifies the
emjtted angular djstxjbutjon. ~ ~ Sjnce the shape of
the energy spectrum is closely connected with the angular
distribution of the emission process, it seems worthwhile
to study the inHuence of anisotropic source emission on
the photoelectron line shape.

In the present paper, the jnHuence of multiple elastic
and inelastic scattering on the yield for anisotropic photo-
electron emission is investigated. On the basis of the gen-
eralized radiative field similarity principle, the transport
approximation is applied to derive a theoretical expres-
sion for the emission characteristics, i.e., the energy and
angular yield of a homogeneous random sample. The so-
called (integrated) partial escape distributions (PHD's)
play a central role in this theory. These quantities are
de6ned as "the probability that an electron generated at
an arbitrary depth in a homogeneous sample is emitted
&om the surface with its direction in a certain angular
interval after experiencing a given number of inelastic
collisions. " It should be emphasized that an expression
for the partial escape distributions (or the partial reffec-
tion distributions in a reflection geometry) is the key step
in solving the transport problem for many spectroscopic
techniques in the quasielastic regime, i.e., when the scat-
tering characteristics depend only insigni6cantly on the
energy of the particle.

The partial escape distributions calculated in the
transport approximation are compared with results of an
eKcjent numerical MC model, exnploying the reciprocity
theorem for one-speed transport. Satisfactory agree-
ment is found between the two approaches, the agreement
being better for smoother initial angular distributions,
thereby fully corroborating the generalized radiative 6eld
similarity principle.

Quite pronounced effects of the anisotropic source
emission are observed in the energy spectra, not ac-
counted for by previous theories. A background subtrac-
tion method is proposed which accounts for these efFects.
It is conceptually simple, numerically stable, and exhibits
good convergence behavior. Application of this method
to model spectra yields almost perfect background re-
moval. The most important advantage of this method
is, however, that it is applicable to problems with ar-
bitrary dependences of the partial escape distributions
on the geometry and the number of inelastic collisions.
In view of the fact that the spectral features of many

a spectroscopic technique may be described in terms of
partial escape distributions in a fashion fully analogous
to the presented approach, this implies that the proposed
method is of quite general validity and may also be useful
in areas of physics other than photoelectron spectroscopy.

II. THE MONTE CARLO METHOD

The Monte Carlo technique is used in the present work
exclusively to calculate the (geometry dependent) par-
tial escape distributions. The basic model assumptions
are described in detail elsewhere and agree with the
commonly accepted model for the transport of medium
energy electrons in random solids. In principle all that
is needed are randomly generated values for the scatter-
ing angles and the step lengths between elastic collisions.
The former are generated from the Mott cross section
for elastic scattering while the latter are drawn from the
distribution of elastic path lengths which is assumed to
obey Poisson statistics with the elastic mean free path as
characteristic length.

The important difFerence between the present model
and the conventional techniques is the application of the
reciprocity theorem, which has been successfully em-
ployed previously in similar studies. » This theorexn
is an expression of a symmetry property of the Boltz-
mann equation and applies to the quasielastic case. It
states that, if the detector and the source in a given
transport problem are interchanged, the corresponding
particle fIux density can be obtained &om the original
one by simply changi. ng the sign of directional variables.
In a MC model calculation this means that an electron
trajectory is generated in reverse, i.e., it starts outside
the solid, with a direction corresponding to the analyzer
geometry, and is subsequently traced back.

1n the present implementation, the contribution of a
trajectory to the partial escape distribution P is as-
sumed to increase with the path traveled in the solid.
Prom this it follows immediately that the scattering pro-
cess is governed by Poisson statistics. 24 Since we are only
interested in the partial escape distributions integrated
over all depths the contribution of a segment of a trajec-
tory between the 1th and (l+ 1)st elastic collision may
be written as

sr+&A/
AP„) = q(O() P„(z)dz,

Ag

where 'P„(z) is the Poisson distribution:

1
'P„(z) = —,(z/A, )"exp( —z/A;).

Further, A~ is the path length traveled just before the
/ th elastic collision, LA is the steplength between the Lth
and (1+ l)st scattering, and p~ = arccos(@~) is the polar
direction of the electron on this part of the trajectory,
measured along the surface normal. To account for the
anisotropic source emission distribution, the contribution
is weighted with the source angular distribution q(A~) in
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the actual direction of the particle O~. After partial inte-
gration of the above equation and some transformations,
the following recursion formula can be derived allowing
for an efBcient calculation of the contributions to the sig-
nal:

After calculating a certain number of trajectories, the P
probabilities are obtained in units of sterad i s A by
dividing the total intensity through the number of trajec-
tories, assuming that the number of electrons generated
per second in a unit volume equals unity.

A final remark regarding the termination criterion is
in place at this stage. Those trajectories which leave the
solid after some elastic processes are taken to contribute
to the signal but only their path length traveled within
the solid is used. As soon as the electron leaves the solid,
its trajectory is terminated. If it remains inside the solid,
it is terminated after its pathlength exceeds 10NA; where
N is the highest order of inelastic scattering of interest.

The advantage of the adopted approach should be suf-
ficiently clear: the required computing time is reduced
by quite a few orders of magnitude for a given statisti-
cal accuracy. To see this, note that in the conventional
scheme many trajectories are generated which do not
lead to emission at all. If emission does take place, it
is still questionable whether the emission direction cor-
responds to the analyzer geometry and again a consider-
able amount of trajectories is generated in vain. An as-
sessment shows that for isotropic source emission, where
advantage may be taken of the azimuthal symmetry, cal-
culation of the partial escape distribution of zeroth order
(i.e. , those electrons which are not inelastically scattered
at all and contribute to the peak intensity) requires
10 h. In a situation without azimuthal symmetry for
an opening angle of the detector of, let us say, 1, the
computation time is of the order of a month. If higher
order PED's are also required the computation time will
be around a year, for one given angular distribution and
geometry. With the present algorithm, on the same ma-
chine (an a-AXP PC), the same statistical significance
of the results is achieved in 1 s per datum, with infinite
angular resolution for an arbitrary geometry.

III. THEORY

experienced a difFerent number n of inelastic collisions.
The energy distribution of these contributions is given
by the partial loss distributions, being determined by the
single scattering loss probability or difFerential inverse in-
elastic mean free path (DIIMFP). On the other hand, the
amount of electrons belonging to a specific group of n-
fold inelastically scattered electrons is just given by the
partial escape distributions. The latter quantities are a
function of the IMFP and contain all information about
the elastic scattering process. Multiplying the loss distri-
bution with the associated escape probability, the partial
contribution to the yield is obtained. Clearly, the energy
and angular distribution is a superposition of these con-
tributions. Note that this approach presupposes that the
influence of energy loss and deQection may be separated.
In the present case this is allowed since it is assumed that
in the quasielastic regime the characteristic path lengths
for loss and deBection vary only slightly in the considered
energy range. Moreover, deQections in inelastic collisions
may be neglected since the characteristic length for large
angle deQections in the course of inelastic processes ex-
ceeds the corresponding quantity for elastic scattering by
at least two orders of magnitude in general.

With the above considerations in mind, it is easy to see
that the general expression for the combined energy and
angular distribution Y(E, Q) for a homogeneous sample
reads

Y(O, E) = AAt, ) dE' f (E')L„(E—E')P„(A) )

n=O

where A is the electron generation rate and f is the true
intrinsic spectrum. The direction of the emitted particles
0 is specified by the polar emission angle @ = arccos p
(defined relative to the outward surface normal) and the
azimuthal angle P. To account for the change in the sur-
face area seen by the analyzer at difFerent emission an-
gles in a typical x-ray photoelectron spectroscopy (XPS)
geometry, Eq. (3) difFers by a factor p from the result
in Ref. 7. The partial loss distributions I represent
the probability distribution for an energy loss in a cer-
tain interval (E, dE) after n inelastic collisions. These
quantities are given by an n-fold self convolution of the
(normalized) difFerential inverse inelastic mean free path
io(T) as a function of the energy loss T:

The starting point of our considerations is a Boltzmann
type transport equation. ' Comparison of experimen-
tal results with model calculations and analytical results
supports the considerations of Ref. 27 &om which it fol-
lows that such an approach is also justified for polycrys-
talline materials. However, a slight modification of the
scattering characteristics may be necessary in this case.
In what follows this may be accounted for by the use of
an appropriate value of the transport mean &ee path in
the solution of the transport problem.

The yield of electrons emitted &om a semi-infinite solid
sample comprises the contributions &om particles having

T
L (T) = dTpL ] (Tp)ip(T Tp) ~

0
(4)

where N is the atomic density of the material and
der, /dp, is the elastic cross section, difFerential with re-

Note that we have anticipated the use of the transport
approximation by writing the transport mean &ee path
in the prefactor of Eq. (3). This quantity is defined by
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spect to the cosine of the scattering angle p, . In the
exact solution of the transport equation the elastic mean
free path A, should be substituted in Eq. (3).

Furthermore, the PED of higher order may be calcu-
lated &om the zero order result by difFerentiation with
respect to the single scattering albedo:

P„(O) = —, Pp(B, (u(p))n! Op"
p=o

(5)

where u(p) is the complex single scattering albedo which
in the transport approximation reads

(u(p) = 1+ "(1—p)

ld H(p, , ld)

2i/1 —(u

H(p, (u) H(pp, (u)q(pp) dip
o 2 P+po

(+~q(p).

The function H(p, u) is the Chandrasekhar H function
for an isotropically scattering medium P and q(p) is the
azimuthally averaged source angular distribution.

The first term in Eq. (6) represents that part of the
particle Aux density which, on escape &om the surface, is
suKciently randomized and consequently this term is in-
dependent of the source angular variable. The third term
obviously accounts for the contribution of those electrons
which do not participate in (large angle) elastic processes
at all, while the second term corresponds to those elec-
trons which are scattered but not yet fully randomized.

The corresponding escape probability Pp (0) for a prob-
lem without azimuthal symmetry is obtained by dividing
the first two terms of Eq. (6) by 2~, while in the third
term q()M) should be replaced by q(O). This generaliza-
tion follows &om the linearity of the transport equation
and is intuitively clear &om symmetry considerations.
The remaining problem to describe the general photo-
electron angular and/or energy yield is to perform the
differentiation in Eq. (5) using the expression for the zero
order PED given by Eq. (6). This leads to (see the Ap-
pendix)

Pp12()(i Pp)
g(PO)dPo4~ p (P+ Pp)

+q(Q)

Expressions for the quantities Iq and I2 are given in the
Appendix.

Again, the usual albedo is obtained by replacing At, by
A in this expression. An expression for the zero order
PED in the case of an azimuthally symmetric situation
has been derived earlier in the transport approximation.
It is

IV. SEPARATION OF EXTRINSIC
AND INTRINSIC PARTS

OF THE PHOTOELECTRON SPECTRUM

As one of the main applications of the presented theory
we will consider the problem of separation of the extrin-
sic and intrinsic features of a given spectrum, i.e., the
extraction of the true intrinsic spectrum &om the ob-
servable spectrum containing features due to the particle
transport. The usual procedure in finding a deconvolu-
tion scheme for distributions of the type Eq. (3) is to per-
form a Laplace transform on the energy variable, which is
trivial observing the convolution theorem. The next step
consists in making use of some kind of recursion prop-
erty of the quantities P in such a way that the inverse
transform poses no major diKculties, eventually yield. ing
the true intrinsic spectrum f As i.s shown in the next
section, the dependence of P on the number of inelastic
processes n may be quite complex in general and it would
thus be desirable to develop a deconvolution scheme for
an arbitrary series of P . It will be shown that this can
be achieved in a quite simple way.

We start with the usual step of performing the Laplace
transform of Eq. (3) on the energy E. Dropping the vari-
ables for clarity and denoting the quantities in Laplace
space with a tilde P we may write

= ) u)"fP„.Y

tr n=o

Introducing the reduced quantities y = Y/PpAAt„p
P /Pp, and rearranging we find

—" =1+) p„m".

(1 —piu)) = = 1+) (p„—pip„ i)u)",
f (10)

and note at this point that for isotropic source emission
we have p„= r .~ Consequently the sum in Eq. (10)
vanishes. Therefore, by going back to energy space, we
immediately find the deconvolution formula by Tilinin
and Werner, derived in a slightly difFerent fashion and
valid for an isotropic source distribution:

f(E) = W(~ E) —~(V) f «'u(uE')~(E' E), —

The present derivation of this deconvolution scheme is in-
structive in that it provides a clue as to how to proceed
in the case of an arbitrary series of PED's: we have to
select the terms of leading powers of m in the sum on the
right-hand side of Eq. (10) and inultiply the entire equa-
tion by the corresponding term minus unity. In this way,
the exponent of the leading term in the sum is increased
by 1. Note that in energy space this means that only
increasingly larger energy losses contribute to the loss
features in the spectrum, while for low losses their inten-

Now we multiply Eq. (9) by (1—piu)), effectively increas-
ing the exponent on the right-hand side by 1:
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TABLE I. The first six coefficients in the general deconvolution procedure Eq. (13).

Gy

G2

a4
a5

p1
2

P2
p3 —axa2
p4 —aia3
p5 —G4G1

p6 —Gsal.

3—Gy
2 2—G2 —Gy G2—
2 2—G2ay —Gy G3
2 2 2—Gya4 —Gya2

a4,
3 5—G2ay —G2G3 —Gy

3 4 3 6
Gy G3 ay G2 Gp G2G3 G2G4

sity vanishes. Thus the spectrum is consecutively wiped
clean, so to speak. On the other hand the left-hand side
will be given by a multiple convolution (in energy space)
which is still readily evaluated numerically.

Proceeding in this way we find

n=1
(1 —a„tU")y = f + O(uj +').

Neglecting terms of order O(to~+i) and going back to
energy space, we finally find the general deconvolution
scheme

where the operator TV is defined recursively as

an =un S (15)

where S is a sum which defies formal notation while
following a simple rule: it contains terms of all possible
products of all possible powers of a&& such that the
subscripts in a term taken to the corresponding power
add up to n. For convenience, the first few coeKcients are
shown in Table I, &om which it is very easy to grasp the
general rule for the generation of the coeKcients. Note
that for isotropic source emission, when p = v", all
coefficients except ai vanish and Eq. (13) reduces to the
result for isotropic emission Eq. (11).

It should be emphasized again that the deconvolution
scheme contained in Eqs. (13)—(15) is generally applica-
ble to problems of the type Eq. (8). In particular this
means that by using appropriate PED's removal of mul-
tiple scattering features in ion scattering spectroscopy,
elastic peak electron spectroscopy, etc. , is straightfor-
ward. This seems to be the main advantage of the pro-
posed approach.

V. RESULTS AND DISCUSSION

W„(y) = W„(y) —a (p,) I (E' —E)W (y)dE'
E

(14)

and W (y) = y(E, p). The coefficients a are found to
be given by

data, demonstrating that the in8uence of elastic scat-
tering is not determined by the magnitude of the cross
section alone. True, the cross section (and in particu-
lar its backward part) decreases with the atomic number
and increasing energy, but the point is that the inelastic
scattering properties display a very similar dependence,
as quantum mechanical considerations show. Conse-
quently, the most important parameter governing the in-
Quence of elastic scattering, the scattering parameter, is
only very weakly dependent on the energy and atomic
number. Therefore, to keep the presentation clear, the
results for the other elements may be omitted without
loss of generality.

In Table II the main parameters for the analysis are
presented for the 4s, 4p, 4d, and 4f transitions in Au.
The inelastic mean &ee paths were taken from Ref. 31.
The di6'erential inelastic mean &ee path used in the MC
model were calculated &om optical data, compiled in
Ref. 32, using Penn's algorithm. The transport mean
&ee path was calculated &om its definition using the rel-
ativistic Mott cross section calculated with the partial
wave expansion method employing a Thomas-Fermi-
Dirac potential specified by the parameters given in
Ref. 35. The cross section calculated in this way was
also used in the MC calculations. Note that the scat-
tering parameter y for the considered transitions is very
close to 0.5 for all difFerent subshells in spite of the fact
that the considered kinetic energies range &om 500 to
1200 eV, and the transport and inelastic mean &ee paths
display a significant energy dependence. For the source
angular distribution the usual difFerential photoelectron
cross section was used:

q(Ap, O~) = —1 ——*(3p2 —1) (16)
4m 4

where O~ is the direction of the incident photons and p,
is the cosine of the angle between the direction of inci-
dence of the photons and emission of the signal electrons.
Integrating Eq. (16) over the azimuthal angle, the quan-
tity q(p) is obtained:

TABLE II. Main parameters characterizing the Mg Ka,
excited photoelectron transitions in Au as used in the present
vrork.

For the comparison of theory with MC calculations and
a first test of the deconvolution method, we limit the pre-
sentation of the results to the 4s, 4p, 4d, and 4f subshells
of gold, excited by Mg Ko. radiation. Results obtained
for Al and Cu are qualitatively similar to the presented

Transition

Au 48
Au 4p
Au 4d
Au 4f

Rs (eV)

491
707
918
1169

8.5
10.8
13.0
15.4

15.9
18.3
21.7
26.6

0.55
0.59
0.60
0.58

1.82
1.25
1.12
1.01
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1
~(I ») =

2
1 —8*(»,' —1)(»' —1) .

The total photoelectron cross section cr&h and photoelec-
tron generation rate A were taken to be unity for conve-
nience since we are not interested in relative peak areas
in the present work. The asymmetry parameter P was
taken &om Ref. 37.

A survey of the photoelectron angular distribution for
two experimental configurations is shown in Fig. 1. The
first setup, shown in the inset of Fig. 1(a), is a transmis-
sion geometry for a fixed incidence angle of the x rays
and a variable emission angle. The data points represent
the results of MC calculations while the solid lines repre-
sent the theoretical result Eq. (6). For comparison, the
results of the straight line approximation are also shown
as dotted lines. The roman numerals indicate the geome-
tries used in the further analysis. Although the setup in
Fig. 1(a) is convenient for a fundamental study of the
inHuence of elastic scattering, ' ' it suffers &om some
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FIG. 1. Angular distribution of the photoelectron transi-
tions investigated in the present work for the geometries indi-
cated in the insets. The data points are the results of MC cal-
culations, the solid lines represent the analytical calculations,
as per Eq. (3) and Eq. (7). The straight line approximation
is also shown as dotted lines for comparison.

drawbacks for quantitative analysis. First of all, the in-
tensity at normal emission is rather low and. , moreover,
the inHuence of elastic scattering is the most pronounced
in this case, as can be clearly seen in Fig. 1. This severely
complicates quantification. Therefore the so-called magic
angle geometry is usually preferred on commercial spec-
trometers. This corresponds to a geometry where the
differential photoelectron cross section is independent of
the parameter P. Such a geometry is approximately at-
tained at normal emission when the angle of incidence of
the x rays amounts to 60 (off normal), as indicated by
geometry IV in Fig. 1(b).

The results in Fig. 1 display a few quite interesting fea-
tures. First of all, one can observe that in neither config-
uration does the magic angle geometry coincide with the
geometry for which the straight line approximation and
MC results intersect. This means that even in the magic
angle geometry the inHuence of the anisotropic source
emission on quantification cannot be disregarded. This
phenomenon has been extensively discussed by Jablonski
and Powell2 who introduced the so-called master angle
to overcome this difhculty.

Furthermore, it may be noted that the overall agree-
ment between theory and the Monte Carlo results is ex-
cellent for the outer subshell transitions with low values
of the asymmetry parameter, while discrepancies of at
the inost 15% are seen for the 4s transition at normal
emission. According to the generalized radiative field
similarity principle, this may be attributed to the fact
that the source angular distribution is less smooth in the
latter case (cf. the straight line approximation results in
Fig. 1).

At larger emission angles (& 70') systematic discrep-
ancies between the two approaches are seen, in partic-
ular in Fig. 1(a). These discrepancies can be entirely
explained by the fact that at larger emission angles the
transport approximation has an essential deficiency. To
fully appreciate this, it is useful to recall the reciprocity
theorem which was used as a basis for the present calcula-
tions. Two kinds of trajectories contribute to the yield in
the reverse trajectory picture: the first have their point of
origin within the solid, while the second class are reHected
near the surface and are truncated at the solid-vacuum
interface. Clearly, the latter class will on the average
travel a shorter distance in the solid and consequently
contribute less to the yield as per Eq. (2). Therefore, for
those geometries where the reHection probability is high,
the yield will consequently be low. In the reverse tra-
jectory picture, emission angles & 70 correspond to the
forward scattering peak present in every elastic cross sec-
tion, irrespective of the atomic number and energy. This
means that for such a geometry the reHection probabil-
ity is relatively high and, what is even more important, it
varies appreciably in a small angular interval around the
considered geometry. It is quite clear that the transport
approximation, being based on an isotropic cross section,
is essentially unable to account for the latter effect.

Some examples for the key quantities concerning the
inHuence of the source anisotropy on the observable line
shape, the partial escape distributions, are presented in
Fig. 2 for geometries I, II, and III for the Au 48 and Au
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4f angular distributions. As anticipated in the previous
section, these quantities display rather complex charac-
teristics for anisotropic source emission. For geometry
III, a monotonic decrease with n is seen for both sub-
shells. The PHD for geometry II for the Au 4s transition
depends only very weakly on the number of inelastic col-
lisions while a Inonotonic decrease is again seen for Au
4f. For geometry I, in both cases a maximum in the
PED is observed which is attained around n = 4 for Au
4s, while for Au 4f it is located around n = 2. The
agreement between the MC and analytical results [calcu-
lated with Eq. (7)] is again better for the smoother source
distribution, as the generalized radiative 6eld similarity
principle predicts.

The complex dependence of the PED on n has a clear
physical explanation: for those emission geometries at
which the source angular distribution is low, or even
vanishes in some cases, a particle has to be defI.ected
several times before it can be emitted in the regarded
direction, whereas the probability that many particles
are emitted in this direction without any scattering at
all is very small. Thus it requires a certain amount of
isotropization of the particle Aux density in order to pro-
vide substantial intensity in those directions, while in

geometries with high source intensities in the regarded
direction (e.g. , geometry III), a considerable amount of
particles can reach the analyzer without any deflection.
The isotropization required for escape, e.g. , in geome-
try I, implies enhanced path lengths in the solid between
generation and escape. Consequently, the value of the
higher order PED's may exceed the elastic escape proba-
bility. On the other hand, in geometry III, on the basis of
the same considerations, the path length distribution is
expected to decrease monotonically with depth and con-
sequently the PED will also decrease with the number of
inelastic collisions.

Inserting the values for the PED's thus obtained into
Eq. (3), weighting the corresponding partial loss distri-
bution with these quantities, and adding the relevant
terms, the energy distribution is obtained. An example
of this procedure is shown in Fig. 3 for geometries I and
III for the Au 48 line. Here and below, a Lorentzian of
unity peak area and 1.0 eV full width at half maximum
(FWHM) is used as the model true spectrum for simplic-
ity. The (weighted) partial loss distributions associated
with 0—7 inelastic collisions are presented in this figure
as dotted lines. It is of practical importance to note that
the Grst 100 eV of the loss features in the spectrum are
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FIG. 3. Total energy spectrum for Au 4s for geometries I
and III. The contributions of electrons having experienced a
given number of inelastic collisions n are also shown as dotted
lines.
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elastic scattering in an approximate way. Although it was
derived on the basis of isotropic source emission, it is also
extensively applied in XPS and its accuracy is generally
claimed to be very high. This method may be regarded
as a first order approximation to result Eq. (11) in that it
does not account for an emission angle dependence of the
energy spectrum, which even exists for isotropic source
emission. ~ It is obtained by replacing v(p) by L/(L+ A;)
in Eq. (11), where L is a characteristic length of the
path length distribution which, in the framework of the
P~ approximation, is found to be close to 5Aq, . The
DIIMFP's usually employed in this method is the uni-
versal cross section of Tougaard. In order to meaning-
fully analyze the present data with Tougaard's method
and compare it with the proposed approach, the same
DIIMFP's as used in the MC model calculations were
used in both background subtraction methods.

For the present method, the maximum number N
of deconvolution passes was determined by monitoring
the change of the total spectral area after successive
passes. The considered energy interval was taken to
be 200 eV, which strictly speaking already exceeds the
true quasielastic regime in most cases. The deconvolu-
tion was terminated after the relative change in the peak
area dropped below some small number e. Generally, e
will be determined by the measurement statistics. Due
to the particular way in which our data were generated,

the choice of e (below a certain small value of course)
almost did not acct termination, which was in all cases
achieved after 6—8 passes. It is believed that this will
not change for realistic (noisy) data since higher passes
do not affect low loss energies [cf. Fig. 3 and Eq. (13)].
This is a very convenient feature of this method, since it
allows one to estimate the required number of passes in
advance according to the rule of thumb

where AT is the considered energy (loss) interval and
(to(T)) is the mean energy loss in an inelastic collision.
The earlier background subtraction methods are, so to
speak, single pass versions of the present one, but only
valid for isotropic source emission [cf. Eq. (11)]. In the
general case of anisotropic source emission such an ap-
proach does not lead to satisfactory results.

Application of the method to eliminate multiple scat-
tering features from the energy distribution is illustrated
in Figs. 4(b) —6(b). The deconvolution formula Eq. (13)
was applied to the model spectra in Figs. 4(a)—6(a) result-
ing in the true intrinsic spectrum. Subtracting this result
from the model spectra yields the contribution from the
background of inelastically scattered electrons, which is
represented by the dotted lines in Figs. 4(a)—6(a). As
a measure of the accuracy of the background subtrac-
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tion we introduce the residual yield, i.e., the difference
between the original intrinsic spectrum and the back-
ground corrected spectrum. This quantity is displayed
in Figs. 4(b)—6(b) as solid lines and compared with the
corresponding result using the algorithm by Tougaard
(dotted lines). Note that the ordinate scale differs by a
factor of 1000 from Figs. 4(a)—6(a).

In all cases the present method leads to background
corrected spectra agreeing with the true model spectra
within 2—3'%%uo over the entire energy interval. These small
discrepancies are entirely attributable to the minor defi-
ciency of the transport approximation (cf. Fig. 2) as an
assessment shows in which the MC results for the PED's
were used in the deconvolution. This yields agreement to
within a tenth of a percent over the entire energy interval.

The approach of Tougaard is seen to work reasonably
well only for the (probably most important) case of the
magic angle geometry [see Fig. 6(b)]. Even in that case,
however, due to the significant underestimate in the back-
ground level of 5—10'%%ua this procedure is slightly inferior
to the present method, especially in terms of peak area
quantification. As far as line-shape analysis is concerned,
both methods can be said to be equivalent in such a ge-
ometry.

This is certainly not the case for the other selected
geometries. After correction for multiple scattering with
Tougaard's method, the background is seen to contain a
considerable amount of structure for which obviously the
DIIMFP and not the intrinsic spectrum is responsible
[(Figs. 4(b) and 5(b)]. The background level is also seen
to be over- or underestimated by up to 30%%uo, depending
on the geometry. These discrepancies are more serious for
larger asymmetry parameters. Moreover, the differences
between the corrected spectrum and the true spectrum
are the largest for geometries in which the source angular
distribution is low. This indicates that the neglect of the
anisotropic source distribution in this approach generally
leads to quite severe discrepancies in the angular and/or
energy distribution (as was to be expected on the basis
of Fig. 1) making application of this algorithm to XPS
data for an arbitrary geometry rather questionable.

A few points are due to be discussed at this stage.
The presented results show that the proposed theory ac-
curately describes the photoelectron energy and/or angu-
lar distribution for noncrystalline solids in the quasielas-
tic regime. The fact that the theory applies to random
solids is not as severe a restriction as it may seem at first
sight. Of course, in single crystals A coherent scattering
effects constitute the predominant features in the pho-
toelectron angular distribution, as evidenced by many
works on photoelectron diffraction. But the point is that
the energy dissipation process of a signal electron leads
to irreversible thermalization of the electron Qux density
and with increasing energy loss an increasing &action of
electrons belongs to the group of incoherently scattered
electrons. The incoherently propagating electrons obey
a Boltzmann type transport equation, which is equivalent
to the quantum kinetic equation in the limit of a com-
pletely disordered (random) solid. This implies that the
inelastic background in a photoelectron spectrum can be
expected to exhibit much less structure originating &orn

the crystalline state of the solid than the (elastic) peak.
This has in fact been observed in several studies of Auger
and photoelectron diffraction. Egelhoff reports that the
inelastic background from a single crystal Ni(100) sur-
face exhibits no observable enhancement in a direction
where the peak areas are strongly increased by forward
focusing. A detailed study of the angular distribution
of photoelectron core level and plasmon peaks &om the
Al(001) surface led Osterwalder and co-workers42 also
to the conclusion that coherent effects are strongly sup-
pressed in the inelastic tail of the spectrum. However,
a small amount of structure due to the crystallinity of
the solid was observed in the inelastic background in this
case. These findings indicate that the present theory for
the inelastic background in a random solid is also of rele-
vance for the incoherent part (or inelastic tail) of energy
spectra &om crystalline solids.

As to the problem of energy ranges exceeding the
quasielastic regime, there exists substantial evidence that
this restriction may also be removed, or at least be re-
laxed. For instance, Tougaard notes that reasonable
background subtraction is obtained over an energy range
of more than lOQQ eV without any regard for the fact
that this is almost always considerably larger than the
quasielastic regime in XPS. A possible explanation for
this fact is that the energy dependence of the yield is
Inainly determined by the transport mean free path,
while the partial escape distributions only depend on the
scattering parameter y, which varies only very weakly
with the energy. This suggests that the energy depen-
dence for the yield beyond the quasielastic regime may
to a first approximation be accounted for by considering
the energy dependence of At, in Eq. (3).

As a Gnal point to be discussed, it is emphasized once
more that the present background subtraction method
can be applied in a straightforward manner to many
problems in physics concerning removal of multiple scat-
tering features from experimental data. This seems par-
ticularly promising for the extraction of the dielectric loss
function &om experimental reQection energy loss spectra
(REELS). It has been recently shown44 by analysis of ex-
perimental spectra and comparison with model calcula-
tions that the energy distribution in a REELS depends on
the scattering geometry, owing to the fact that the path
length distribution in the reflection geometry (where a
well collimated electron beam is used to probe the sur-
face) is strongly determined by the exact shape of the
elastic scattering cross section. Note that this also fol-
lows directly &om the generalized radiative Geld similar-
ity principle. On the other hand, an accurate expression
for the zero order reQection distribution was derived and
compared with experimental data in Ref. 27. The math-
ematical structure of the terms entering this expression
strongly resembles the one in Eq. (6). Therefore calcu-
lation of the partial reQection distributions is straight-
forward. In order to retrieve L~ from the experimen-
tal spectrum instead of f, the Laplace transform of the
DIIMFP can be expanded in terms of y —1, leading to
a deconvolution formula similar to Eq. (13). For an ef-
fective application to experimental data in the medium
energy range, an accurate description of surface excita-
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tions is mandatory, however. Discussion of this point is
beyond the scope of the present paper and will be pub-
lished elsewhere.

VI. SUMMARY

The influence of multiple elastic and inelastic scatter-
ing on photoelectron spectra &om semi-infinite random
solids has been studied. A theory accounting for the
influence of the relevant phenomena on the line shape
has been presented and compared with model calcula-
tions. Prom this comparison it may be concluded that
the influence of anisotropic source emission in XPS can
be adequately described in the framework of the trans-
port approximation. The energy and angular distribu-
tion obtained for four subshell transitions in Au shows
quite strong infIuences of the source anisotropy. Neglect
of this eKect in general can lead to rather misleading
results of background subtraction procedures. For exam-
ple, the only case where satisfactory results were found
using Tougaard's method is the (of course very impor-
tant) magic angle geometry. A background subtraction
method has been developed which does not sufFer Rom
this drawback and yields quite perfect background re-
moval in all studied cases. Moreover, the generality of
the proposed method is encouraging in that it allows
straightforward application to similar problems in other
areas of physics.

1+ o.

(~ + ] )m+1 (A4)

The integral along the imaginary axis may be evaluated
directly by substituting 8 = it, yielding the sum of two in-
tegrals, one symmetric and one antisymmetric in t. The
latter integral vanishes and a relatively simple real in-
tegral follows. Taking into account Eq. (A4), the final
expression for the first term may be written as
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In an entirely analogous way one finds for the second
term

point (1+y) ~ on the real axis. After transformation of
the integral as indicated in Fig. 7 we have to calculate the
two integrals along the segments Ci and CR. Note that
the latter integral does not vanish for B~ oo. However,
making the substitution s = Bexp(ig) and taking the
limit for large R, the contribution of CR is immediately
found to be given by

APPENDIX: EXPLICIT EXPRESSION FOR
THE PARTIAL ESCAPE DISTRIBUTIONS

(Al)

~ = 41-~(p)
is made. The integral then becomes

The n-fold differentiation of Eq. (6) can be performed
term by term using Cauchy's integral formula. For the
third term this is trivial. The general procedure will be
outlined in some detail for the first term.

Using the efFective approximation of the Chan-
drasekhar H function presented in Ref. 7:

1+a
H(p, , (u) =

1+nial —~
where n = H(p, 1) —1, we may write the n-fold differen-
tiation of the first term in the form

1 0" (u'(p)H(p, , ur(p))
Iy p n! Op Q] —~ (p)

1 ~2(p) 1+n dp
2vri c Ql —~(p) 1+nial —~(p) p"+'

In order to avoid dealing with the multivalued functions
in the integrand, the substitution

s plane

( yn+1

( )
y(1+n) s' —1 t ds

mi c (s2(l+ y) —1) 1+ns'

where the contour C is a circle in the 8 plane around the
FIG. 7. Contours involved in the derivation of the explicit

expression for the partial escape distribution (see text).
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Inserting expressions (A5), (A6), and (A7) into Eq. (6)
we arrive at the anal result for the partial escape distri-
butions:

where P = H(po, 1) —1. The integrals in expressions
(A5) and (A6) pose no problems for numerical evaluation,
since they converge rapidly. The result for the third term
may be found by direct differentiation or also by applying
Cauchy's theorem and. calculating the residue at p = 1+
y. This leads to

(AS)

As a final remark it is noted that the function H(p, 1)
may be approximated by the polynomial

H(p, 1) —1 = 0.5073@ —1.0016@ + 2.4102@,

which is usually sufEciently accurate and convenient for
numerical calculations.
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