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Optical scanning probe devices offer an extremely eKcient way of collecting local information on the
complex structure of optical electromagnetic fields lying near a surface. This paper discusses recent
theoretical efforts to develop an e%cient method for the calculation of the field distributions in experi-
mentally relevant near-field and integrated optics systems. In order to overcome the obstacles inherent
in the matching of the electromagnetic boundary conditions on the surface of complex objects, the dis-
cussion is presented in the framework of the integral-equation formalism. This treatment is based on the
field-susceptibility Green-function technique applied in real space. Two original numerical schemes,
both based on a different discretization procedure, are discussed, and several numerical applications on
systems of experimental interest are presented. Particularly, the problem of near-field distribution
around three-dimensional objects of various sizes and shapes is investigated as a function of experimental
parameters.

I. INTRODUCTION

Scanning probe devices offer an extremely e%cient way
of collecting local information on the complex structure
of optical electromagnetic fields lying near a surface of
arbitrary profile. ' ' Over the past few years, numerous
optical experiments based on concepts borrowed from the
scanning tunneling microscope (STM) have appeared.
Henceforth, these experiments have clearly demonstrated
the possibility to increase the optical resolution far
beyond the Rayleigh limit.

Usually, in scanning near-field optical microscopy
(SNOM) emphasis is generally directed toward the ex-
traordinary lateral resolution that can be reached. In ad-
dition, this local probe technique offers numerous other
interesting features, e.g., the possibility to map the struc-
ture of the electromagnetic field inside a Fabry-Perot
resonator, ' to image localized plasmons over a metallic
surface, and to detect evanescent fields in guiding struc-
tures. ' These last applications were developed with the
scanning tunneling optical microscope (STOM)
configuration in which the sample is illuminated in total
internal reAection. ' ' ' By analogy with the tunnel
effect of electrons used in STM, this experimental
configuration is also named the photon scanning tunnel-
ing microscope (PSTM).

In this paper we discuss solutions of Maxwell's equa-

tions for both the mesoscopic and nanometric regimes,
which are at the center of the present drive towards the
ongoing optical experirnentations at the nanometer scale.
Recently, we developed a theoretical approach to study
the main features of the physical interaction between a
thin probe tip and a corrugated surface. This study was
based on a self-consistent calculation of the optical cou-
pling between tip and sample. In the present work, we
apply the same framework to derive the whole field distri-
bution around three-dimensional (3D) mesoscopic objects
of arbitrary shape deposited on a Aat surface under
STOM illumination. More specifically, this work will

study how optical near-field variations result from the in-
teraction of an extended light beam or a surface wave
with mesoscopic objects: a phenomenon that we will
define as confinement since the near fields built up near
the nanometer size structures are strongly confined and
enhanced compared to the average field distribution. For
this purpose, we will introduce in Sec. II the field-
susceptibility Green s-function technique, which allows
us to obtain general solutions of Maxwell's equations by
means of a Lippmann-Schwinger integral equation.
Associated with an appropriate discretization procedure
in real space, such an integral representation avoids the
traditional boundary condition problem and therefore
can deal with localized objects of arbitrary shape and
dielectric constant. From this Aexible framework, we will
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address in Sec. III the fundamental problem concerning
the relation between the field pattern, resulting from the
interaction with an incoming surface wave with a 30 ob-
ject, and the profile of the object itself. In fact, the study
of the gradual transition between far-field and near-field
regimes is also of interest for experimentalists working in
SNOM since it might allow one to determine the precise
fundamental difFerence between pure topographic signals
and artifacts originating from interference and scattering
phenomena. For example, the recent STOM/PSTM ob-
servations of standing field patterns occurring around
subwavelength-sized latex spheres deposited on a Hat sur-
face, clearly indicate that the amplitude of both fringes
patterns and 6eld confinements is very sensitive to the
size of the scattering particles. For larger objects the in-
terference generally dominates and makes difBcult the
detection of subwavelength features. In order to get
more insight about this important question, we will
present in Sec. III a detailed numerical study about the
evolution of the standing 6eld pattern as a function of the
dimensions of the object.

II. A REAI,-SPACE APPROACH FOR COMPLEX
OPTICAL SYSTEMS

As described in the previous section, traditionally
Maxwell's equations are solved by matching boundary
conditions. Nevertheless, for both arbitrary shapes and
optical constants, general solutions of Maxwell s equa-
tions can also be obtained with the integral-equation for-
malism. This section will be devoted to the application of
such a real-space approach to the computation of the
field distributions lying around three-dimensional objects
deposited on a surface, as a function of the usual experi-
mental parameters (object sizes, incident polarization,
light beam direction, etc.).

Eo(r, t)

FIG. 1. Schematic illustration of an arbitrary material sys-

tem submitted to an external electromagnetic field Eo(r, t).
p(r, t) and J(r, t) represent the charge and the current densities
induced inside the material.

V E(r co)=4mp(r co)

VXB(r,co)= — E(r, co)+ j(r, co) .PCO 4m .
C C

The vectorial wave equation for the electric field is readi-
ly obtained by taking the curl of Eq. (1). After some
straightforward algebra, one gets the well-known result

AE(r, co)+koE(r, co) =4m Vp(r, co) —iko j(r, co),
C

where ko =co/c represents the wave vector associated to
the frequency cu.

We express now both charge and current densities in
terms of the local polarization P(r, co) of the material sys-
tem:

p(r, co)= —V.P(r, a)),

A. The integral-equation formalism

In this subsection, we present a brief description of the
concept of retarded Geld susceptibility in the presence of
a 30 system of arbitrary shape and size. Starting from
the microscopic Maxwell equations expressed in terms of
both charge and current densities, we express the
response of a localized physical system submitted to an
external electromagnetic excitation (cf. Fig. 1).

Let us consider a nonmagnetic physical system charac-
terized by its charge density p(r, t) and its current density
j(r, t). Maxwell s equations being linear equations, the
response of a given system to an arbitrary wave packet
can be obtained from the superpositions of the responses
of this system to the individual plane waves forming the
original wave packet. We can therefore assume a mono-
chromatic 6eld with a time dependence of the form e
%'ith these assumptions, Maxwell's equations in cgs sys-
tem read

VXE(r, co)= B(r,co),
C

j(r, co)= —icoP(r, co) .

We now rewrite the nonhomogeneous equation (5) as

EE(r, co) +k0E(r, co)

= —4m j V[V.P(r, co)]+koP(r, co) I .

Let Eo(r, co) be the solution of the following homogeneous
equation:

bEO(r, co)+koEO(r, co) =0 .

The general solution of (8) is the sum of the homogeneous
field Eo(r, co) plus a particular solution E (r, co). fhis
particular solution can be derived from the knowledge of
the scalar free-space Green's function

ik )r-r']0

(10)
~r —r

with

b Qo(r, r', co)+kola(r, r', co)= —4~5(r —r') .

V B(r co)=0 (2) By applying the standard Green's-function technique,
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one finds

E (r, co)= ISo(r, r', to).P(r', co)dr', (12)

E(r, m) =Eo(r, co)+E (r, co) . (14)

Second, we introduce the usual constitutive equation for
a local medium,

where So(r, r', co) defines the free-space dyadic propaga-
tor 9 3 (also called dyadic field susceptibility)

So(r, r', co) =(ko+VV)QO(r, r', to) .

At this stage the Lippmann-Schwinger equation can be
deduced from the previous results. First, we write the
complete solution of (8) as the sum of both homogeneous
and inhomogeneous solutions:

fundamental quantity for describing the dispersion ener-

gy between adsorbed species and solids. The trace of this
dyadic tensor S,(r, r', to) when contracted with the
dynamical polarizability a, (co) of the adsorbate gives the
first-order dispersion energy after integration over imagi-
nary frequencies (to=iu). In the numerical work to be
discussed in this paper, the analytical form for S,(r, r', oi)
can be found in the Appendix.

B. Real-space discretization procedures

The purpose of this section is to describe two diferent
numerical methods for solving Eq. (16) for arbitrary opti-
cal systems. For simplicity, we restrict our attention to
local, homogeneous, and isotropic materials so that we
can express the response function y(r, co) in terms of the
local dielectric constant e(to):

P(r, co) =y(r, co).E(r, co) . (15)

Finally, by substituting Eq. (15) into Eq. (12) and the re-
sulting formula into Eq. (14), we find

y(r, co) = e(to) —1

4~

for all points r located inside the material system, and

(18)

E(r, co) =Eo(r, co)

+ So r, r', ~ .y r', ~ E r', co (16)

This last equation is very general. Indeed, if we intro-
duce an additional perturbation due to, for example, the
presence of an extended medium (the surface of a semi-
infinite material, a macroscopic sized particle, etc.), we
only need to replace the free-space dyadic So(r, r', co) by

S(r, r', c0) =So(r, r', co)+S,(r, r', co),

y(r', to) =0

elsewhere (cf. Fig. 2).
(i) Direct resolution of Lippmann Schurin-ger

equation —The three-dimensional discretization of the
Lippmann-Schwinger equation in real space leads to

E(r, co) =Eo(r, co)

(20)

where the additional contribution S,(r, r', co) accounts for
the dynamical response of such an extended system.

Before discussing various e%cient numerical pro-
cedures to solve Eq. (16), we would like to give more de-
tails about the physical meaning of such response func-
tions. The field susceptibility S,(r, r', co) of a material sys-
tem reveals how a dipolar source field is modified at the
proximity of the surface limiting this system. In a
general quantum description, this response function can
be expressed in terms of the matrix elements of the field
operator associated with the material system. The
deduction of the response field of the solid to a Quctuat-
ing dipole moment is another way of deriving this suscep-
tibility. In the particular case of a solid limited by a per-
fectly planar surface, various theoretical methods have
been developed to derive this dyadic tensor (cf. Appen-
dix). The analytical form of S, (r, r', co) depends on the
nature of the surface investigated. To treat a crystallo-
graphic face of an ionic crystal, a discrete atomic repre-
sentation of the solid structure must be adopted. For a
metallic surface displaying mesoscopic roughness, this
susceptibility can be modeled from a continuous descrip-
tion of the matter.

In surface physics the use of the field susceptibility
concept has proved to be a very fruitful way to under-
stand various physical mechanisms occurring in phy-
sisorption experiments. For example, in the case of
solid-gas interactions, MacLachlan demonstrated that
the field susceptibility associated with the substrate is the

A (co)OP(co) =Vo(co), (21)

Eo(r, &)

kVAXAX XXX

FIG. 2. Schematic diagram of a grid formed by n elementary
cells of volume S;; i =1, . . . , n. When it is extended to the en-
tire volume occupied by the system, this grid can be used to
solve the self-consistent scattering problem. In the framework
of a local response approach, the dielectric properties of the
discretized cells of the grid are related to the optical dielectric
constant of the material.

where 8' represents the volume of the ith discretized ele-
ment and n is the total number of volume element (cf.
Fig. 2). The set of unknown vectors IE(R;,co)I can be
determined by standard linear algebra procedure. Thus
by setting r=Rk in Eq. (20), one obtains the following
matrix equation to be solved numerically:
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where the symbol indicates a total contraction on both
Cartesian indices and positions of discretized elements.
Moreover, V(co) and Vo(co) are two supervectors defined

by

In Eq. (21), the (3n X 3n) matrix M is built from difFerent
components taken by the field susceptibility 8 for all pos-
sible couples of position vectors jR, ,Rk J

V(o))= [E(R„to);E(R~,co);. . . ;E(R„,to)], (22) A (co)= I— %(oi)e(co ) —1

4m
(24)

Vo(co) = [Eo(R,,co);Eo(R~,co);. . . ;Eo(R„,co) J . (23)
where I represents the identity tensor, and %(co) is the
(3n X3n) matrix defined by

r

8'i S(Ri,Ri, to) WzS(Ri, R2, co) W'„S(Ri,R„,co)

8'is(R2, Ri, co) Wps(R2, R2, co) . . 8'„S(R/, R„,co)

(25)

W, S(R„,R„co) W2S(R„,Rz, co) W'„S(R„,R„,co)

This matrix contains the entire dynamical and structural
information on the material system. When the number n

remains finite, the self-consistent equation (21) can be
solved exactly. It is then possible to obtain the ampli-
tudes of the effective fields E(R;,co). Furthermore when
the size of the dynamical square matrix A(co) remains
reasonable (n ~ 500), it is possible to derive accurate nu-
merical solutions for the effective field distribution con-
tained in the supervector P(co).

The discretization procedure described above has a
physical meaning if we adopt a microscopic point of view
and consider the matter as a set of discrete polarizable
entities. In that case, the linear susceptibilities g(Rk, to)
account for the electromagnetic response of each indivi-
dual microscopic piece of matter. The density of the
discretization grid is then related to the size of the ele-
mentary physical components, which can be excited by
the incident electromagnetic field Eo. These excitable
components scatter the incoming 6eld and their self-
consistent interactions build up the electromagnetic near
6eld. This point of view evidences the possible inclusion
of quantum susceptibilities, as well as nonlinearities and

I

transient efFects in our computational framework. It
opens a possible way to study theoretically SNOM imag-
ing of individual molecules adsorbed on surfaces. This is
of importance in view of the expected molecular resolu-
tion in near-field optics (NFO). ' This computational
scheme can also be extended to the study -of localized
plasmon resonances occurring near metallic aggregates
deposited on Aat surfaces. Such calculations need to ac-
count for nonlocal effects induced by electrons moving in-
side the aggregates. As described in Ref. 27, this can be
performed by introducing appropriate nonlocal suscepti-
bilities in the self-consistent equation (20).

(ii) Resolution based on the parallel use of Lippmann
Schminger and Dyson equations. —Instead of solving the
Lippmann-Schwinger equation directly, is it also possible
to apply an original and robust iterative scheme that al-
lows one to handle accurately very large dynamical ma-
trices. ' This section outlines the main features of this
pI'OceduI'e.

Once again, the 30 surface optical system is divided
into n discretization meshes. In addition to the discre-
tized Lippmann-Schwinger equation,

E(R;,o~) =Eo(R;,co)+ g 8'&S(R;,Rk, o~) E(r&,co),e(co) —1

k=1

we introduce the discretized Dyson's equation

S(R;,Rj,co)=S(R;,RJ,co)+ g 8'kS(R;, Rk, co) $(Rk, RJ, co) .e(co)—1

k=1

(26)

(27)

In Eq. (27), S(r, r', co) represents the field susceptibility of
the entire system. Actually, Dyson's equation (27) is the
counterpart of the Lippmann-Schwinger equation for the
propagator. In our procedure, we construct the field
E(R, , co) in the system by solving iteratively Eqs. (26) and
(27) in parallel, in the following manner.

At each iteration, we consider an in6nitesimal optica1
system formed by a single mesh of the discretized 3D ob-
ject. For such a single discretized element, the sum in
Eqs. (26) and (27) disappears and these equations can be
solved in a straightforward manner to give the field and
susceptibility corresponding to a single discretization



52 GENERATION OF OPTICAL STANDING %'AVES AROUND. . .

mesh. To obtain the solution corresponding to the en-
tire system, we start with the incident field Eo(R;,ro) and
the susceptibility S(R;,Rk, co ) of the reference system
and, by solving Eqs. (26) and (27) rewritten only for this
first mesh of the discretized object, we construct the field
and the susceptibility corresponding to this infinitesimal
surface defect. We then consider the second mesh of the
discretized object and, using the results of the preceding
step, construct the field and susceptibility corresponding
to the 3D object formed by these first two meshes.
Proceeding iteratively this way, and considering succes-
sively each mesh of the discretized 3D object, we finally
obtain the field E(R;,co) corresponding to the entire ob-
ject.

The advantage of this procedure lies in the fact that it
replaces the direct solution of the very large system of
equations (26) by a succession of small systems of equa-
tions, corresponding to each single mesh of the discre-
tized system. This yields an extremely robust numerical
scheme, which is able to handle very large physical sys-
tems.

reference system, placed at a distance Zo above the sur-
face. This observation plane is introduced merely for the
convenience of data visualization, since the field can be
computed for any arbitrary position inside the system by
using Eq. (20). The generation of the field above the
scatterer was performed with 4900 discretization points.
In the internal reAection setup described in Fig. 3, the
zeroth-order solution Eo(r, co ) is the evanescent field
created by total reAection at the surface ZO=O. ' '
Such an illumination configuration, introduced in near-
field optical microscopy by Ferrell, Reddick, Warmack,
and Courjon, Sarayeddine, and Spajer, and Van Hulst
and collaborators, ' ' eliminates propagating waves
along the z direction. It may be seen in Fig. 4 that the
two large-scale (3500X3500) nm calculated images of
such mesoscopic objects are rather complex. They
display a complicated standing-wave pattern currently
observed experimentally in the STOM/PSTM
configurations: (1) strong confined field effects just
above the scatterer; (2) scattering along its lateral sides

III. SCAI-j.KRING AND LIGHT CONFINEMENT
AROUND WELL-CHARACTERIZED

SURFACE PROTRUSIONS

Our first example considers a 3D glass defect of paral-
lelepipedic shape lying on a perfectly Hat surface (cf. Fig.
3). The optical indexes of both the protrusion and the
supporting surface are equal to 1.5. In this application,
the reference system is the Bat transparent surface, for
which the propagator S,(r, r', co) is given in the Appen-
dix. " Figure 4 displays the behavior of the normalized
field intensity defined by

(28)

In this ratio, E represents the amplitude of the self-
consistent field, and Eo the amplitude of the incident field
(i.e., in the absence of the surface defect). The calculation
of I is performed in an observation plane parallel to the

FIG. 3. Perspective drawing of a square-shaped mesoscopic
surface defect lying on a fiat surface. Protrusion and support
have the same optical index (1.5). The system is illuminated in
total re6ection and the incident wavelength in vacuum is equal
to 620 nm. The object height is h =100 nm and the side of its
square section b =550 nm; k represents the surface wave vector
associated with the excitation field.

FIG. 4. 3D perspective view of the normalized electric field
intensity I(X,Y)= IE~ /~Eo~, calculated above the scattering
systexn schematized in Fig. 3. The calculation is performed in
the TM polarization mode. For the convenience of the data
visualization, the numerical data I(X,F) have been calculated
in an observation plane located at a distance Zo above the Hat
surface: (a) Zo = 150 nm; (b) Zo =200 nxn.
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g=bk/2~, (29)

between the lateral extension b of the object and the sur-
face wavelength 2n. /k. This phenomenon could explain
the lost resolution often observed in the vicinity of cer-
tain mesoscopic surface structure edges. A shift in the
standing wave is also observed between the two observa-
tion distances. Furthermore, as described in the recent
experimental works of Van Hulst, Segering, and Bolger,
generally for larger objects the interference phenomenon
dominates and makes the detection of subwavelength
features difficult.

2.8

and classical interference patterns due to the interaction
between the traveling surface wave and the surface wave
rejected by the defect. In particular, Fig. 4 indicates that
about 50 nm above the top of the object, the enhance-
ment factor of the field intensity reaches 2.5. In contrast
with the fringe pattern, which reveals pure propagation
phenomena, the amplitude and the extension of the light
confinement observed above the object dramatically de-
pend on the approach distance Zo. Indeed, one observes
in Fig. 4(b) a drastic reduction of the light intensity above
the protrusion, where Zo increases by 50 nm. We have
further investigated this aspect and give in Fig. 5 two
cross sections corresponding to Figs. 4(a) and 4(b), re-
spectively. Two different phenomena are highlighted by
Fig. 5. First, as already mentioned, increasing the obser-
vation height leads to a weakening of the light
confinement effect. Such behavior is consistent with the
short-range decaying of optical near-field effects. Second,
the modification of the observation distance introduces a
significant distortion in the intensity profile itself. Typi-
cally, one observes a strong reduction of the field intensi-
ty above the right edge of the square-shaped protrusion
when increasing Zo. Actually, the amplitude of this dis-
tortion effect critically depends on the ratio

So far, we have proved with this introductory simula-
tion that, first, the 3D objects confine the electromagnetic
field around them and, second, that the relation between
the object profile and the resulting spatial 6eld distribu-
tion may be very complex. Actually, this result forces us
to address a fundamental question in NFO: what would
be both optimal lighting configuration and optimal object
dimension for which the field distribution would tend to
perfectly reproduce the object profile? In order to answer
this important question we consider a second application
with a more complex system composed of seven identical
square-shaped pads (cf. Fig. 6). The dielectric parameters
are the same as those used in the previous application.
We present in Fig. 7 a first simulation by illuminating
this system in TM polarization. Each dielectric pad is
100 nm high and has a section of (0.25X0.25) pm and
the calculation is performed in the plane Zo = 120 nm. In
order to emphasize both interference and scattering
effects occurring around the obstacles, we have used a
large computational window 7X7 pm . Due to the large
spacing between each individual scatterer (1.75 pm), the
resulting field pattern is a complex mixture of interfer-
ence phenomena due to multiple rejections between the
different pads. As expected, when the number of defects
per unit area increases, the standing-wave pattern arising
from the multiple-scattering effects gives rise to the well-
known "speckle pattern" phenomenon.

In order to gain more insight into the relation between
the field pattern and object profile relation, we study in
Fig. 8 the evolution of the image upon reduction of the
different geometrical parameters P&, P2, and K defined in
Fig. 6. The two commonly used polarization modes TE
and TM are simultaneously considered in Figs. 8(a), 8(b),
and 8(c). Three diB'erent typical sizes are successively in-
vestigated. In the first example [Fig. 8(a)] we start in the
mesoscopic range (Pi=250 nm, P2=1750 nm, and
H = 100 nm). In the two other examples [Figs. 8(b) and
8(c)], a reduction factor equal to 2 and 4 is applied, and

II
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FIG. 5. Variation of the normalized electric field intensity
along the xx' straight line defined in Fig. 3. These cross sec-
tions, issued from the 3D maps of Fig. 4, have been calculated
for the same approach distances Zp.

FIG. 6. Top view of a 3D object composed by seven identical
square-shaped protrusions. The dielectric parameters are the
same as those used in the previous application. The center of
each pad is located at the nodes of a hexagonal pattern of side
P2. P& represents the dimension of each individual protrusion.
The system is illuminated in internal refiection configuration
and k represents the surface wave vector. For the same incident
wavelength, three different object sizes, defined by the parame-
ters P& and P2, will be successively investigated in Figs. 8(a),
8(b), and 8(c), respectively. The height of the pads is H.
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object relation in the subwavelength range. One can ob-
serve that, when the size of the square-shaped protrusions
is gradually reduced, the field distribution around the ob-
jects tends to perfectly reproduce their profiles.

IV. CONCLUSION

FIG. 7. 3D perspective view of the normalized electric field
intensity I(X, Y)=~E~ /~EO~ calculated above the scattering
system schematized in Fig. 6. The observation plane is located
at a distance ZO=120 nm above the Rat surface. This large-
scale calculation (7X7) pm has been performed in the TM
mode. The parameters P& and P2 are equal to 250 and 1750 nm,
respectively and the pads are 100 nm high.

the position of the observation plane is reduced in the
same proportion.

The evolution of the field pattern raises the following
comments: (i) First, when the object displays mesoscopic
dimensions [see Figs. 7 and 8(a)], the distribution is dom-
inated by interference phenomena, so that the field lines
do not follow the profile of the square-shaped pro-
trusions. (ii) Second, as the dimensions of the 3D objects
enter the subwavelength range [cf. Figs. 8(b) and 8(c)],
the interference pattern around the objects progressively
collapses and the field distribution tends to become per-
fectly symmetrical, thereby reproducing the symmetry of
the pads. Under such conditions, and in TE polarization,
a highly localized field occurs just above the edges locat-
ed in a perpendicular direction to the incident field Eo.
In fact, when we deal with such subwavelength-sized ob-
jects, the importance of retardation effects decreases
dramatically, so that the symmetry of the field distribu-
tion is only governed by both the orientation of the in-
cident field and the profile of the object itself. Actually,
these features may help us to get more insight into the
complex contrast phenomenon observed in the TE mode.
The field distribution is now governed by the depolariza-
tion effects that result from the conservation of the nor-
mal component of the displacement vector
D(r0) =E(co )E(co ) when crossing the surfaces of the
dielectric protrusions. Due to the rapid variation of the
dielectric constant between air and glass, this conserva-
tion imposes a sharp variation of the field near the inter-
faces perpendicular to Eo.

A completely different behavior is observed with the
TM mode. In this polarization the surface wave is main-
ly dominated by the Z component of the incident field.
The main resulting effect is, as expected, a better image-

We have reported theoretical results on the scattering
between electromagnetic surface waves and well-
characterized localized surface defects. By discretizing
the entire space occupied by the protrusions we have de-
rived the exact solution of the complete field distribution
resulting from the light-matter interaction. This tech-
nique has proven to be extremely powerful and versatile
for studying experimental situations currently encoun-
tered in SNOM. Furthermore, this method can easily be
extended to handle anisotropic materials, which is ex-
tremely important for the application of NFO to
magneto-optical data storage, as well as for the under-
standing of the near-field optical interaction with molecu-
lar systems that display anisotropical response properties.
In the different simulations presented in this paper the
surface protrusions are excited by a monochromatic sur-
face wave generated by total re6ection. A striking
difference of behavior was found, depending on both the
obstacle size and the polarization state of the traveling
wave along the surface. In the subwavelength range, the
TM polarization mode allows one to reproduce the shape
of the objects, whereas a TE polarized wave can be used
to extract information on the contours of the objects
themselves. Finally, the most remarkable feature is the
considerable reduction of the importance of collective
effects between surface structures when we gradually
enter the subwavelength regime.
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APPENDIX: THE RETARDED FIELD SUSCEPTIMLITY
S, OF A PLANE DIELECTRIC INTERFACE

In the particular case of a solid limited by a perfectly
planar surface, various theoretical methods have been
developed to derive this dyadic tensor. In this Ap-
pendix, we use a similar procedure to that described by
Agarwal, to derive the retarded field susceptibility asso-
ciated with a plane dielectric interface. First, we start
from the standard dipolar source field expression:

E (r, co) =So(r, ro, co) m(co), (A 1)

where m(co) represents an arbitrary fluctuating dipole
moment located at ro and So(r, ro, co) is the free-space
dyadic propagator derived in Sec. II A, Eq. (13). Because
of the specific symmetry of a bare plane interface, it is
useful to expand the free-space scalar Green's function
Qo(r, r', co) contained in So(r, ro, co) into a Weyl series:
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Qo(r, r', ro)= f f exp[ik. (1—1')+iwo~z —z'~],i dk
2' wp

(A2)

2

with r=(l, z), r'=(1', z'), k=(k„,k~), and wc = —k [with Im(wo) 0]. Introducing this relation into Eq. (13), one
C

So(r, r', co)= f f I +AN]exp[ik (1—I')+iwo~z —z'~
l dk cg

mp c2
(A3)

with %'= [k, wosgn(z —z') ]. The source field above the surface is then given by

E (re)= f f I +%%]exp[ik(1—io)+iwo~z —
zo~ m(co) .dk 67

27T wp
(A4)

The presence of the source field E (r, co) modifies the lo-
cal field above the surface. In fact, the solid generates an
additional contribution, the so-called response field
E„(r,co) that must be added to E (r, co) itself. The deter-

I

mination of this response field includes the following
well-known steps: expansion of E„(r,co) in plane waves
and application of the standard electromagnetic bound-
ary conditions at the surface z =0. This procedure leads

2

gg~ i. s

0. 5

oj. . 5

FIG. 8. A sequence of 3D maps I(X, Y)= ~E~ /~EO
~

describing the evolution of the standing field pattern observed around the to-
pographic object described in Fig. 6. For the same incident wavelength X=620 nm, the volume occupied by this object is progres-
sively reduced. (a) %'e start in the mesoscopic range with P1=250 nm, P2 = 1750 nm, and Zo = 120 nm. The height H of each pad is
100 nm, the computational window (3.5 X 3.5) pm is centered around the structure, and the two usual polarization modes have been
treated. (b) Same calculation, but after reduction of all the lengths by a factor 2: Pl=125 nm, P2 =875 nm, Z0=60 nm, and the
height H of each pad is 50 nm. (c) The reduction factor now reaches 4: Pl=67. 5 nm, P2=437. 5 nm, ZO =30 nm, and the height H
of each pad is 25 nm.
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FIG. 8. (Continued).

to a linear relation between the response field and the
magnitude of the dipole m(co) itself

The quantity V(r, ro, co) is a scalar spatial function that
connects two points r and r' above the surface,

E„(r,co) =S,(r, ro, co).m(co), (A5) 9'(r, ro, co) =exp [ik.(I—10)+ iwo(z +zo )], (A7)

where the dyadic S,(r, ro, co) is defined by

S,(r, ro, co)= ' f fdkV(r, ro, co)N(k, co) . (A6)
and N(k, ~) is a second rank tensor that contains the op-
tical response properties of the solid

k )okx ~ y
laakp N 0 2

LmE gk c m0k

k k„co k k
N((k, co))= b, wo +b.,k 'c urok

k„k cok k
+6,

k c &0k

k @oky CO

Ap N0
k c w0k

k
pw 0

In this equation, the two refiection coefficients b~ and b,, are both functions of the optical dielectric constant e, (co) of
the solid:

with

w Eg(co)wo

w +~(eco) wo

N L00
and

l8 +M0
(A9)

CO
M — Es

2
c2

1/2
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When the dimensions of the physical system under study are small, S,(r, ro, co) reduces to the well-known electrostatic
form:

ik ()—Io) —k(z+zo)

2n e, (co)+1 k —ikk

k„k
k

—ikk

ikk

k

(A11)
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