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Directed inelastic hopping of electrons through metal-insulator-metal tunnel junctions
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We have used the metal/amorphous silicon/metal tunnel junction as a Inodel system to explore the
role of localized states in electron transport through thin insulating layers. We measured the tunneling
conductance as a function of temperature T, bias voltage V, and barrier thickness d. The data show
marked deviations from the classical WKB tunneling theory in the limit of low T and V with d inter-
mediate between the decay length in the barrier and the Mott variable range hopping length. The data
are instead consistent with directed inelastic hopping along statistically rare but highly conductive
"chains" of localized states. The most effective chains for a given set of conditions (T, V, d) contain a
definite number of localized states, N & 1, configured in a nearly optimal way in space and energy. The
conductance of the lowest-order hopping channel (all chains with N=2) exhibits the characteristic volt-
age and temperature dependences 6&'"(V) ~ V ', and 62' (T) ~ T ', respectively, as predicted by
theory. Higher-order channels (N & 2) also conform to the theoretical predictions remarkably well. The
physical nature of these highly conductive channels and their implications for conduction through thick
tunnel barriers and thin dielectrics is discussed.

I. INTRODUCTION

Electronic conduction in noncrystalline insulating ma-
terials has been a subject of considerable interest because
the electronic states near the Fermi level are generally lo-
calized. The electron wave functions decay exponentially
over a distance known as the localization length, a
The dominant mechanism for electronic conduction in
bulk noncrystalline insulating solids at sufficiently low
temperatures is hopping via these localized states. Mott
predicted' that the typical length of a hop, the variable
range hopping length lvRH, increases with decreasing
temperature as T ' . The conductivity is proportional
to the probability of such a hop,

tTvRH exp( —2a/vRH ) ooexp[ (T*jT) '"]—
This unique temperature dependence, often referred to as
Mott's T ' law, describes transport in numerous insu-
lating and semiconducting materials over a wide range of
temperatures.

In the opposite limit of conduction perpendicular to a
thin amorphous layer not much thicker than the localiza-
tion length, the existence of localized states is not expect-
ed to alter the conduction process significantly. Direct
tunnehng from one electrode to the other is the dominant
conduction process. Experiments confirm these expecta-
tions in tunnel junctions with thin amorphous silicon bar-
riers. ' As the barrier thickness increases, however, the
conductance shows temperature and bias dependences
that are markedly different from the predictions of the
WKB tunneling model. A straightforward application of
this model using the average barrier height approxima-
tion, without properly including the effects of the local-
ized states in the barrier, yielded an average barrier
height of about 20 meV, which is unphysically low. The
authors of that study themselves pointed out the difficulty
of reconciling such a low barrier height with other physi-
cal properties of the barrier material. The question then

arises of how the presence of the localized states (LS's)
influences the conductance when the sample size (in the
direction of transport) is much greater than the localiza-
tion length but smaller than lvRH. It is the onset of
transport via these states —both elastic and inelastic-
and its ultimate evolution into variable range hopping,
that are the focus of this paper.

The observation of a crossover from direct to resonant
tunneling behavior, manifested distinctly in the depen-
dence of the conductance on the barrier thickness,
demonstrated the role of the localized states in elastic
tunneling. The peaks due to transport via individual lo-
calized states were resolved, and their temperature
dependence studied, yielding important information
about the inelastic processes involved. ' The importance
of the inelastic effects was further recognized in Ref. 5.
More recent work has focused on a quantitative under-
standing of inelastic hopping via localized states in
different thickness regimes. The dominant conduction
mechanism crosses over as a function of barrier thickness
from direct tunneling to resonant tunneling to directed
hopping along quasi-one-dimensional chains of localized
states with nearly optimal configurations and finally, in
the bulk limit with d ))lvRH, to variable range hopping.

Pollak and Hauser first recognized theoretically the
potential importance of hopping along special one-
dimensional chains when the variable range hopping
length becomes comparable to the sample size. Based on
a series of experiments by Hauser and co-workers, in
which systematic deviations from Mott's T ' law were
observed in the low-temperature conductance of samples
with dimensions on the order of lvRH, they suggested
that this regime favors hopping along chains containing
localized states that are nearly equidistantly positioned
across the sample. They further argued qualitatively
that, although these chains are rare, they are exponential-
ly more conductive than the percolative hopping paths
predicted by the VRH model for the bulk limit. The
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model of Pollak and Hauser was further developed
theoretically by two groups. Initial quantitative results
were obtained for the temperature dependence (Tar-
takovskii et al. ) and the electric field dependence (Levin,
Ruzin, and Shklovskii' } of the hopping conductance in
the limit that the chains contain many localized states
(N»1).

Motivated by the amorphous silicon tunnel barrier
studies, ' Glazman and Matveev" proposed a rnicro-
scopic model for hopping via two or more localized states
forming optimal conduction chains. The model predicts
a T ~ dependence of the conductance (for e V &&kT) and
a V dependence of the conductance (for kT «eV) in
the case %=2. Increasing temperature, bias voltage, or
barrier thickness favors hopping along chains with more
localized states (N )2), resulting in an increasingly non-
linear dependence of conductance on temperature and
bias voltage. In this limit, the theory gives a quantitative
basis to the original model of Pollak and Hauser. In this
paper, we report results of our work on
metal/amorphous silicon/metal tunnel junctions, which
quantitatively confirm these more modern theories.

Hopping conduction at intermediate length scales has
also been studied by Popovic, Fowler, and Washburn' in
a two-dimensional electron-gas (2DEG) system formed in
n-channel metal-oxide-semiconductor field-effect transis-
tors (MOSFET's). Application of a gate voltage changes
the density of carriers in the 2DECi and tunes the disor-
der of the system from weak to strong. Fluctuations in
the conductance and interesting temperature depen-
dences were observed in the strongly disordered. regime,
and were interpreted by the authors as a consequence of
the conductance being dominated by hopping channels of
the Glazman-Matveev type.

The rest of this paper is organized as follows. In Sec.
II we review the relevant theoretical ideas that we will
later use to analyze our experimental results. In Sec. III
we give a brief account of our experimental procedures.
In Sec. IV we focus on the experimental observation of
the T and V dependences of the hopping conduc-
tance due to the %=2 hopping channel. The crossover
to higher-order hopping channels (N )2) and to VRH-
like behavior will also be discussed. Then we will men-
tion briefly the low-temperature anomalies observed in
the thin barrier regime. Finally, we offer some con-
clusions in Sec. V.

II. THEDRETICAI. QVERVIK%'

A. Resonant tunneling via a single localized state

A one-dimensional model often captures the essential
physics of a tunneling process. The transfer Hamiltonian
method' ' is particularly well suited to deal with this
situation. A term representing the barrier weakly cou-
ples two electrodes with free electron energy spectra.
The presence of localized states in the barrier opens up
the possibility of alternative mechanisms for transferring
electrons between the electrodes other than direct tunnel-
ing.

The conductance due to an elastic electron transition

I L ig) =Epexp( 2cxzL ia) ) (2)

for a 1D model. Ep is a measure of the effective depth of
the localized state, a is the localization length, and
zL ~+~ is the distance from the localized state to the left
(right) electrode. The conductance (1} attains a max-
imum, e /2M, when I"L =I z and e) =s=e'. For a uni-
form barrier height, I L

= I a implies that zL =zz =d /2,
where d is the barrier thickness. When ad »1, the
width of this resonance is sharp, being confined in space
to within a ' of the center of the barrier, and in energy
to within I' of the energy of the resonant state. Thus a
localized state will contribute to the zero-bias conduc-
tance of a junction only if its energy is within -I of the
Fermi energy.

When there are many localized states within the bar-
rier, the total resonant conductance is given by the sum
of the conductances through all of the resonant states.
Assuming a uniform distribution of the localized states in
space and in energy near the Fermi level with a density g,
the integrated resonant tunneling conductance is simply

2

G res gg~
—IE e ad @«se —ad-me

(3)1 g 0 1

where S is the area of the junction. The subscript 1

denotes that each resonant tunneling event occurs via a
single localized state. This thickness dependence differs
characteristically from that of direct tunneling,

G dir Q dire —2ad
0

Note that for g &0, 6&"&G0" for suKciently large d.
Equation (3) is obtained by integrating Eq. (1) over all
possible configurations of LS's, and assumes that S is not
so small that the details of the configurations are impor-
tant. A simpler, more physically transparent approxima-
tion is to multiply the width of the maximal peak in Eq.
(1) in space and energy, Sa 'I (zL =za =d/2), by g to
obtain the number of LS's within the width of the reso-
nance, and then to multiply this quantity by the height of
the peak, e /h.

S. Resonant tunneling via chains of two
or more localized states

In the case of a thick barrier and a high density of lo-
calized states, the probability of an electron tunneling
resonantly through two or more consecutive localized

from the left electrode, where the electron has initial en-

ergy c, to the right electrode with final energy c', via a lo-
calized state with energy c&, has been calculated by many
authors' ' and is given by the expression

4IL, Igg(e~e') =
z z 5(s —s') .

2frR (e —ei)~+I z

The term (e /2M)=4X10 0 ' on the right-hand side
is the quantum of conductance. The 5 function enforces
energy conservation. The Lorentzian shape stems from
the quantum mechanically coherent nature of the pro-
cess. I /h is the inverse lifetime of an electron on the lo-
calized state, I =I L +I z, where'
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states is non-negligible. Larkin and Matveev' calculated
the conductance G2" for this process. They found that
G2" ~exp( —ad), which has the same thickness depen-
dence as G 1". The two localized states have to be aligned
with each other in energy to within the width of the com-
bined resonance, and also in space in order for the double
resonance to form. Although elastic multiple-site reso-
nant conduction channels should in principle predom-
inate in the limit of very thick barriers at extremely low
temperatures, their contribution to the conductance wi11
in practice be masked by the phonon-assisted inelastic
hopping processes described in Sec. II D.

C. Inelastic-scattering effects

Stone and Lee' addressed the role of inelastic process-
es in resonant transmission from a scattering point of
view. They argued that inelastic scattering reduces the
height of the resonant transmission peak, but conserves
the total integrated transmission through the resonant
state.

Microscopic theories which treat the dynamics of reso-
nant tunneling quantum mechanically in the presence of
the electron-phonon interaction (EPI) have been
developed independently by Glazman and Shekhter' and
Wingreen, Jacobsen, and Wilkins. ' The main results are
essentially identical, although different techniques were
employed in the calculations. Though Wingreen, 3acob-
sen, and Wilkins present a more systematic and general-
ized treatment, the physical system in Ref. 16 is directly
related to ours. The key parameter governing the
strength of the EPI is the dimensionless quantity

A.
(Mv, )(icon )

D. Inelastic hopping via chains of two or more localized states

Employing a similar microscopic model, Glazman and
Matveev" investigated the process of inelastic tunneling
through two localized states. The model is shown
schematically in Fig. 1. Each of the two localized states,
labeled 1 and 2, is assumed to couple elastically to the

L

2.

M=kT
E g(R)

z

neling conductance

G(T) ka T
=p6 res

1 D

Here 6'," is the temperature-independent resonant tun-
neling conductance given in Eq. (3) in the absence of the
EPI.

Integrating the temperature inde-pendent transmission
terms for elastic resonant and direct tunneling over the
thermally broadened Fermi surfaces of the electrodes at
finite temperatures also leads to an increase of the con-
ductance by an amount proportional to T to first or-
der. ' These corrections are negligible in the experimen-
tal results presented in this paper.

Here A is the deformation potential, M is the ion mass, v,
is the speed of sound in the material, and coD is the Debye
frequency. For later reference we relate M to the mass
density p=MqD, where 1/qD is the interatomic spacing,
qD = AD /v, . The parameter P may then be rewritten as

A (ficoD)
(4)

A'pv, '

zL1 z12 R2

5p
'll

Glazman and Shekhter show' that the presence of the
phonon field has two distinct effects. First, the lattice vi-
brations couple to the energy level of the localized state
and broaden the resonance peak. Second, the resonant
conduction redistributes itself into elastic part and inelas-
tic parts, which represent tunneling in which the energy
of the incident and final electron states differ. When the
EPI is strong, i.e., p»1, the transmission probability on
resonance approximately equals the ratio of the elastic
resonance width to the inelastic broadening: I, /c. ~,
where sz=(ficoD)~P&&ficoD. If one regards s~/h as
equivalent to some inelastic rate l";, then the conclusion
of Stone and Lee, ' o"',&=I,/I;, reemerges. When the
EPI is weak, as it is in our system, the detailed calcula-
tion indicates that the inelastic resonant effects introduce
a temperature-dependent correction to the resonant tun-

z=O
5z1

5z2

z=d

FIG. 1. Upper panel: a schematic energy vs position (z
direction) diagram showing an electron tunneling from the left
electrode (L) to the right electrode (R) through two localized
states (LS's) labeled 1 and 2. The hop between the LS's is inelas-
tic and is associated with the emission (or absorption) of a pho-
non. The most important pairs of the LS's are those within k& T
of the Fermi level with energy separation b, c, =k& T. Lower
panel: a schematic representation of the positions (x, y, and z)
of the two LS*s forming a nearly optimal hopping chain of the
upper panel. The first LS must be located within 5z& of its ideal
longitudinal position, but may be located anywhere laterally
across the junction. The second LS should be within 5p of the
first LS in the lateral direction, and within 5z2 of its ideal longi-
tudinal position.
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nearest electrodes only, labeled I. and R. The coupling
between the two localized states is assumed to be inelas-
tic, involving interactions with phonons.

The authors use the Hamiltonian

AE
A3pV,' '

and to express y in the form

(10)

H=g Ekak ak+g E a a +Ela 1 a, +s2Q2 a2+ + + +
k P

+g (?klak Ql+c'c' )+g ( Tp2Qp Q2+c'c' )
k P

+(T12ai a2+c c )+QAco~bq bq

e/fi 1 + 1 +2
2kBT I L, , I ~2 y

(6)

The factor of kB T in the denominator is the result of the
expansion in the small parameter eV/kB T. As the three
constituent transitions are incoherent, their rates add in a
serial fashion, a direct consequence of using the kinetic
equation approach. I I &

and I &2 are the elastic transi-
tion rates between the left electrode and state 1, and be-
tween state 2 and the right electrode, respectively:

1 L1=Eoexp( —2azL1), 1 R2 Eoexp( 2azR2) ~

Referring to the lower panel of Fig. 1, zl, and z~2 are the
distances between the two localized states and the respec-
tive electrodes. E0 is the binding energy of the localized
states, and may be taken to be the average barrier height.

y is the transition rate between the two localized
states, which are coupled inelastically. It is given by"

A E0
y =b,s exp( —2ar, 2 ),g3 v5

where b c is the energy di6'erence between the two states,
A is the average deformation potential, p is the mass den-
sity of the barrier material, v, is the speed of sound, and
r, 2 is the distance between the two localized states:

2 +(5 )2]1/2

Here z,2 is their separation along the axis normal to the
plane of the junction, and 5p is their lateral separation.
At this point it is convenient to introduce the dimension-
less quantity

+T,2a,+a2 g (A,~b+ A*—b ), +c.c. ,
q

where c and a+ are the energies and operators for the
creation of electrons, and the indices k, p, 1, and 2 refer
to the left electrode, right electrode, first LS, and second
LS, respectively. The matrix elements T connect the
states indicated by the subscripts, and b+ creates a pho-
non with energy Ace; A, describes the electron-phonon
coupling. Because the hybridization of the two LS's is
negligible, transport is necessarily inelastic and the Ham-
iltonian reduces to a set of coupled kinetic equations,
which the authors solved in certain limiting cases. They
first considered the low-bias limit, eV«kBT, and found
the conductance due to hopping via a single pair of local-
ized states with a fixed configuration

Ac.
y =k [Eoexp( —2ar, 2 )],E

in which the broadening of elastic transition width [cf.
Eq. (7)] due to electron-phonon interaction is manifested.

Since the conductance in Eq. (6) is manifestly that of
three resistors in series, each representing a tunneling or
hopping transition whose rate is exponentially small in
the separation between the states connected by the transi-
tion, the maximum is attained when all three rates are
equal. This occurs if the two localized states lie on a sin-
gle line perpendicular to the plane of the junction [i.e.,
5p=0 in Fig. 1] and (approximately) divide the barrier
thickness d into equal parts [5z,121=0 in Fig. 1]. Substi-
tuting into Eq. (6) yields

2/Qg,„(1;2)= A, Eoexp
B E0

2cxd

3
(12)

Equation (12) is a sharp maximum due to the exponen-
tial dependences of the transition rates on the coordinates
of the LS's. Thus we can deduce heuristically the average
zero-bias conductance due to hopping via two localized
states, G2' (T), for a dense distribution of localized
states by multiplying the maximum conductance for a
single pair, Eq. (12), by the width of the maximum (in
space and energy coordinates) and by g; the last two fac-
tors together give the probable number of pairs in the
barrier with configurations within the spatial and energy
widths of the maximum. Referring to Fig. 1, the width of
the maximum with respect to the coordinates of the first
state is a ' in the z direction, S parallel to the plane of
the junction, and kR T in energy (in order to contribute to
the zero-bias conductance). The location of the first state
fixes the position of the chain, so the second state contrib-
utes a '(5p) k&T, where (5p) =(a 'd). Collecting
terms yields

e /AG2'"(T)=v2 T(gSa 'kRT)(ga d kRT)
BT

k TB
Eoexp

0

2cxd

3

(k T) (13)

hc, has been set equal to kB T, and we have made the im-
plicit assumption that the dispersion of phonon modes is
linear —appropriate for low-energy acoustic phonons.
The factor of exp( —2ad/3) reflects the fact that the
electron's traversal of the barrier requires three steps.
The actual integration over the coordinates and energies
of the two states gives" v2 T =50. The subscript 2
denotes the N =2 channel, and the subscript T denotes
the limit kB T)&eV.

Equation (13) predicts that the hopping conductance
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due to the %=2 channel has the unique temperature
dependence (k&T) . Note that this specific power law
is the result of three different factors: the first-order ex-
pansion in the small parameter eV/k&T, which contrib-
utes T ', the integration over a linear phonon dispersion
combined with the proportionality of the phonon cou-
pling strength to the phonon energy, together contribut-
ing T'; and the energy requirements that the first local-
ized state be within -k~T of the Fermi level, so that
electrons are available to tunnel onto it, and that the
second state be within -k~ T of the first, so that phonons
are available to couple them, contributing T . Thus the
deduction of the power law T on physical grounds is
robust and independent of many of the approximations
inherent in the theory. For example, the assumption of a
uniform barrier height and the approximate forms of the
coupling constants in Eq. (7) aft'ect the prefactor in Eq.
(13), but not the prediction that 62' —T ~ .

In any actual conductance measurement this tempera-
ture dependence will show up as an addition to the
temperature-independent resonant tunneling conduc-
tance. The relative importance of the two terms is mani-
fested in their ratio

G hop( T )

6 res
1

k~T
=v2 T(g~ dkii T)

0

T )4/3

cxd
exp

(14)

N~ z =v2 z(Sa 'g kii T)(a dg k~T) . (15)

When this number is small, the hopping conductance is

The correction is more pronounced at higher tempera-
tures and for thicker barriers, unlike the correction given
in Eq. (5), which is thickness independent. The inelastic
hopping conductance becomes exponentially larger than
the elastic tunneling conductance as the barrier thickness
increases. The exponential advantage conferred by
breaking the barrier traversal into three rather than two
segments compensates for the statistical rarity of realiz-
ing such nearly optimal configurations of chains involv-
ing two localized states. Physically, the reason that these
inelastic chains dominate the elastic resonant chains with
the same number of localized states (N ) 1) at finite tem-
perature is that the probability of realizing the inelastic
channels is greatly enhanced by the significantly relaxed
requirement on the alignment of the states in energy.
This freedom in configuration space more than compen-
sates for the coupling to the phonon field.

The above statements are correct, and the actual hop-
ping conductance will be given by Eq. (13), only when the
junction area S is sufficiently large that the junction is in
the self-averaging regime. If the probability of forming a
single chain of states within the given junction area is
negligibly small, then the enhanced conductance of such
a chain cannot compensate for its nonexistence. A quan-
titative estimate of this requirement follows from dividing
the average conductance of the %=2 hopping channel,
Eq. (13), by the maximum conductance of a single ideal
hopping chain, Eq. (12), yielding an expression for the
effective number of chains:

no longer a self-averaging quantity, and strong sample-
dependent fluctuations in the conductance should appear.
Note, however, that Eq. (15) is only a rough guideline be-
cause it calculates the equivalent number of ideally
configured chains (i.e., the minimum number of chains)
necessary to account for the averaged conductance of all
possible configurations. Thus the actual crossover from
the self-averaging to the fluctuating regime occurs only
when Xz T is less than some constant less than 1.

Taking the physical reasoning after Eq. (14) one step
further, we can see that as the temperature or barrier
thickness further increases, the dominant conduction
channel crosses over to hopping along chains containing
a progressively larger number of localized states (N )2)
that match a nearly optimal configuration analogous to
the case of X=2, though they are statistically even more
rare. Quantitatively, for the averaged hopping conduc-
tance of the chains consisting of exactly X localized
states, Glazman and Matveev estimated"

G hop(T )
(N —1 ) /(N+ 1)

=v~ T(ga d k~ T)
1 0

X—1
X exp cxd

G (T)—G«~+G«s+ y Ghop(T)
N=2

(17)

We use the term "channel" to refer to the total contribu-
tion to the conductance of all chains consisting of a given
number of LS's. For thicker barriers at low temperatures
the hopping conductance is usually dominated by the first
few terms in Eq. (17). With increasing temperature, the
dominant channel shifts from %=2 to 2V=3 to N=4,
etc. Reference 11 suggested the criterion that when

The essential features of this equation are the following.
(a) A distinctive power-law temperature dependence

(k T)N 2/(N+1)—
(b) An exponential thickness dependence,

exp[(N —1)(ad)/(N+1)], that greatly favors chains in
which X is large.

(c) A factor v& T(ga dkii T) ' which, roughly
speaking, is the ratio of the number of nearly optimal
chains consisting of X localized states per unit area to the
number of LS's per unit area that contribute optimally to
the resonant conductance. This factor becomes diminish-
ingly small as N increases. Thus points (b) and (c) com-
pete to determine the value of X that dominates for a
given set of conditions T, V, and d.

(d) A coefficient v~ T, that according to Ref. 11 varies
approximately as N, rejecting the increasing spatial
fIexibility of chains consisting of many localized states.
Note that this estimate for the dependence of v& T on N
neglects factors of order unity that may multiply the base
value of N. These small factors accumulate quickly.
Also, the relative values of the sequence of prefactors,
f v& T I, as well as their absolute values, are sensitive to
the approximations discussed preceding Eq. (14).

The total conductance at any temperature is the sum of
the contributions from all the channels:
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N & (ad )'~, N is more conveniently treated as a continu-
ous variable. Making this approximation recovers the re-
sults of Tartakovskii et al. , which will be discussed in
Sec. II E.

The second limiting case considered in Ref. 11 is the
high-bias and low-temperature limit eV &&k~T. The au-
thors gave an expression similar to that of Eq. (14) for the
voltage-dependent correction to the conductance due to
the N=2 hopping channel:

=exp[ —2(2ad5~)' ], (23)

originally proposed by Pollak and Hauser. Glazman and
Matveev" show that their model approaches Eq. (22)
asymptotically as N —- 00.

Levin, Ruzin, and Shklovskii' obtained an expression
analogous to Eq. (22) for eV»k~ T:

G„,„;„(V) ~ exp( —2ad/Nz)

GhoP( V)

6 res
1

1/3
eV ad=v, ~(ga de V) A, exp

0

~ V4/3 (18)

v=ln 0.234

ga 2de V

where 5 v is given by

(24)

The equivalent role of e V and k~ T in Eqs. (14) and (18) is
not surprising, since these factors set the energy window
for integration in the appropriate limits. The coefficient

2, v is however, much smaller than V2, T In fact V2, V

only of order unity, as can be shown by writing out the
intermediate steps leading up to Eq. (3.11) in Ref. 11.
The criterion for self-averaging is

N~ y=v~ ~(Sa 'geV)(a dg eV)) 1 . (19)

An expression analogous to Eq. (16) exists for the bias
voltage dependence of the ¹tate hopping channel,
G&'~( V), in the limit eV&) ks T. The coefficients [vz z],
however, vary with X much more slowly—
approximately as (N 1)' ", a—s compared with N
for [v& z ]. The physical reason for this difference is that,
whereas in the low-bias limit an amount of energy -kz T
is available for each hop, in the low-temperature limit the
total energy available for inelastic hops, e V, apportions it-
self among X—1 hops.

E. Crossover from Glazman-Matveev model
to Pollak-Hauser model

The computational scheme in Ref. 4 is most convenient
at low temperatures and low bias, where the dominant
hopping processes involve only a small number of local-
ized states, N ~ (ad )'~ . At higher temperatures and bias
the optimal N is most readily approximated as a continu-
ous variable of temperature or voltage, depending on the
appropriate limit. Reference 9 gives the optimal N as a
function of temperature:

Nz = (2ad /5r )
~ (20)

where 5& is the solution of the transcendental equation

0.0365 X5,
5z- =ln

gA d kg T
(21)

The corresponding hopping conductance in this limit
is'"

Gz„,( T) ~ exp( —2ad /Nr )

Equations (22) and (23) have a limited range of applica-
bility in terms of sample thickness, temperature, and bias.
Consider, for example, that Eqs. (21) and (24) have mean-
ingless negative solutions for 5z- and 5v if the barrier
thickness is too large or if the temperature or bias is too
high. Under these extremes the model of highly directed
quasi-1D transport breaks down and a percolative model,
such as variable range hopping, becomes more appropri-
ate. However, exactly how essentially directed transport
crosses over to diffusive variable range hopping in the
bulk limit depends on the dimensionality of the system
and is not entirely clear at present.

GvR (HT)=C exOp[
—(T*/T)' ],

where T* is given by

k~ T*=23/ga

(25)

(26)

The constant 23 is a result of numerical calculations
within the context of percolation theory. '

Shklovskii proposed an analogous current-field rela-
tion for hopping in the limit of high bias,

J(E)=Joexp[ —(E*/E)'~ ], (27)

where J(E) is the current density as a function of the lo-
cal electrical field E, which we assume to be uniform for
relatively thick barriers, E=V/d. E' in Eq. (27) is a
characteristic electrical field which is related to the
characteristic temperature T' in Eq. (26),

F. Variable range hopping —bulk limit

Mott' recognized that two important physical con-
siderations determine the bulk hopping conductance. A
hop has to be short enough so as to have a nonvanishing
overlap between wave functions on the two localized
states involved. On the other hand, it has to be long
enough to find a state not too difFerent in energy. These
two competing considerations fix a typical hopping
length lvRH, which is a function of teInperature. For a
uniform distribution of localized states it was found' that
lvRH varies as T ' . Consequently the variable range
hopping conductance acquires the form

=exp[ —2(2ad5z )' ] . (22) E =kg T /ecx (28)

Tartakovskii et al. obtained this expression in a more
rigorous treatment of the one-dimensional hopping model

where e is the absolute value of the charge of the elec-
tron. The validity of Eq. (27) may be quite limited, how-
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ever. Under high bias the width of the impurity band
available for hopping increases. The assumption of a uni-
form distribution of localized states in energy is therefore
no longer valid. Also, high bias changes the shape of the
barrier and reduces the average barrier height, increasing
the local value of the localization length. Moreover,
when the bias becomes comparable to the band gap, en-
tirely di6'erent processes may contribute to the conduc-
tion. Despite these complications, Eq. (27) has a concep-
tual value and even some utility.

III. EXPERIMENTAL PROCEDURE

To make our junctions we begin by depositing
metal/a —Si/metal trilayer structures in situ using
electron-beam evaporation in a vacuum chamber with a
base pressure of 2X10 Torr. The chamber has. three
independent electron-beam sources; each is feedback con-
trolled to maintain the desired evaporation rate to within
0.1 A/s ( —l%%uo). The metal electrodes are either niobi-
um or molybdenum. Using molybdenum allows us to
measure the barrier conductance down to 1.4 K free of
complications due to the onset of superconductivity in
the electrodes. Single-crystal sapphire from Union Car-
bide is used as the substrate. These substrates are de-
greased and etched according to standard procedures and
are immediately mounted into the evaporator. The sub-
strates are maintained at 700'C during the base electrode
deposition from the central e-beam source, resulting in
smooth, highly uniform, high-quality films with a residu-
al resistivity ratio (RRR) greater than 60. After the sam-
ples cool to below 100 C, coevaporation from the two
peripheral e-beam sources, symmetrically situated with
respect to the substrate holder, is carried out to form uni-
form, pinhole free amorphous silicon barriers across the
entire film area. Two shutters are manipulated to pro-
duce samples with a range of known barrier thicknesses.
The counter electrodes are then deposited at room tem-
perature. The bottom electrodes are generally 2500 A
thick. The barrier thicknesses range from 20 to 1500 A.
The counter electrode is usually 500 A thick. Additional
details of the sample deposition and characterization can
be found in Refs. 24 and 25.

Tunnel junctions, with areas varying from 4X4 to
90X90 pm, are defined using standard photolithogra-
phy. For niobium electrodes we use a variant of the
selected-area niobium annodization process (SNAP) to
isolate the junction. For molybdenum electrodes we use
wet chemical etching followed by the deposition of a pro-
tecting 50 A insulating layer of Si02 and then a protec-
tive insulating layer of photoresist. Deposition of a metal
contact layer (either Ti/Au, Sn/Nb, or Cu/Mo) follows.
Prior to this final deposition, a low-energy ion-beam
source is used to clean the exposed surface area in situ.
When finished each 1/4X 1/4-in. chip has four junctions
sharing a common ground plane. Four probe measure-
ments of junctions on the same chip yield nearly identical
I-V characteristics for junctions with areas as large as
90X90 pm, attesting to the extremely high degree of un-
iformity and pinhole-free nature of the tunnel barriers.

For junctions with resistance less than 100 kQ at 4.2

IV. EXPERIMENTAL RESULTS

A. Overview

In Fig. 2 we show the zero-bias tunneling conductance
plotted on a logarithmic scale versus barrier thickness for
samples with molybdenum electrodes (closed symbols)
and niobium electrodes (open symbols and the cross-
di6'erent symbols indicate samples made in di8'erent eva-
porator runs). For junctions with molybdenum elec-
trodes, this is the conductance measured at or below 4.2
K and at very low bias where the I-V curve is Ohmic.
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FIG. 2. Zero-bias tunneling conductance as a function of
barrier thickness at 4.2 K for three sets of niobium junctions
(open symbols and the cross) and one set of molybdenum junc-
tions (closed diamond). The exponential decrease is a signature
of tunneling. The change of the slope by a factor of 2 indicates
the crossover from predominantly direct to predominantly reso-
nant tunneling. The fit is to the form of Eq. (29), from which we
infer the localization length a ' =6.7 A.

K, ac techniques are used to measure the zero-bias resis-
tance as a function of temperature. ac excitation voltages
are kept below 20-pV rms, and the junction response is
lock-in detected. For junctions with higher resistances,
the roll-off frequency of the system (junction plus leads)
becomes too low for this ac technique to be practical. We
then rely on dc techniques alone.

I-V characteristics are measured using a battery-
powered voltage source and an electrometer (Keithley
617), when appropriate. With this system we can achieve
a current resolution of 0.1 pA, allowing us to measure
junction resistances that span more than ten orders of
magnitude. In all cases, the e6'ects of the leads and the
spreading resistance of the electrodes are carefully ac-
counted for.
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For junctions with niobium electrodes, this is the conduc-
tance measured immediately above the superconducting
gap of the electrodes (3 mV) in the case of thin barriers,
e.g., d & 80 A. For thicker barriers, the nonlinear effects
are already quite noticeable even at 3 mV. However, in
this case there is also substantial smearing of the gap
structure so that the I-V characteristics at lower biases
are practically Ohmic and are used instead.

The exponential decay of the Ohmic conductance with
increasing barrier thickness, as demonstrated in Fig. 2, is
a signature of quantum-mechanical tunneling. The cross-
over from predominantly direct to predominantly reso-
nant tunneling causes the factor of 2 change in the slope.
The dashed line is a least-square 6t to the data by the
form

G elastic g dir —2ad+ Q res —ad y0 e
&

e (29)

273 K
I I I

.104

103

10
6

10
I

10'—
CJ
C ]0

10

U 10

10

10

123 K

106 t I I I I I I I I I I

0.3

4.2 K39K 16 K Tc(Nb)=9 2 K
I I I I I I

(
I I I I I I I I I

I
I I I I I I I ~ I I

I
I I I I I I I I I

I
I

I

62 A.
+ 6 6 Mb, AVYAAAQ~ Q AAAAIIII

I

)K 70 A.)K

)K

I

I

915.~+~++~++ ++ +~++
I

8 ~ ~ ~ I
~ ~ ~

100 A
I00 I0 0 00 I0000 P0 0 0 0 0

150 A.
N

0 ++ 226 A.
a
0 O

1550 A 290 jj
'b

I I I I I I I I I I I I I I I I I I I I I I I I. I I I I I I I I I I I I I I
I

0.4 0.5 0.6 0.7

125 A

T
-1/4

(K -1/4)

where Co", O'I", and u are free parameters. The factor
of ad in the denominator of the second term is appropri-
ate for tunneling via a LS in three dimensions. From the
6t we obtain a '=6.7 A for the localization length. The
prefactors agree to within a factor of 2 with their expect-
ed values. ' '

At higher temperatures phonon-assisted inelastic pro-
cesses quickly dominate the tunneling conductance, re-
sulting in a temperature-dependent conductance and non-
linear IVs. Figure 3 shows the conductance on a loga-
rithmic scale plotted versus T '~ for junctions with
different thicknesses. The behavior of the two thickest
junctions (d = 1550 and 290 A.) follows closely the predic-
tion of the VRH theory. Fitting the data of both samples
using Eq. (25) in the region where they are linear on this
plot yields a value of 1.24X10 K for T*, and from Eq.
(26) the density of the LS's in the amorphous silicon bar-
rier g=8X10' eV 'cm . In the opposite hmit, the
junction with the 62-A barrier shows little temperature
dependence at low temperatures (apart from the structure

B. Voltage dependence of the hopping conductance (eV )&ks T)

Obsertlation of lowest order hop-ping channels

Figures 5 and 6 show the conductance versus bias volt-
age up to 10 and 100 mV, respectively, for a junction
with molybdenum electrodes, a barrier thickness d =98
A, and an area S=50X50 pm . The data were taken at
4.2 K, corresponding to a thermal energy of about 0.3
meV, so eV &&kT except very close to the origin. We
choose to study this junction in detail because the

24Nb = 3 mV
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due to the superconducting gap), indicating essentially
elastic tunneling with a minuscule contribution from in-
elastic processes. However, the temperature-independent
region diminishes quickly as the thickness rises above 70
A. Moreover, the onset of nonlinearities becomes more
precipitous with increasing d. The conductance for junc-
tions in this intermediate thickness range conforms to
neither limit, although at high temperatures the data
seem asymptotically to approach VRH behavior. It is
this regime in which the hopping conductance exhibits
the more complicated behavior that is the focus of Secs.
IV 8 and IV C.

Complementing Fig. 3, Fig. 4 shows the low-
temperature conductance as a function of bias voltage for
a series of tunnel junctions with barrier thicknesses rang-
ing from about 50 up to 180 A. As d increases, the Ohm-
ic region quickly disappears and the nonlinearities be-
come more pronounced.

FIG. 3. Conductance vs temperature for junctions with vari-
ous barrier thicknesses. The thick barrier limit is well described
by the variable range hopping theory. The thin barrier limit is
dominated by (temperature independent) elastic tunneling. The
intermediate thickness range is the focus of Secs. IV 8 and IV C.

FIG. 4. Conductance vs bias for a series of junctions with
niobium electrodes. Note that the threshold voltage for the on-
set of nonlinearity decreases with increasing barrier thickness,
and the voltage dependence becomes increasingly nonlinear as
the bias increases.
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45 readily observable.
We expect that the conductance at low bias consists of

a bias-independent term, which includes the direct and
resonant tunneling contributions, and a bias-dependent
term to account for the onset of hopping processes. Con-
sidering the theoretical prediction that the hopping term
varies as V in the limit eV &&kT, we 6t the data to the
form

G~( V)=cro+ozV ', (30)

where o.o, o.z, and nz are free parameters. The best fit in
Fig. 5 yields the values

25
and

o0=2.46X 10 &, o plw0=334V

(31)

20
0 10

molybdenum electrodes remain normal at 4.2 K and be-
cause it is in the thickness regime where resonant tunnel-
ing begins to dominate the direct tunneling (cf. Fig. 2).
Thus the influence of localized states, especially the
lowest-order inelastic effects due to hopping, should be
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FIG. 6. Conductance vs bias for the same sample in Fig. 5 up

to 100-mV bias. The dashed line is the fitting curve from Fig. 5
extrapolated to higher bias. The further increase of the conduc-
tance above the dashed line is due to the N= 3 hopping channel.
The solid 1ine is a fit to the difference between the data and the
dashed line.

Bias Voltage (mV)
0

FIG. 5. Conductance vs bias for a d =98-A sample. The
solid line is the best fit to the form indicated, and gives 1.33 for
the power exponent, indicating inelastic hopping via two LS s
(%=2).

n, =1.33 .

We see that the conductance increases as V, in precise
agreement with the prediction of Eq. (18), up to a bias of
about 9 mV; above this voltage, deviations become ap-
parent. One may question the objectiveness of this pro-
cedure, since the value of the parameter n z is clearly sen-
sitive to the bias range chosen for the fitting. For exam-
ple, if one fits the data with the same functional form, Eq.
(30), but up to 15 mV, then a larger value of nz( = 1.5) re-
sults. However, using this larger nz produces a poorer fit
to the data in the lower-bias range. Also, we found that
the value of nz is not sensitive to the range chosen for the
fit when restricted below 9 mV, and its variation reflects
merely the noise inherent in fitting to a small number of
points. Moreover, the theory predicts that, as bias volt-
age increases, hopping chains with more than two local-
ized states play a more important role. Thus a self-
consistent procedure should examine the data over a wid-
er bias range and account for the higher-order processes.
Specifically, to Eq. (30) we added a term of the form
o 3 V ' . Keeping o 0, o.z, and n z fixed at the values listed
in Eq. (31), and allowing o ~ and the exponent nz to vary
as free parameters, we fit the conductance data from 0 to
100 mV, and found that the best fit for n3 is 2.53. This is
very close to the power exponent —,

' predicted by the
theory for the bias dependence of the channel with N=3
localized states (and hence our subsequent choice of nota-
tion).

The solid line in Fig. 6 shows the best fit with the addi-
tion of the %=3 term. The dashed line shows the 6t to
the first two terms only, extrapolated past 10 mV. (Thus
the second fit uses a single term, a3V ', to fit to the
diff'erence between the data and the dashed line. ) The
near-perfect agreement between the data and the fits, the
conformance of the free parameters nz and n3 to the
theoretically predicted values, and the entirely self-
consistent procedure prove beyond reasonable doubt that
the non-Ohmic conduction at low bias is attributable to
hopping through the N=2 channel at first, and then ad-
ditionally through the %=3 channel as the voltage in-
creases. A similar analysis on numerous other samples
with different barrier thicknesses yields nearly identical
values for the power exponents of the first two hopping
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channels, n2=1. 33 and n3=2. 5, and comparable values
for the prefactors.

2. Evaluation ofprefactors vs „andvs r

10 I Ill~

103

I I I I I I lli I I I I I IIII

In addition to the power exponents, the coefKicients of
the V and V terms also contain valuable informa-
tion. The quality of our data permits a quantitative com-
parison of these coefBcients with the theory. To proceed,
we note that for d=98 A, resonant tunneling accounts
for about 91% of the total conductance, as inferred from
Fig. 2, whereas direct tunneling accounts for about 9%.
Thus, cr"'=0.9a .

We can calculate v2 I and v3 I by comparing Eqs. (31)
and (18). The values of d, a ', and g are already known
from independent measurements (see Sec. IV A). Bend-
ing thoroughly investigated the average barrier height
and found ED=0.3 eV. To a good approximation ' we
take the values of the material parameters in the
definition of A, [Eq. (10)] to be equal to their values in
crystalline silicon, as summarized in Table I. Substitu-
tion yields v2 ~=2.7 and v3 ~=35.

For completeness, we estimate the effective number of
optimal hopping chains with N=2 states, using Eq. (19).
At V =5 mV, we find N2 ~=30. For the N=3 chains at
V=25 mV we find N3 I,=6. Therefore, these junctions
are suitable for observing the self-averaged hopping con-
ductance of the lowest-order channels. In fact, all four
junctions sharing this substrate exhibit nearly identical
I-V characteristics in the bias range studied, without any
sample-to-sample fluctuations. This exercise indicates,
however, that if the junction areas were reduced to the
order of 10X 10 pm, we should expect to begin to see de-
viations from the self-averaging behavior.

3. Observation of higher-order hopping channels

Now that we have a quantitative understanding of the
hopping conductance in the relatively 1ow-bias range in
the framework of the model of Ref. 11, we are in a better
position to analyze the data at higher bias, where hop-
ping channels with more localized states are expected to
become progressively more important, resulting in in-
creasingly nonlinear conductances. To study this regime
experimentally, however, the junction analyzed in Sec.
IVB1 turned out to be unsuitable. The resistances of
that junction and its sister samples drop quickly as the
bias increases above 100 mV because of their large areas
(50 X50 p,m ), and become comparable to that of the met-
al contacts. The four-point configuration no longer yields
the true junction resistance under these conditions.

We therefore chose junctions with niobium electrodes,
which remain superconducting at 4.2 K, to study quanti-
tatively the voltage dependence of the hopping conduc-
tance over a much wider bias range, thus extending our
comparison with the theory to include the higher-bias
range. The areas of these junctions range from 4X4 pm
to 8X8 pm . In Fig. 7 we show conductance versus bias
voltage up to 500 mV for four junctions, of which two
(the upper two traces) were deposited in one vacuum
deposition run, whereas the other two (the lower two
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traces) are from a different run. The anomaly in the up-
permost trace rejects the superconducting gap in the
electrodes.

We fit the total hopping conductance of all four junc-
tions according to the following procedure (solid lines).
First, we determine the resonant tunneling conductance
from the zero-bias conductance. Second, we write down
the theoretical ratio of the hopping conductance of each
channel to the resonant tunneling conductance using Eq.
(16) with ks T replaced by eV, and v~ r replaced by v~ i, .
Third, we sum the contributions from the different chan-
nels up to a maximum number, N,„,that is appropriate
for the thickness of each individual junction. The intro-
duction of this upper cutofF is necessary for a finite-sized
junction. N,

„

is calculated from the criterion that,
when the probability of formation of a chain containing
N localized states is ~uch smaller than unity, then the
most likely situation is that there will be no such chains.
The exponential term in Eq. (16) cannot compensate for a
prefactor of exactly zero, and thus channels with
N &N,„willnot contribute to the conductance of junc-
tions with a finite area. Finally, we fit all four curves us-
ing the materials parameters listed in Table I and allow-
ing v2 v, v3 z, v& z, and v5 z to vary as free parameters.
(Here the powers of V are fixed at their predicted values. )
The resulting best fits are given in Table II.

The agreement between the experimental data and the
total fit is remarkable, considering the approximations in
the theory, the range of data covered —nearly ten orders
of magnitude in conductance —and the similarity and
reasonableness of the values of the various coeKcients
found. As discussed in Sec. II D, the value of v2 z should
be of the order of 1, and we expect v& ~ to vary approxi-

Bias Voltage (mV)

FIG. 7. Fits to the data for four samples with the prefactors
of the various power terms treated as 6tting parameters. The
coefficients fvz rj for the various channels that emerge from
the fit are listed in Table II.
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TABLE I. List of amorphous silicon-specific materials pa-
rameters used in this work.

Quantity

density of localized states
localization length
deformation potential
average barrier height
mass density
speed of sound

Symbol

a '

A
E
P
vs

Units

eV ~ cm
A
eV
eV

g cm
cms

Value

Sx 10"
6.7
2.0
0.3
2.33

6.6x10'

reduced e-p coupling const. A, [dimensionless] 7.2 X 103

4. Thick barriers —crossover to VRH behavior

In this section we analyze data for junctions with much
thicker barriers in the high-bias regime. Figure 8 is a

mately as (X—1)' ". The theoretical estimates, tabu-
lated in the last column of Table II, coincide with the ex-
perimental values surprisingly well. The success of the
fitting is actually somewhat puzzling since the (probably
oversimplified) method of determining the crossover from
the self-averaging to the fiuctuation regime discussed pre-
viously would suggest that these small junctions should
be in or near the fluctuation regime. The variation of the
values in Table II may refIect this point. We conclude
that a more rigorous statistical analysis, taking into ac-
count the tails of the distribution of the conductance,
e.g., Eq. (6), as a function of the configuration of the LS's,
would be desirable —especially for chains with higher
values of¹ Also, for biases e V & 50 mV, the distortion
of the barrier shape is non-negligible, but is not account-
ed for here. Thus the values of I v~ i, ] resulting from the
fitting most likely refIect the barrier distortion to soxne
degree. The surprising success of the fits to some extent
refm. ects a fortunate cancellation of complications neglect-
ed in the original model. We should also point out that
these values of v&2 and viv3 found for the small area
junctions with Nb electrodes are about five times smaller
than the corresponding values found in Sec. IVB2 for
the large area Mo junctions. We are not certain if this
difference is a consequence of the electrode material
(afFecting, for example, the efFective tunneling density of
states}, the relative sizes of the junctions, or some other
factor.

semilogarithmic plot of the current density versus E
for a series of junctions with barrier thicknesses ranging
from 270 to 990 A, measured at 4.2 K. The current den-
sity is simply the total tunneling current divided by the
junction area, and the electric field is taken to be the bias
voltage divided by the barrier thickness. The upper
bound of the abscissa corresponds to about 20-mV bias
for the 270-A barrier junction, whereas the lower bound
of the abscissa corresponds to about 4 V for the 990-A
barrier. Some of the basic assumptions of our analysis,
e.g., a uniform density of localized states and a bias- and
position-independent localization length, may no longer
be valid under such extreme bias conditions.

One striking feature of Fig. 8 is that the data for the
d =660- and 990-A barriers fall essentially on top of each
other, suggesting that the d =660-A sample has already
attained the bulk limit, wherein resistance scales linearly
with barrier thickness. Moreover, if we fit the data of the
990-A sample to the functional form

J(E )=Joexp[ —(E'/E ) i],

we obtain g =0.25 and E ' = l. 8 X 10" V/cm as the best
fit (solid line). (Note that this fitting procedure heavily
weights the points at high biases when displayed on a log-
arithmic plot. ) Despite the high-bias voltage involved,
the data seem to be adequately described by Eq. (27} over
a limited range. Moreover, using Eq. (28) and the experi-
mentally determined values T' = 1.24 X 10 K and
a '=6.7 A, we calculate E,h„,„=1.2X10" V/cm, in
reasonably good agreement with the experimentally ob-
tained value.

The conductance at low bias, especially for the thinner
samples in Fig. 8, exhibits systematic deviations from the
variable-range-hopping-like behavior. This is a clear in-
dication of the breakdown of simple variable-range hop-
ping model. Similar observations presumably led Pollak
and Hauser to propose the existence of statistically rare
but highly conductive quasi-1D hopping chains. We now
give a more quantitative argument which specifies this
crossover in terms of the bias dependence of the hopping
conductance.

Equation (27}may be written asj (E ) ~ exp( —2alv„H ),
implying a voltage-dependent typical hopping length
fvRH:

TABLE II. The voltage coefficients of the inelastic hopping channels, I v~ i j, for %=2—5, calculat-
ed from the best fits to the conductance data of four samples. A blank space indicates that the term was
not used in the fit (see text). The last column shows a theoretical estimate based on Refs. 9-11.

Sample
name

d (A)

S (pm)

9113A3

90

SXS

911388

125

4x4

8643A7

150

8643A6

180

8X8

Theoretical
estimate

Theoretical
estimate

v2, v

+3, V

&4, v

&s, v

0.6
4

0.5
7

25
220

0.4
2.5

25
300

0.5
3

20
200

~4
-27
-256



2854 YIZI XU, D. EPHRON, AND M. R. BEASLEY 52

102

10

-2
10

ch

10(D -4

-6
10

U
10

~~~ ~

N

Cl 0
o o

CI
o

I

e 270 A.
320 A.

o 400k
o 490 g
+ 660k.

990 A.

Fit to d = 990 A
data

~ ~ ~ ~ 0

In conclusion, we lack a theory that can account prop-
erly for the crossover from directed conduction along
quasi-one-diInensional chains of localized states to the
three-dimensional diffusive percolation of VRH. This is-
sue arises again in the context of the temperature depen-
dence of the hopping conductance, to which we now
turn.

C. Temperature dependence of hopping conduction
(eV&&k& T)

l. Observation ofN =2, 9, 4, 5, and 6 channels

0.04 0.06
I

0.10
I

0.12

FIG. 8. Current density vs E ' for a series of samples with
thick barriers measured at 4.2 K. The behavior of the thickest
barriers at high bias conforms to the VRH model (Ref. 22).
Thinner barriers show substantial deviations, especially at low
bias. This may be understood in terms of a crossover in the
dominant conduction process from VRH to directed hopping
along chains.

l =(2a 'd5 )' 5 =ln 0.234

ga de V
0

The conductance of the 990-A sample first becomes
measurable at a bias of 0.5 V, which is the lowest open
triangle in Fig. 8. Note that the actual sample conduc-
tance at this point is about two orders of magnitude
larger than it would have been had the conductance fol-
lowed the VRH behavior (solid line) extrapolated all the
way down to 0.5 V. For d=990 A and V=0.5 V, and
using g=8X10' eV ' cm we find l, =60 A«l«„.
Since the conductance in both cases decreases exponen-
tially with these hopping lengths, the Pollak-Hauser hop-
ping channel predicts exponentially larger conductance
over field-driven variable range hopping. This compar-
ison demonstrates why the Pollak-Hauser hopping mech-
anism dominates over VRH at the lower end of the
d =990-A curve. However, we cannot presently account
for the crossover from VRH to directed hopping along
quasi-113 chains quantitatively by any available theory.
For example, for the same 990-A sample, at V=1 V the
argument of the logarithmic function in Eq. (33) drops
below one, and 5z becomes a meaningless negative num-
ber. Part of the difhculty is that the high-bias regime
violates many of the assumptions of the models discussed
in Sec. II.

(33)

a '
ivRH =

2
0

For the d =990-A sample at V =0.5 V, using
E*= 1.8 X 10" V/cm, we find that 1vaH = 145 A. On the
other hand, the Pollak-Hauser hopping chains will, ac-
cording to Levin, Ruzin, and Shklovskii, ' [cf. Eqs. (23)
and (24)], give an averaged conductance of the form
Gi,„;„(V)o-exp( —2al, ), where the characteristic hop-
ping length l, is

(34)

in complete analogy with our previous analysis of the bias
dependence [cf. Eq. (30)], with o 0, o 2, and n2 free to vary.
The best fit yields n2 = 1.33 (dashed line).

Anticipating a crossover to the X=3 channel, we next
fit to the form

G (T)=(oo+cr2T' +o 3T ), (35)

with oo, oz, and cr3 free to vary from 1.4 to 15 K (solid
line). This function improves the accuracy of the fit in
the lower-temperature range by altering slightly the pa-
rameters o.

o and o.
2 to take into account the non-

negligible contribution of the N=3 channel. In order to
account for the further increase of the conductance at
higher temperatures, shown in Fig. 9(b), we add to Eq.
(35) one more term, o 4T, in accordance with the pre-
diction of Ref. 11. o.

3 and o.
4 are now fitting parameters

while o.
o and o.

2 retain their previous values, since the
higher-temperature data should not be sensitive to their
values. The solid line in Fig. 9(b) is the best fit. The ex-
trapolated contribution from the sum of the resonant tun-
neling background and the X=2 and 3 hopping channels
(dashed line) shows that the crossover to the N=4 chan-
nel takes place at about 25 K.

Note that the procedure described above is robust with
respect to reasonable changes in the limits of the succes-
sive fits, and thus is not arbitrary. Also, although the
overall fit makes use of four parameters, each successive
fit requires only one free parameter to fit the difference
between the data and the extrapolation of the previous fit
from lower temperatures. Though more cumbersome,
this procedure explicitly demonstrates at each step that
the onset of the higher-order hopping channels obeys the
predicted power-law form, whereas a single multiparame-
ter fit to the whole curve would not inspire the same de-
gree of confidence in the results. Alternatively, one can
also check the successive power exponents by allowing
the exponent and the prefactor to vary at each step, as
was done earlier for the bias dependence. This procedure

We now analyze hopping conductance as a function of
temperature. Figure 9(a) shows the zero-bias conduc-
tance as a function of temperature for a sample with bar-

0
rier thickness d=120 A and with a junction area of
90X90 pm . For d=120 A, G&")50GO", so we can
neglect direct tunneling entirely. We first show a fit (the
dashed line) to the data between 1.4 and 8 K to the form

G2(T)=oo+o2T ',
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always yields exponents within a few percent of the pre-
dicted values. We have fixed the values of the exponents
here in order to obtain the most procedurally consistent
values of the prefactors for later comparison, as we did in

2.5

2.0

Sec. IV B2.
We applied the identical procedure to two more sam-

ples with d =90 and 98 A, and a similar procedure to one
sample with d =150 A. Figure 10 shows the results for
the d =98-A sample. We analyzed in great detail the bias
dependence of this sample in Secs. IVB1 and IVB2.
The fits were restricted to the range above 8 K to avoid
the anomalous low-temperature behavior, to which we
shall turn briefly in Sec. IV D. We note that the conduc-
tance behavior below 25 K is explained entirely by N =2
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FIG. 9. (a) Conductance vs temperature for a d = 120-A sam-

ple. The dashed curve is the best fit to the data from 1.4 to 8 K.
The best fit yields n~=1.33. The solid line is a fit to the data
from 1.4 to 14 K, with n2 fixed at 1.33 and with n3 fixed at 2.5.
(b) Data of the same sample up to 25 K. One more term with a
T dependence is added to account for the further increase in
the conductance. The solid line is the best fit to the data with
the power exponents fixed to their theoretically predicted
values.

0
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I
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+ o'3T (extrapolate
from I'ig. 10 (a) ).
I I

20 30 40

Temperature (K)

FIG. 10. The data for d =98 A presented in the same manner
as in Fig. 9. A comparison with Fig. 9(b) reveals that the cross-
over to higher-order channels takes place at higher tempera-
tures as the barrier becomes thinner.
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and 3 channels only [Fig. 10(a)], whereas for the d = 120-
A junction the N =4 channel is needed [cf. Fig. 9(b)) to fit
the data in the same temperature range. Subsequently
the crossover to the dominance of the %=4 channel
takes place at around 40 K [Fig. 10(b)), much higher than
the corresponding crossover temperature for the d =120
A junction [about 25 K, cf. Fig. 9(b)]. The thinner sam-
ple with d=90 A manifests very similar behavior, and
follows the trend that the crossover to higher-order chan-
nels takes place at higher temperatures as the thickness
decreases, as predicted by Eq. (16).

The data for the thickest sample d = 1SO A appear in
Fig 11. (the solid circles), plotted versus T ' for later
convenience. The solid line is the sum of the %=3
through %=6 channels, fit over an intermediate tempera-
ture range with the four coefficients from v3 T to v6 T free
to vary simultaneously. The %=2 channel is not includ-
ed since its contribution is negligible even at 4.2 K for
this thickness. The dashed line includes two more chan-
nels (up to %=8) using Eq. (36), which is discussed
below, to calculate the coefficients for the two additional
channels, which are then simply added on to the solid
line —no additional Atting is performed. No reasonable
variation of v7 T and v& T will bring the curve into line
with the data. Thus the directed chain model appears to
break down at about %=6 for this junction. We will
consider the implication of these results in Sec. IV C 2.

The values of the prefactors of the various hopping
channels can be used, in combination with the theoretical
predictions in Eqs. (14) and (16), to yield the relative
weights (the temperature coefficients [v& T J) of the vari-
ous channels. The extraction of the coefficients {vz T I is
similar to that carried out in Sec. IV B2 for [vz i, I, and
the resulting values for the four samples discussed above
are listed in Table III.

The only coefficient calculated explicitly in Ref. 11 is
vz T =SO. The strikingly good agreement of the data with
the prediction of Glazman and Matveev for this term
strengthens the conclusion that their model accurately
describes our experimental system. For X &2 they only
estimate that I v& T] should vary as N . In order to nor-
malize this estimate to the value calculated for vz T, we
insert a factor of ~, i.e., vN T=~X . This estimate is2N
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( K -1/4

)

0.6 0.7

FICx. 11. Conductivity (Gd/S) plotted vs T ' for two sam-
ples. %'here the data for the 290-A sample appear linear on this
plot, the sample has attained its bulk behavior. The solid lines

0
are fits to the directed hopping model for the d =150-A sample
and to the theory of VRH for the d=290-A sample. The
dashed line shows the failure of additional terms in the directed
hopping model to explain the high-temperature data.

N —1~2N
VN T ~7T 7 (36)

tabulated in the final column of Table III. Equation (36)

tabulated as a function of N in the penultimate column of
Table III. The disparity between this estimate and the
experimentally determined coefficients, along with the ob-
servation that the integral over the coordinates of the lo-
calized states [Eq. (3.2) in Ref. 11] should generate a fac-
tor of ~ for every inelastE'c coupling, led us also to try the
form

TABLE III. Temperature coefficients of the inelastic hopping channels, [v~r], calculated from
fitting to the conductance vs temperature data of various samples. The penultimate column contains
rough theoretical estimates from Ref. 11, except for the entry marked by the dagger (f), which is ex-
plicitly calculated in Ref. 11. The final column is a modified form of the estimate [Eq. (36)] that fits the
observed values better.

Sample
name

d (A)
S (pm)

920684

90
40X40

920683

98
50X 50

920785

120
90X90

911387

150
20 X20

(Ref. 11)
~2K

(This work)~—1~2%

Theoretical estimate

&2, T

&4, T

&5, T

&6, T

52
7.6X 10
12 X 10

43
5 ~ 8X 10
8.3X 10

52
5.3X 10
5.6x10'

3.0x10'
1.6X 10
7.0x10'
1.Ox10"

-so'
2.3 x10'
0.21 X 10
0.31x10'
0.0068 x 10"

50
7.2X 10
2.0X 10
9.6x 10'
0.66x10"
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is in much better agreement with the data.
As emphasized previously, the values of the coefficients

associated with the various hopping channels, unlike the
power exponents, are sensitive to the approximations of
the model. For example, the transition rate of a hop con-
tains power-law factors of the distance r between the two
localized states involved besides the exponential depen-
dence on r shown in Eq. (8). This implies that v& z will
depend weakly on d. A nonuniform barrier height and
charging effects (see Sec. IVB) neglected in Ref. 11,
among other approximations, will also scatter the values
of the coefficients. Moreover, small errors in the values
of the physical parameters in Table I, because they enter
into expressions of the prefactors of the power-law terms
raised to difFerent powers in the various channels, will
propagate through the calculations and ultimately lead to
a spread in the values tv&z] tabulated in Table III.
Thus, the range of values found for each coefficient
(N & 2) in Table III, as well as the discrepancies with the
theoretical estimates, is not surprising. To expect that
Eq. (36) would do better than giving the correct order of
magnitude for v& ~ would be to stretch the theory
beyond its limits.

2. Thick barriers —crossover to VRH conduction

The limit of high temperatures and thick barriers ex-
poses the limitations of the directed hopping chain mod-
el. (We have already seen in Sec. IVC 1 that this model
breaks down for the 4 =150-A junction at about N=6. )

This regime lends itself to a quantitative analysis more
readily than does the high-bias voltage limit because the
temperature does not introduce the nonidealities that the
voltage does (see Sec. II F). Figure 11 shows the conduc-
tance of two junctions multiplied by their respective bar-
rier thicknesses (i.e., the conductivity) plotted against
T ' . The nearly linear variation of the 290-A data on
this plot at high temperatures suggests that the sample
has already attained the bulk limit, at least above 100 K.
The solid line is a fit of that part of the data to the form

lnGvaH( T)=lnCo —
( T'/T)",

with Go, i1, and T* as free parameters. The logarithm in-
sures that every point receives equal weight, as measured
by vertical distance on this graph. The best fit yields
T =1.24X10 K and g=0.25. The exponent confirms
that Mott VRH is the predominant conduction mecha-
nism in the limit of thick barriers and high temperatures.
The value of T' together with Eq. (26) is the source of
our estimate for the density of localized states g = 8 X 10'
eV 'cm . If we take

a '
~vRH =

2

in analogy with Eq. (32), then 1vRH ranges from about 90
A at room temperature up to about 170 A at 20 K. Thus
the d =290-A data suggest that for d & 2lvRH, Mott's law
provides a reasonably good description of the transport.
The approach of the d = 150-A data to that of the thicker

junction near room temperature also supports this con-
clusion.

That a percolative model explains the transport across
a film only twice as wide as the critical percolation length
is somewhat surprising at first. Nonetheless, Shklovskii
has demonstrated that in three dimensions the cross-
over from directed hopping along rare but highly
efFective chains to VRH, associated with the difFusive re-
gime, occurs fairly abruptly when d-lvRH. In two di-
mensions, in contrast, he predicts that severely twisted
but nonetheless nonpercolative directed paths should be
important in the crossover regime. Nevertheless, we lack
a theory that describes precisely how the directed recti-
linear chains evolve into a percolative network in our

0
junctions. In Fig. 11, the range where the d = 150-A data
points diverge from the N=2, . . . , 6 fit (solid line) until
they converge toward the VRH fit (also a solid line) illus-
trates this crossover regime. The additional channels
(N & 6) included in the dashed line fail to explain the data
at high temperatures, most likely because the probability
of finding even a single directed chain of this order within
the finite area of the junction is vanishingly small, so the
correct prefactor is actually 0.

With increasing temperature, highly directed chains of
high order (N & 2) apparently continue to dominate the
conductance until the required configurations become
essentially impossible to realize in junctions with a given
finite area [cf. Eq. (15)] and its discussion, at which point
VRH takes over rather abruptly. If these two mecha-
nisms dominate over temperature ranges that have little
overlap, as Shklovskii's argument suggests, their con-
ductance should add in parallel. In fact we can simply
add the two solid lines in Fig. 11 to fit the 150-A data
reasonably well over the entire temperature range. How-
ever, a firm conclusion on this point is not really possible
based solely on this graph.

D. Low-temperature zero-bias anomalies (ZBA)

We have already presented evidence of anomalous
behavior at low temperatures in Fig. 10. We observe
similar behavior in all of our junctions with d (120 A.
In all cases, below some temperature, Tz&A, the resis-
tance begins to rise rapidly, departing from the low-
temperature extrapolation of the fits to the model of Ref.
11 that work exceedingly well at higher temperatures.
Tz~A decreases with increasing barrier thickness and
ranges from about 10 K for d =60 A to about 500 mK
for d = 120 A (thicker junctions were not measured below
4.2 K). Figure 12 shows the data for a d =62-A junction
with Nb electrodes in an applied field of 2.5 T, sufficient
to quench the superconductivity in the electrodes. (Based
on similar data in other samples, the magnetic field also
sharpens the resistive upturn but does not appear to
affect Tza~ significantly. )

We have carried out a preliminary study of this anoma-
lous low-temperature behavior as a function of magnetic
field, temperature, barrier thickness, and bias. In order
to explain these data, we have considered a variety of
possible theories, including the Kondo efFect, hybrids of
the Kondo efFect that account for the LS's in the barrier
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as well as at the interfaces, ' and charging effects. We
have not yet found a satisfactory quantitative explana-
tion.

We have also studied the correlations of the hopping
conductivity caused by the presence of a large on-site
Coulomb interaction between electrons that share a local-
ized site. (Each uncoordinated dangling a-Si bond —a
single localized site —gives rise to two spin-degenerate
localized states. ) These correlations manifest themselves
most dramatically in the magnetoresistance at low tem-
peratures, but still above TZ~A. Thus we know that
many-body effects play a signi6cant role in our system at
very low temperature and bias. More work is needed to
remove the word anomalous from the description of the
low-temperature behavior found in Figs. 10 and 12.

V. SUMMARY AND CONCLUSION

In this paper we have presented a detailed study of
transport via localized states in tunnel junctions, using
amorphous silicon tunnel barriers as a model system.
Both elastic and inelastic processes are present and can
be distinguished. The importance of hopping conduction
through optimally configured channels (in space and en-
ergy) as temperature, voltage, or barrier thickness are in-
creased has been clearly demonstrated. The presence of
these channels is purely statistical and a consequence of
the disordered nature of the material. The importance of

Temperature (K)

FIG. 12. Conductance vs temperature for a thin barrier junc-
tion showing a low-temperature anomaly. A 2.5-T field perpen-
dicular to the ground plane was used to quench the supercon-
ductivity in the niobium electrodes. The solid curve is a fit to
the data above the anomaly including the N =2 and 3 channels.

such channels was first anticipated by Hauser and Pol-
lack. The total conduction is a sum over channels con-
taining %=2,3, . . . localized states. Characteristic of
this process is that, as temperature or voltage increase,
the dominant contribution to the conduction comes from
channels with larger and larger numbers of localized
states (i.e., increasing numbers of hops).

The dependence of the conductance on temperature,
voltage, and barrier thickness is found experimentally to
be in remarkably good agreement with the recent theory
of Glazman and Matveev. In particular, we have demon-
strated that the leading correction (%=2) to the zero-
bias conductance due to hopping varies as T and V
in the limits kT)&eV and eV))kT, respectively. The
next-higher-order correction (%=3) has also been clearly
identi6ed. Fits to the sum over even larger numbers of
channels is found to be in good agreement with the data
over nine orders of magnitude in conductance.

These results clarify both the consequences of the pres-
ence of localized states in tunnel junctions and the nature
of transport in disordered insulators at short length
scales. The crossover from hopping along the directed
channels studied here to fully developed variable range
hopping is not completely understood, however, and may
have some fundamental interest.

In this paper we have not discussed the correlated na-
ture of these hopping processes due to the on-site
Coulomb interaction. We have considered only single-
electron processes. Correlations in the hopping are
present, have been observed, and are also found to be in
accord with recent experiments and theory. A
comprehensive understanding of these effects is not yet at
hand, however. For example, as seen in the results
presented here, zero-bias anomalies are present that are
clearly due to the presence of localized states. A satisfac-
tory understanding of these anomalies is not available.
The potential of the amorphous silicon barriers studied
here as a model system for studying zero-bias anomalies
generally has not been explored.

Finally, we note that the effects of localized states on
superconductive tunneling and the Josephson coupling
have not been addressed in this paper. Relatively little
systematic work has been done on these issues. This sit-
uation may change in view of considerable interest in the
role of localized states in the barriers of Josephson junc-
tions made with the high-temperature superconductors
that has arisen recently.
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