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Composite-fermion description of correlated electrons in quantum dots:
Lovv-Zeeman-energy limit
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We study the applicability of composite-fermion theory to electrons in two-dimensional parabol-
ically confined quantum dots in a strong perpendicular magnetic field in the limit of low Zeeman
energy. The noninteracting composite fermion spectrum correctly specifies the primary features of
this system. Additional features are relatively small, indicating that the residual interaction between
the composite fermions is weak.

I. INTRODUCTION

Recent progress in microlithography has made it pos-
sible to fabricate artificial semiconductor structures con-
taining only a few electrons, called quantum dots. Elec-
trons can be added to a quantum dot one by one, and
its properties can be investigated. by various techniques,
e.g. , tunneling, capacitance measurements, and opti-
cal spectroscopy. In particular, the chemical potential
pN of the N-electron system can be measured as a func-
tion of various parameters, e.g. , the confining potential or
the external magnetic field B. The chemical potential is
given by pN ——E~ —E~ q, where E~ is the ground-state
energy of the N-electron system, and consequently con-
tains information about the ground-state energy of inter-
acting electrons. As some parameter (say B) is changed,
the ground states of the N and N —1 electrons vary con-
tinuously until a level crossing occurs, at which time p~
exhibits a cusp; such cusps are observed in various
experiments.

A completely noninteracting electron model is not suf-
ficient for describing the quantum dot physics, and the re-
pulsive Coulomb interaction must be taken into account
at some level. In the simplest scenario, the energy to add
an extra electron can be modeled in terms of a classical
capacitance, which is a smooth function of the number
of electrons in the dot. Superimposed over this smooth
classical contribution are small fluctuations that origi-
nate &om either the quantization of single-particle en-
ergy levels in the quantum dot, or correlations due to the
Coulomb interaction, or a combination of the two. In the
zeroth-order approximation, the corrections to the clas-
sical energy may be computed in terms of noninteracting
electrons in the quantum dot. Then, whenever there
is a level crossing in the noninteracting ground state, a
cusp appears in p~. At high B, a level crossing occurs
when an electron changes its Landau level (LL) index,
or reverses its spin within the same LL. Klein et al.
have investigated in detail the region where both spin
species of only the lowest LL are occupied, and found
that a Hartree-Fock theory ' ' provides a reasonably
accurate quantitative account of the cusp positions; the
cusps in this case originate when the electrons flip their

spin one by one, until they are fully polarized.
At still higher B, when the filling factor v ( 1, and

all electrons are fully polarized, an interplay of difFerent
LL's is not possible. A noninteracting electron model or
a Hartree-Fock —type calculation will obtain the ground-
state energy to be a smooth function of various param-
eters, and as a result will not produce any level cross-
ings. However, detailed exact diagonalization studies on
small systems show that level crossings do indeed occur
in this regime. ' ' ' ' These originate exclusively from
Coulomb correlations. Phase diagrams for the ground
state as a function of the magnetic field and the strength
of the confinement have been constructed using exact di-
agonalization studies. Such studies, however, are possible
only for quantum dots with very few electrons.

The results of exact diagonalization studies of fully po-
larized electronic states have been interpreted in terms of
the composite fermion theory. The motivation comes
&om the relevance of composite fermions to the phe-
nomenon of the &actional quantum Hall efFect (FQHE)
(Ref. 20) that occurs when two-dimensional electron sys-
tems (2DES's) are exposed to very high magnetic fields.
In this framework, the FQHE can be understood as
the integer quantum Hall efFect (IQHE) of composite
fermions. 2i The FQHE occurs as a result of incompress-
ibility, i.e. , cusps in the ground-state energy as a function
of the magnetic field, which suggests that the physics of
the cusps in quantum dots is related to the physics of
the FQHE. It was shown that the cusps in the quan-
tum dot states can be understood in terms of noninter-
acting composite fermions. ' Their origin is discussed
briefly as follows. The electron system completely con-
fined to the lowest LL maps on to composite fermions
with several quasi-LL's occupied, and the interaction en-
ergy of electron is mapped into an efFective cyclotron en-
ergy of the composite fermions. Level crossings in E~
then occur as a result of an interplay between various
quasi-LL's of composite fermions, i.e., as the composite
fermions change their quasi-LL index one by one. Thus
the composite fermion (CF) theory efFectively provides a
single-particle description for the correlation effects, and
gives a very simple intuitive picture for understanding
the principal features of the strongly correlated quantum
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dot ground states.
The study of Refs. 18 and 19 extended the applicabil-

ity of the CF model to systems with nonuniform densities
and edges. (Most earlier studies used the spherical ge-
ometry which has no edges. ) Also, since the composite
fermions are many-body objects, one may ask how many
electrons are needed before the CF description becomes
valid. (Of course, there is no composite fermion for a
single electron. ) In the case of fully polarized electrons,
the CF description was found to be reasonably good even
for as few as three electrons.

This work investigates the applicability of the CF the-
ory to quantum dots in the limit of vanishing Zeeman en-
ergy. This limit is relevant (in certain parameter range)
because the Zeeman splitting is rather small in GaAs,
roughly 1/60 of the cyclotron energy, since the band
g factor (g* 0.44) of electrons and their band mass
(m' 0.067m, ) are both very small. Experimental
and theoretical2s studies in FICHE have shown that even
for moderately strong magnetic fields, the ground states
are not always fully spin polarized (e.g. , v = s, s, &, etc. ,
have spin-singlet ground states). Similar physics can be
expected in quantum dots. Certain features in single-
electron capacitance spectroscopy and tunneling ' ex-
periments in quantum dots have been interpreted in
terms of spin-singlet states, and the effect of the spin
degree of &eedom has been investigated in several theo-
retical studies. 6 ~

In not fully polarized states electrons may overlap spa-
tially and hence one would expect the residual interaction
between composite fermions to be of greater importance
than for fully polarized composite fermions. However,
we find that the noninteracting CF model still identi-
6es the relatively strong cusps. The additional weaker
cusps are a signature of a residual interaction between
composite fermions. While the true residual interaction
between the composite fermions is not known, even a
minimal "b-function" hard-core interaction gives a rea-
sonable qualitative picture for the weaker structure. The
low Zeeman-energy quasi-LL gap is found to be roughly
an order of magnitude smaller than that of the fully po-

2
larized composite fermions. For example, in units of —,
where a is the efFective magnetic length, the quasi-LL gap
in the large Zeeman-energy limitis was 0.124 (N = 5),
whereas in the small Zeeman energy limit the gap is
~ 0.019 (N = 5). Interestingly, we find that the CF
description improves as the number of electrons con6ned
in the dot increases.

Qur main objective here is to investigate the validity
of the CF model, for which we will compare its conse-
quences with the results of exact diagonalization stud-
ies. Therefore, we restrict our study to small systems.
It should however be emphasized that the details of the
CF model may be worked out rather straightforwardly
even for a large number of electrons. The noninteract-
ing CF model should therefore prove useful in analyzing
experimental results in the high-field regime where the
Hartree-Fock approximation is not applicable, and exact
diagonalization cannot be performed.

The plan of this paper is as follows. Section II gives
the results of exact numerical diagonalization. Section

III compares the CF theory with numerical studies at
zero Zeeman energy. In Sec. IV, we consider the electron
ground-state phase diagrams as a function of the confine-
ment strength and magnetic 6eld, and also some typical
addition spectra.

II. NUMERICAL CALCULATIONS

We will consider two-dimensional quantum dots with
parabolic confinement (1/2)m*ur IrI . Further, we will
assume suKciently high R that the cyclotron energy Lu
is large compared to the confinement energy ~, but
the Zeeman energy remains sufBciently small (which will
be set to zero throughout this work). The total angular
momentum I commutes with the Coulomb interaction,
which makes it possible to diagonalize the problem in
various I subspaces separately. For zero Zeeman energy,
the total spin S is also a good quantum number, so it is
suKcient to work in the subspace of the lowest S„pro-
vided it is remembered that each state in this subspace
represents a multiplet of 2S + 1 degenerate states of the
full Hilbert space. In the high B limit, the ground-state
energy E(I) in a given L subspace nicely separates into
two parts, the confineinent energy E,(L) and the inter-
action energy V(I). The former is given by

bc',E, = ' F1+4
i

—1 I

and V(L) is the same as the interaction energy of the
ground state at I without any confinement, provided
the magnetic length is replaced by an effective magnetic

1
length a, given by a = ".(u2+4ur ) '. As a result,
it is sufficient to calculate V (L) for a system without any
con6nement.

The true ground state of the system is determined by
the minimum of E = E + V. While it will depend
on various parameters, such as R or ~, it is in gen-
eral a state where the plot of E(L) vs L has a downward
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FIG. 1. The interaction energy of the ground state in the I
subspace, V(L), as a function of the total angular momentum
I. N is the number of electrons.
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FIG. 2. The cusp size b.(L), defined in the text, for non-
interacting composite fermions (upper panel, solid line, left
scale) and interacting electrons (lower panel, left scale). The
dashed line in the upper panel shows the cusp size for interact-
ing composite fermions (right scale). The b, of noninteracting
composite fermions is given in units of her; the rest are in
units of —'. The ground-state spins are shown on the plot
itself. For noninteracting composite fermions, spins are not
shown when there are many degenerate ground states; for in-
teracting electrons (or interacting composite fermions), two
spins are shown when the first excited state is almost degen-
erate with the ground state (the lower spin corresponds to the
actual ground state).

cusp; states with upward cusps will never become ground
states. It is convenient to define the size of a cusp at I
as A(L) = E(L + 1) + E(L —1) —2E(L). Then, only
states with positive 4 may become ground states with
suitable choice of parameters. Since E is a linear func-
tion of I, b, = V(L + 1) + V (L —1) —2V (L), and the

FIG. 4. Same as in Fig. 2 for N = 5.

possible ground states can be identified directly &om the
plot of V (L)

The Coulomb Hamiltonian was diagonalized exactly
for Hilbert spaces of sizes less than 3500, using stan-
dard numerical subroutines. For bigger Hilbert spaces,
we used a modified Lanczos technique to obtain a few
of the low-energy states. The maximum size we have
studied is approximately 45000. The Lanczos scheme
requires care in dealing with states that are almost de-
generate. Exact diagonalization has been carried out in
a number of earlier studies to which the reader is referred
for details 6—10,12,16)17,27—29

Figure 1 shows V(L) as a function of L for 3—6 elec-
trons. The structure on the curves is small compared
to that seen in the analogous plot for spin-polarized
electrons. In order to bring out the cusps more clearly,
we plot in Figs. 2—5 A(L) = V(L+1)+ V(L —1) —2V(L)
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as a function of L. As stated earlier, 4 is positive for
downward cusps and negative for upward cusps.
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Composite fermions are relevant when two-
dimensional electrons are subjected to a strong mag-
netic Geld. The essential role of the Coulomb interac-
tion is presumed to bind an even number of vortices
of the many-particle wave function to each electron. The
resultant electron plus vortex combination has the statis-
tics of a fermion and is called a composite fermion:
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Microscopically, the formation of composite fermions im-
plies that the (unnorxnalized) low-energy wave functions
of interacting electrons with total angular momentum L
have the form:
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where 4L,. is the wave function of electrons with total an-
gular momentum L*, and 7 projects the wave function
on to the LLL of electrons, as appropriate for B —+ oo.
The Jastrow factor g &&(z~ —zg)2 binds 2m vortices
to each electron of 4L,. to convert it into a composite
fermion. Noninteracting composite fermions are obtained
when 4L,. is taken to be the wave function of noninter-
acting electrons. The LL's of noninteracting electrons
of 4L, - map into quasi-LL's of composite fermions, sep-
arated by a quasicyclotron energy gap, which is treated
as a parameter of the theory. The system of interact-
ing electrons at arbitrary L is mapped into a system of
composite fermions in the range —M & L* & M with a
suitable choice of m. M is the angular momentum of the
v = 1 state of fully polarized electrons. Note that the
above discussion is applicable in both the large and the
small Zeeman-energy limits. In the former, the electrons
in 41,. are assumed to be fully polarized, whereas in the
latter, which is the case in the present study, electrons in
4L, can have either spin, with the Zeernan energy set to
zero.

A. Noninteracting composite fermions

According to the CF theory, the interacting electron
system at L is equivalent to a weakly interacting CF sys-
tem at L* = L —2mM. In Fig. 6 we also plot the kinetic
energy of composite fermions as a function of I*.This is
the same as that of noninteracting electrons at L*, but
with the cyclotron energy of electrons replaced by an ef-

FIG. 6. The kinetic-energy (KE) spectrum of nonin-
teracting electrons (N=3,4,5,6) with spin, in the range
—M & L & M. The energies are given in units of ~

fective cyclotron energy of composite fermions, denoted
by ~, which is to be determined empirically by com-
parison with the interaction energy curve.

It is worthwhile to consider in some detail why cusps
appear in Fig. 6. Consider N = 4. For noninteracting
electrons, there are no cusps for L & 2; at L = 2 the
occupied single-particle states in the lowest LL are 0 g,
0 $, 1 t, and 1 $, where j $ denotes the single-particle
state with angular momentum j and spin down. The ex-
act diagonalization calculation for interacting electrons,
however, shows cusps. Let us go to the noninteracting
CF basis. The total angular momentum of composite
fermions is L* = L —12. All composite fermions can be
accommodated in the lowest quasi-LL for L* & 2, which
corresponds to L & 14. As I* is reduced, one compos-
ite fermion must be pushed into the second quasi-LL.
The lowest L* with only one composite fermion in the
second quasi-LL is L* = 0, where the ground state con-
tains three composite fermions in the lowest quasi-LL,
in angular momentum states 0,0, and 1, and one in the
second quasi-LL, in the angular momentum state —1.
For decreasing L' further, the CF kinetic energy must
be raised further. This would result in a cusp in the in-
teracting electron system at L = 12. Similar analysis
produces the curves of Fig. 6.

The cusp sizes are plotted in Figs. 2—5. The promi-
nent cusps in the interaction energy curve are well re-
produced by the noninteracting CF theory. The efFec-
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tive cyclotron energy, in units of —', is determined to
be 0.012(N = 3), 0.017(N = 4), 0.019(1V = 5), and
0.017(N = 6). It is interesting that the description of
interacting electrons in terms of composite fermions be-
comes better for larger N. For example, the negative CF
cusps for N = 5 and N = 6 correspond to negative cusps
in the interacting energy spectrum, but to positive cusps
for N = 3 and 4 (even though the overall shape is ob-
tained correctly). This is not surprising, since composite
fermions are inherently many-body objects, and may not
be appropriate for systems with very few electrons. For
zero Zeeman energy, the composite fermion description
is only qualitatively valid for quantum dots with fewer
than five electrons.

B. Residual interaction between composite fermions

There are additional cusps in the V(L) curve, of rel-
atively small sizes, that cannot be explained within the
noninteracting CF model. In particular, this model pre-
dicts an absence of cusps in the region corresponding
to M' ( iL'i & M, where M' is the smallest angu-
lar momentum possible within the lowest LL, but there
are several cusps in V(L) in the corresponding region
M'+ 2mM ( L ( (2m+ 1)M The .additional cusps
can be interpreted as originating &om a residual inter-
action between the composite fermions. These cusps are
roughly an order of magnitude weaker than the primary
cusps, showing that the residual interaction between the
composite fermions is weak compared to their efFective
cyclotron energy.

The residual interaction between the composite
fermions may be incorporated by taking the composite
fermions at L* to be interacting. We have considered two
models in an attempt to mimic the residual interaction,
one in which the composite fermions at I* interact via
the Coulomb interaction, and the other in which they

interact via a hard-core interaction. For simplicity, we
have considered only the range M' & I' & M, where
all composite fermions are in the lowest quasi-LL. Fig-
ures 2—5 show the Coulomb interaction energy cusp-size
[panel (a), broken linesJ. It is clear that it captures the
qualitative physics of the weaker cusps. The same is true
of a hard-core b function interaction. This suggests that
the dominant part of the residual interaction is the con-
tact interaction, explaining why the residual interaction
is less important for fully polarized electrons.

C. Low-energy spectrum

Besides the shape of the V(L) curve, the CF scheme
also sheds light on the low-energy spectrum of states
of interacting electrons. Figure 7(a) shows the low-
energy spectrum of a five-electron system in the range
24 ( I & 30. The spin quantum number is shown
in the figure for a few of the low-energy states. Fig-
ure 7(b) shows the spectrum of composite fermions in
the range 4 & L' ( 10, interacting via the Coulomb in-
teraction. The low-energy spectrum of Fig. 7(b) matches
nicely that of Fig. 7(a). At several values of L, there are
two nearly degenerate ground states in Fig. 7(a). This
is also seen in Fig. 7(b), although the ordering of the
two states is sometimes reversed. Note that it is cru-
cial to consider interacting composite fermions in order
to explain the low-energy spectrum —for noninteracting
composite fermions, all states at a given L' in Fig. 7(b)
would be degenerate.

The ground state at L = (2m + 1)M is fully spin po-
larized, known to be well described by the Laughlin wave
function. We find that there is another state very close
to it in energy. We do not fully understand the origin of
this state at the moment. It is believed that the Laughlin
state is nondegenerate in the thermodynamic limit even
for zero Zeeman energy, except for the spin multiplicity.
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FIG. 7. (a) The low-energy spectrum of
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In our calculations, we find that the energy difference
between the two states increases with N (it is 0.0027,
0.0046, and 0.0047, in units of —for N = 4, 5, and 6,
respectively), suggesting that the other state may not be
relevant in the thermodynamic limit. We also note here
parenthetically that the ground-state quantum numbers
in our calculations are sometimes in disagreement with
those of Ref. 6.

D. Nature of the ground states

It was noted in Ref. 19 that the ground states of in-
teracting electrons are "compact" states of composite
fermions. In order to define compact states, and their
relationship to ground states, let us first consider the
system of noninteracting fermions in the range —M &I' & M. Let us fix the number of electrons in the kth
LL to be Ng (PNI, = N). Then, the state with the
smallest total angular momentum is called compact, de-
noted by [Np, Ny, ..., N~I where K is the index of the
highest occupied LL. This state has the property that
the NI, electrons in the kth LL occupy the innermost an-
gular momentum states (hence the name compact). It is
clear that all of the positive cusp states of noninteracting
fermions are compact, since otherwise the total angular
momentum can always be decreased without increasing
the kinetic energy. (Of course, every compact state is not
necessarily associated with a positive cusp. )

We have already shown that the principal cusps of in-
teracting electrons can be explained in terms of nonin-
teracting composite fermions. These states are there-
fore compact states of composite fermions. Their wave
functions, denoted by [Np Ny&. . . 1N~]cp& are obtained
according to Eq. (3), i.e., by multiplying the wave func-
tions of compact electron states by the Jastrow factor,
and then projecting on to the lowest LL. These wave
functions have been tested successfully for the case of
fully polarized electrons.

Note that the L* spectrum &om 0 to M is related
by reflection symmetry to the other half (0 to —M). The
horizontal lines of one side map into the tilted lines of the
other side and vice-versa, and a cusp at L* also implies
a cusp at —L*. Similar approximate mirror symmetry
is also seen here in Figs. 2—5 about I = 2 mM in the

interacting electron ground-states. In particular, the spin
quantum numbers and the cusp sizes are (approximately)
rejected about I = 2 mM.

In the disk geometry, all cusps may not be associated
with thermodynamic FQHE states, as indicated in Ref.
19. This is related to the fact that the IQHE state at v' =
n cannot, in general, be identified precisely. For fully
spin-polarized electrons, the only exception is the v* =
1 state, which allows an identification of the Laughlin
states at v =

(2 +y) the other cusps are not associated
with any thermodynamic FQHE states. In the present
case, with low Zeeman energy, the IQHE state at v* = 2
is the only state that can be identified unambiguously:
for an even number of electrons, it occurs at I* = —(——

2 2
1). Consequently, the cusp at I, = 2M + 2 ( 2

—1) can
be a associated with the —spin-singlet FQHE state, and
the cusp at I = 2M —

2 ( 2
—1) with the s spin-singlet

state. These are the last and the first cusps in the CF
kinetic-energy curves. Other cusps do not correspond to
FQHE states.

IV. CONCLUSION

This study analyzes interacting lowest-LL electrons in
quantum dots in the small Zeeman-energy limit in the
framework of composite fermions, and shows that the
prominent features are understood in terms of noninter-
acting composite fermions. For more detailed informa-
tion, it is necessary to incorporate the residual interaction
between composite fermions. While the true interaction
between composite fermions is necessarily quite complex,
we find that any repulsive two-body interaction provides
a reasonable qualitative picture.
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