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Electric current in a one-dimensional chain of quantum boxes is characterized by a set of zero
minima (antiresonances) due to the momentum selection rule for the interaction of acoustic phonons
vrith Wannier-Stark localized electrons or due to the folded phonon gaps. Antiresonances manifest
also in the conduction of superlattices in the presence of an external source of phonons. Negative
magnetoresistance of superlattices in high electric fields is predicted. We also clarify general questions
of boundary conditions in the hopping regime.

I. INTRODUCTION

Transport in quantum microstructures (QMS) main-
fests such fundamental phenomena as quantum interfer-
ence and electron localization. QMS can be designed
to achieve arbitrary spectra of electronic states and are
Qexible to geometrical confinement providing alterna-
tive windows for technological innovation. In particu-
lar, transport and magnetotransport ' ' in superlat-
tices (SL) have been the subject of intense investigations.
With magnetic field perpendicular to the layers SL realize
a high degree of conGnement of the electron gas and are
well suited for simulating transport in quantum-box su-
perlattice (QBSL) recently proposed to control phonon
scattering. ' In the present article, we investigate the
conductance mechanisms in QBSL and predict a set of
minima (antiresonances) in the current-voltage charac-
teristics, due to the momentum selection rule for the
interaction of acoustic phonons with the Wannier-Stark
(WS) localized electrons. We also discuss the onset of
antiresonances, due to the gaps in folded phonon spec-
trum and analyze resonant hopping of electrons between
localized states, due to elastic and optical phonon scat-
tering. We find that owing to the electron localization in
high electric Geld the longitudinal magnetoresistance is
negative over substantial range of magnetic field.

The efFects we study are the manifestation of quan-
tum conGnement. We suggest that not only electron,
but also phonon conGnement can be observed in conduc-
tance experiments. In addition, we discuss critical issues
on the importance of boundary conditions imposed on
the electron chemical potential in the description of the
nonequilibrium hopping conduction in QMS.

E„=e„—eEdo. ,

and the wave functions are given by
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where Jk(2A/end) are the Bessel functions of order k
(Ref. 11) and n is the Stark diagonal representation in-
dex. Therefore, the band conduction breaks down and
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where A is the transverse wave function, m and n
are the integer numbers, d is the period of QBSL, and
uq (z —vd) is the wave function of an eigenstate Eq in a
separate quantum well v. The Hamiltonian in the pres-
ence of the uniforin electric field F

~~
z is

'Rp ——(Eq + e„—eFdv) b„„+Aq (h„,„+i+ h„„ i),
(2)

Aq is the tunneling matrix element (we consider only
the tunneling between neighboring QB) and e is the
transverse energy. Without essential loss of generality
we discuss mostly the states corresponding to the lowest
longitudinal mode. In this way, we set Ei ——0 and omit
the index q. In analogy with conventional crystals, the
Hamiltonian (2) in zero electric field results in a band
spectrum with a width 4L. If the potential drop over the
period of a structure, eEd, exceeds the collisional broad-
ening of the electron levels 5/q, the electronic subband
splits into WS ladder of localized states. The correspond-
ing eigenvalues are

II. ELECTRONIC MODEL

In one-dimensional (1D) QBSL the electron motion is
modulated by the periodic potential in the z direction of
the chain and is strictly confined in the xy plane (Fig.
1). Consider the Wannier representation for the electron
wave functions of QBSL,
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FIG. 1. Schematic QBSL with WS localization in the
magnetic-field confinement.
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electrons move in the z direction only by hopping &om
one well to the other, due to scattering; direct tunneling
between the WS states for q = 1 manifests in the elec-
tron spectrum and is taken into account in Eqs. (3,4).
As for tunneling between states q = 1 and the WS states
of higher rninibands, one can diagonalize the Hamilto-
nian for several minibands in electric field and, thus, in-
clude the eKect of direct interbaxid tunneling in the q
component wave functions (see Ref. 12). Then only the
scattering-assisted hopping results in a current.

There is an essential difFerence between conventional
SL and QBSL. SL electrons are characterized by a con-
tinuous spectrum in the direction transverse to its axis
and the energy conservation law can always be satis-
6ed for any scattering process. For instance, in elas-
tic scattering by impurities, the energy conservation is
the result of an interchange betweeen longitudinal and
transverse energies, whereas phonon-assisted hopping
is accompanied by a partial energy transfer to the lat-
tice. On the other hand, in QBSL the transverse de-
gree of keedom is characterized by a discrete spectrum

and electron hopping exists only when the trans-
verse energy spacing is equal to the separation between
the WS levels or difFers &om the latter by the phonon
energy. It follows then that elastic and optical phonon
scattering should manifest in a number of resonant peaks
in the current. We note that elastic and optic phonon-
assisted resonances are known to in8uence electron trans-
port in double quantum well structures with transverse
2D continuous spectra. However, the only background
mechanism for conduction in SL is scattering by acoustic
phonons. We are going to demonstrate that acoustic-
phonon-assisted hopping in QBSL is characterized by a
set of antiresonant minima. These mixiima are related to
the quasi-one-dixnensional character of the phonon prop-
agation in QBSL, which dramatically affects both the
phonon spectrum and the electron-phonon interaction.

III. TRANSPORT MODEjk

In this section, we discuss the electric current in QBSL
as a hopping current between the Wannier-Stark lo-
calized states, which is due to electron scattering of
phonons, impurities, and various irregularities of super-
lattice structure. We describe the hopping conductance
in QBSL, by the following transparent formula:

I

(z~ m —z~ m )IV~'~~,

where z iv —z ~ ~i is the electron displacement (the
hopping length) upon the scattering (n, K —+ n', K'),
2V stands for the set of indices describing the transverse

I

states, W~'~, is the scattering probability. For elastic
processes (due to impurities, surface or interface rough-
ness), the scattering probability is

where V~~, is the scattering matrix element (~V~ ac-
counts for the number of defects and their correlation),

f ~ is the nonequilibrium electron distribution function.
For phonon-assisted hopping,

I

C~'~, is the electron-phonon scattering amplitude, uq
and Nz are the phonon frequency and the occupation
number. The phonon occupation number, in a general
case, is a nonequilibrium quantity and has to be deter-
inined by rate equation. Equation (7) accounts for spon-
taneous emission, emission, and absorption of phonons.

As far as we know, a formula similar to Eq. (5) was first
derived by Luttinger, and later on this approach was
applied to conventional hopping in crystals and conduc-
tance of SI . " However, it turns out that the derivation
and applicability of Eq. (5) for hopping between local-
ized states in QMS are nontrivial. In this paper, apart
from the application of Eq. (5) to the QBSL, we would
like to emphasize critical features regarding this formula
and hopping regime in microdevices.

One important observation is that the nonequilibrium
character of the system in the hopping regime results
only &om the boundary conditions imposed on the elec-
tron distribution function. The nonequilibrium state of
phonons in our case plays a minor role and in what fol-
lows, we use the Planck functions for phonon distribu-
tion. Now, if we interchange (nN) ~ (n'K') in the sec-
ond terxn between brackets of Eq. (5), we obtain

where I, ~~ is the collisional integral, which determines
the evolution of the electron distribution function in the
rate equation,

(9)

At first glance, we have absolutely surprising results: In
steady state, all the electron processes form a closed cy-
cle, the collisional integral vanishes, and the current van-
ishes also. The solution of this puzzle is the following:
The nonequilibriuxn factor in our system is the electric
field. However, in Eq. (9), it deterinines only the equi-
librium parameters, namely, the energies and wave func-
tions of the localized states. In order to calculate the
current, we are to take into account the di6'erence of the
chemical potentials between the left and right contact as
the result of the applied voltage. Correspondingly, the
electron distribution function in the contacts is deter-
xnined by the boundary conditions, i.e. , by the chemical
potential, rather than by Eq. (9).

If we assume, that the distribution of electric Beld in
SL or QBSL is uniform, the potential drop over any pe-
xiod is the same, and the boundary conditions may be
imposed to one cell of the structure. Then, in the sim-
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plest case, there is no need to solve Eq. (9), since the
electron distribution function, which determixies the hop-
ping current (8), is given by the boundary conditions
for the nearest neighbor quantum wells. These electron
distribution functions, in the xnean energy gain approx-
imation, are taken in equilibrium with the chemical po-
tential varying &om one cell to another and the electron
concentration being kept constant. Actually this method
was conventionally used for hopping conductance.
In general, distribution of the Geld may be nonuniforxn.
Then a self-consistent calculation of the electron distri-
bution functions with boundary conditions at contacts
and current given by (8,9) is required. We notice that
the self-consistent procedure may be important even for
uxiiform electric Geld when heating is essential.

Evaluating the current as due to hopping processes,
we explicitly take into account the perfect structure of a
system, include direct tunneling between wells in a spec-
trum and wave functions of localized states and consider
impurities, Quctuations, and inelastic scattering as a per-
turbation. This procedure in many cases may be more
adequate for the description of microstructures than the
calculation of the current due to direct tunneling. It is
especially important whexi the electric Geld in a device
cannot be considered as a perturbation, for instance, in
the regime of the negative differential conductance.

IV. ANTIRESONANCES AND RESONANCES
IN HOPPINC TRANSPORT

We use now Eq. (5) for the hopping current in QBSL
and demonstrate its peculiar features. The scattering
matrix element in the basis of eigenfunctions (4) has the
form

C~'~, = V~J„J„(Nie' IN') (vie' *'Iv), (10)

and the summation over v (Ref. 21) in (ll) leads to

I'= I& I'I(NI *"" IN') I'

4A . q d)
X J~ ~i Slil

eFd 2 )
We see that phonons w'ith q =

& result in vanishing
electron transition between difFerent wells n [J ~(0) =
0 at o. g o.']. Assume first that the dispersion of acous-
tical phonons is described by a constant speed of sound
8 and that phonons propagate in the z direction. Then
the energy conservation law given by b function in Eq.
(7) determines q . At electric fields F' = nFp, n is the
integer number, and

where q is the transferred momentum. The last multi-
plier in (ll) is the matrix element, which is diagonal in
Wannier index; within Wannier basis (1) only, the in-
trawell scattering is taken into account. If we assume
that the chain structure is invariant under the coordi-
nate inversion transformation z ~ —z, then the matrix
element of the Fourier component is given by

+Zgz Z + —+Zgz dP'

F(qi) =
i
(Nie' " iN') i' (14)

has a sharp maximum at q~ ——0. For instance, such a
maximum is realized in SL in magnetic Geld, when the
transverse modes are Landau levels. At the moment,
this experimental geometry is the best way to simulate a
quantum-box superlattice. In strong electric field, when
the Wannier-Stark quantization is present, the 1D ar-
ray of quantum boxes with magnetic- and electric-Geld-
controlled discrete spectra are realized. If the energy dif-
ference between the initial and final WS levels satisfies
the antiresonant condition, electron hopping occurs be-
tween partially filled Landau levels with the same quan-
tum number and the forxn factor is

F(q~) oc e (15)

where l~ is the magnetic length. Consequently, the en-
ergy conservation law takes the form eEd hsq, if the
inequality

eFd/hs» q~ - t~',
or

(eFd) /ms » h~„

where cu is the cyclotron &equency, is satisfied. One sees
that in high electric Gelds, only the q component of the
phonon momentum is relevant and therefore hopping cur-

Fp = 2vrhs/ed,

phonons are ineffective. The scattering probability (12)
and the hopping current (5) vanish. This effect takes its
origin in Bragg reHection: the transfer of phonon momen-
tum equal to the momentum of reciprocal lattice does not
change the longitudinal electron state. We have a spe-
ciGc momentum selection rule for the scattering of the
WS localized electrons. The difference between SL with
the continuous transverse spectrum and QBSL with the
discrete one is very important here, and only the discrete
spectrum results in a single value of q . If there are no
other acoustic phonons in the structure, this means the
absence of the background current and the appearance of
zero minima in the conductance, i.e., antiresonant effect.
(The accuracy of this zero is determined, as usual, by the
width of levels and the accuracy of b function approxima-
tion. ) Let us notice, that there are also additional zero
minima of the scattering probability [Eq. (12)] when the
argument of the Bessel function Jg(x), k g 0 coincides
with one of its roots x; g 0. However, in contrast to the
momentum selection rule mentioned above, these min-
ima are unlikely to be observed: if we consider the tran-
sitions between next-nearest neighbor wells, 3 the total
current will be determined by Bessel functions of difer-
ent orders. Correspondingly, the superposition of these
transitions leads to nonzero current.

Let us consider the possibility for observation of the
moxnentum selection rule. This effect is the result of the
1D propagation of phonons. It will be observable exper-
imentally if either the density of states of 1D phonons
is essential or the transverse scattering form factor given
by
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rent reaches a minimum. We note that transitions to the
next nearest QB states with the same number of Landau
level are also in antiresonance. However, transitions be-
tween different Landau levels result in finite current. Its
amplitude is much weaker than the one of the current,
due to the transition to the nearest box, because phonon
emission at low temperatures and eEd ( bc', requires a
large hopping distance. Let us notice that one can also
eliminate the transverse component of the phonon mo-
mentum by using an external source of phonons with a
given direction of propagation. If the signal related to
external phonons is extracted &om the total current, the
zero minima at the certain voltages can be found. In Fig.
2, we present the current calculated taking into account
the transitions between nearest QB for the case of mag-
netically confined QBSL [Fig. 2(a)] and in the case of an
external source of phonons22 [Fig. 2(b)]. The two figures
are remarkably similar.

The range of electric fields eI" d )) h/~ turns out to
be very interesting because of the negative magnetore-
sistance [Fig. 2(a)]. The physical origin of this effect
in our case is that in the electric-Geld-induced localiza-
tion regime, the current is proportional to the scattering
probability, in contrast to Drude current at small electric
fields, which is proportional to the scattering time and
inverse proportional to scattering probability. The latter
in the case of transition between zero Landau levels is
proportional to the "density of states:"
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FIG. 2. (a) Hopping current in the conditions of the par-
tial occupation of the zeroth Landau level. Eo = 2.17 kV/cni.
Curve 1: B = 6 T; Curve 2: B = 12 T. (b) Hopping current
induced by an external source oII' phonons.

and increases with magnetic Geld. Correspondingly, the
current in the Wannier-Stark localization regime also in-
creases and we see [Fig. 2(a)] that the bigger the mag-
netic field the bigger the hopping current. We predict
that this negative magnetoresistance will be observed un-
til the probability I/w becomes the order of eI'd/h with
increasing magnetic Geld. Then the magnetic Geld de-
stroys the Wannier-Stark localization, and the magne-
toresistance becomes positive.

Consider now the effect of folded acoustical phonons
on conductance. The dispersion relation for folded
phonons in the periodic potential is of the same form as
the Kronig-Penney dispersion relation for electrons and
spectrum can be considered as linear only at small q,
while at the Bragg plane the wave velocity is zero and
a gap arises. Obviously, if the energy conservation law
Eq. (7) requires that hue falls into the gap, the current
vanishes, and an antiresonant plateau is to be observed.
Note that if the growth direction of a structure is (001),
the gaps in the phonon spectrum are only at the Brillouin
zone edge q, = +n/d and its center q, = 0. Equations
(7,11) determine the conditions for the current vanishing
in the vicinity of the gaps. The current breakdown is not
abrupt at q, = 0, but at q, = +vr. This is another man-
ifestation of the selection rule. Note that current peaks
may arise due to the phonon "defects, " which levels fall
inside the folded phonon gap. These phonon modes come
from the potential fIuctuations.

We would like to emphasize that the resonance and an-
tiresonance features discussed in the present analysis are
to be observed in hopping magnetoconductance experi-
ments. For instance, the resonance, due to LO phonon
scattering occur in the conductance, not in the resistance,
and the absence of scattering will result in zero of the
conductance, not in zero of the resistance. The claim on
zero resistance in the absence of scattering in Ref. 25 is
incorrect; the reason is that for h/v ( eI'd (and, nat-
urally, in the absence of scatteriiig) the electron states
are localized, not delocalized, irrespective of an absolute
value of electric field. Only for h/7 ) eI'd, in the condi-
tions of the band conduction, the LO phonon resonance
will result in a resistance maximum.

In order to observe antiresonances and resonances, it
is necessary to study the SL magnetoconductance in the
regime of WS localization. Evidence for the scattering-
assisted resonant tunneling in SL in magnetic Geld was
reported in Ref. 5. However, in these experiments, optical
excitation plays an essential role and results in conductiv-
ity mechanisms varying flom sample to sample. Different
electron and hole subbands contribute to the conductiv-
ity and it appears diflicult to extract the acoustic-phonon
spectrum. In another experiment, magnetoresistance in
a quantizing magnetic field was studied in the band con-
duction regime, without WS localization. Finally, in Ref.
7, hopping conduction in magnetoresistance was investi-
gated in the presence of strong disorder. The fact that no
current oscillations were observed was due to the nature
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of localization, which was the result of disorder, but not
of the electric Geld. .

V. CONCI USION

We have shown that the in8uence of quantum con-
finement on the electron and phonon states results in
antiresonances in the hopping conductance of quantum-
box superlattices. The momentum selection rule for the
interaction of phonons with Wannier-Stark localized elec-
trons as well as the folded phonon gaps are to be observed
in the magnetoconductance. We predict negative mag-
netoresistance in high electric 6elds and point out the
importance of boundary conditions imposed on the elec-

tron distribution in the description of the nonequilibrium
character of the system.

Note added in proof. Recently, O. Raichev and F.
Vasko [Phys. Rev. B 50, 12 199 (1994)] considered the
efFect of an interference of matrix elements of transitions
in a double-quantum-well system, which leads to minima
of scattering probability. These minima are similar to
minima in hopping current in superlattices due to one of
the efFects (Bragg re6ection), which are considered in the
present paper.
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