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Transmission resonances and zeros in multiband models
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We report on an eKcient numerical technique for directly locating transmission resonances and
zeros in semiconductor heterostructures using tight-binding multiband models. The quantum trans-
mitting boundary method is employed to generate the inverse of the retarded Green's function
G (E) in. the tight-binding representation. The poles of G (E) are located. by solving a nonlinear
non-Hermitian eigenvalue problem. The eigenvalues are calculated using a shift and invert non-
symmetric I anczos algorithm followed by Newton refinement. We demonstrate that resonance line
shapes are accurately characterized by the location of the poles and zeros of G (E) in the complex
energy plane. The real part of the pole energy corresponds to the resonance peak and the imaginary
part corresponds to the resonance width. A Fano resonance is characterized by a zero-pale pair in
the complex energy plane. In the case of an isolated Fano resonance, the zero always occurs on the
real energy axis. However, we demonstrate that for overlapping Fano resonances the zeros can move
o8' of the real axis in complex conjugate pairs. This behavior is examined using a simple analytic
model for multichannel scattering.

I. INTRODUCTION

For several years now it has been recognized that the
single-band. effective-mass model is insufBcient to simu-
late quantum transport in material systems that are cur-
rently under investigation. This has prompted a growing
effort on the part of theorists to include realistic band
structures in quantum transport simulations. Many of
the interesting eKects in quantum heterostructure devices
are described by the transmission resonances obtained
when these devices are coupled to semi-infinite reservoirs.
In this work we describe an efBcient numerical technique
for directly locating transmission resonances and zeros in
quantum devices using realistic band-structure models.

We choose to model semiconductor band structures us-
ing localized basis tight-binding models. The quantum
transmitting boundary method (QTBM) is employed
to couple the tight-binding Hamiltonian to semi-infinite
reservoirs. The resulting operator is the inverse of the re-
tarded Green's function G (E) in the tight-binding rep-
resentation. The transmission resonances and zeros of
the device correspond to the poles and zeros of G (E).
The evaluation of the poles of G+(E) requires the solu-
tion of a nonlinear eigenvalue problem. We have devel-
oped a shift and invert nonsymmetric Lanczos algorithm,
that quickly provides accurate initial guesses to the eigen-
values which are of interest. These eigenvalues are then
re6ned using Newton's method.

The location of the poles and zeros of G (E) provide
significant information concerning the physics of quan-
tum devices. Resonance line shapes are accurately char-
acterized by the location of the poles and zeros of G+(E).
This is demonstrated by 6tting a partial &action expan-

sion to a resonance line shape utilizing the pole and zero
locations. In addition, the location of the poles and zeros
of G+(E) provides insight into the phenomenon of Fano
resonances in quantum devices. We have found that Fano
resonances due to I -X tunneling in indirect gap barriers
may or may not exhibit transmission zeros. We shall
show that in the case of overlapping Fano resonances,
the zeros of the Green's function move ofF of the real
energy axis in conjugate pairs. Thus, the transmission
probability does not vanish between the resonances. A
quantitative explanation of this phenomenon is provided
using a simple analytic model for Fano resonances.

Section II will present the QTBM for localized basis
tight-binding Hamiltonians. The numerical technique for
locating the poles and zeros of G+(E) will be detailed
in Sec. III. In Sec. IV, we shall demonstrate this nu-
merical technique by calculating poles and zeros for a
GaAs/A1As/GaAs heterostructure using the sp3s* tight-
binding basis. The general behavior of the poles and
zeros in indirect gap barriers is analyzed in Sec. V using
a simple analytic model. In Sec. VI, band-structure ef-
fects on Fano resonance linewidths are investigated and
in Sec. VII, we shall demonstrate accurate line-shape
fitting using the poles and zeros of G (E).

II. QTBM FOR. TICHT-BINDING MODELS

We shall describe band structure using nearest-
neighbor tight-binding Hamiltonians. In this section we
shall not be concerned with the details of these Hamilto-
nians. The basis set is assumed to be spatially localized
and only nearest-neighbor coupling is considered. The
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Schrodinger equation in such a representation may be
expressed as

(II%'), = —S,"4; 1+D,4, —S,+,@,+, —EC, , (1)

where 4~ is a subvector containing the localized basis
coeKcients corresponding to the jth spatial node. The
Hamiltonian matrix elements are contained in the sub-
matrices S~ and D~. We shall define the points j = 1 and
j = n as the limits of the domain, which define the meso-
scopic device as shown in Fig. 1. To calculate scattering
states, we must couple this Hamiltonian to semi-infinite
regions on either side of the device. This is accomplished
by generating a unitary matrix, which relates the ampli-
tudes of the Bloch states in the contact regions with the
localized basis coeFicients at the device boundaries. In
order to generate this matrix, we must first calculate the
Bloch states that exist in the semi-infinite contacting re-
gions. Assuming that both the transverse basis and the
spatial potential do not vary in the contacting regions, we
may invoke the Bloch theorem to calculate these states:

j = g al-mZ1;m ~1;km + &1;mZl. m Xl;A;m for j&l,

n —j L, g. j —n R@j = g an;mZn m ~n; Jcm ~ n;mZn m ~n Qm for j&n.

The solution of this eigenvalue problem results in 2N
states where N is the number of transverse basis states.
Time reversal symmetry dictates that half of these states
propagate or decay to the right while the other half prop-
agate or decay to the left. For convenience, these states
are sorted according to their direction of propagation and
stored in the matrices yl and yl, respectively.

The general solution to Schrodinger's equation for a
given energy E in the semi-infinite contact regions may
be expressed as follows:

) z;.' S,'.„„,+ (IE —D), , „„

+zi. Si,I,A,, yi, a = 0. (2)

As illustrated in Fig. 1, ai. (a . ) is the amplitude
of the incoming component of the mth state in the left
(right) contacting region and bi, (b„, ) is the amplitude
of the outgoing component. The wave function in the
device is coupled to the contact regions by invoking this
solution at the device boundaries:

) z„.St.q„,+ (IE —D)„I,I, . @0 1 Zl pl Zl al
bl (7)

+z~ ~S~ ggl gn g~m=0. (3,)
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Here zi, (z„, ) is the discrete spatial propagation fac-
tor for the mth Bloch state in the left (right) contact
region. yi (y ) is a matrix whose mth column contains
the localized basis coefBcients for the mth Bloch state
in the left (right) contact region. These equations define
a generalized eigenvalue problem, which can be readily
solved if S exists: (treatment of xnodels for which S is
singular is discussed in Appendix A)

y„Z„y„Zn
x x (8)

Pi X] +1 Xi +1
+1 ~1

where Z is a diagonal matrix containing the discrete
propagation factors (Zi, ——zi. b ) between spa-
tial nodes. The matrices in Eqs. (7) and (8) provide
the relationships required to construct the open system
boundary conditions. To obtain the final QTBM equa-
tions, we express the wave-function subvectors at the de-
vice boundaries in terms of the incoming Bloch state am-
plitude vectors al and an. Defining

LEFT CONTACT

al
b,

DEVICE

I
l

I

I

]=1 j=n

RIGHT CONTACT

a
b„
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b„

we obtain
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FIG. 1. Graphical illustration of a device coupled to
semi-in6nite contact regions. The solid line represents the
conduction band edge, and a and b are subvectors containing
incoming and outgoing Bloch state amplitudes, respectively.
The QTBM expresses the continuum quantum states of the
system in terms of the incoming amplitudes az and a

u~ = cr~@n+1+ Pn@~ .

These equations are inserted into the matrix representa-
tion of the tight-binding Schrodinger equation resulting
in the following block-tridiagonal system:
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The incoming Bloch amplitudes are set by the values con-
tained in the vectors aq and a . The solution of this
equation produces the appropriate scattering state for
the mesoscopic structure described by the tight-binding
Hamiltonian. We have chosen to construct our Hamil-
tonian operator such that a~ and a are in the Bloch
basis. Transforming the QTBM equations into the tight-
binding basis results in an operator that is Hermitian
everywhere except the corner diagonal blocks. In this
basis, the open system boundary conditions may be rep-
resented by a self-energy, which is added to the corner
diagonal blocks of the closed system Hamiltonian (see
Appendix B).

III. LOCATION OP THE POLES AND ZEH.OS
OF THE GREEN'S FUNCTION

Since the inhomogeneous terins in Eq. (13) represent
incoming state amplitudes, the matrix operator '(which
we shall denote as E —H~~BM) in this equation is the
inverse of the retarded Green's function in the localized
basis representation:

sponding to states that are involved in carrier transport.
In almost all cases, these states are contained within a
small portion of the total eigenspectrum of Hc}~BM(E).
In order to eKciently calculate these eigenvalues, we have
developed a shift and. invert nonsymmetric (SINS) Lanc-
zos algorithm. This algorithm computes a subspace that
accurately represents the region of the eigenspectrum
which is of interest.

The nonsymmetric Lanczos algorithm generates a
tridiagonal matrix T, which is similar to the original gen-
eral matrix A:

X &g~ =T = g1 62

'yn —1

'gn-X ~n

X = [», ..., z„],
x ~ = Y = [yi, ..., y„].

The Lanczos recursion that generates the tridiagonal ba-
sis is written as follows.

Hc}TBM(E) G (E)
pjzj+i ——Azj —ejzj —pj izj

&i%+~ —~ 6 ~i h 6—&h —~ .
(18)

(ig)
The location of the poles and zeros of G+(E) characterize
the transmission line shapes in the vicinity of transmis-
sion resonances and zeros. %"e therefore seek an eKcient
method for locating the poles and zeros of G (E) in the
complex energy plane. The poles of G+(E) correspond
to the eigenvalues of the Hc}~BM(E). However, since the
boundary condition submatrices (ni, Pi, n„,and P ) are
energy dependent, the eigenvalue problem is nonlinear.
To solve this problem we first generate Hc}~BM(E) at a
trial energy (Ez) and calculate its eigenvalues. These
eigenvalues are then used as initial guesses to iteratively
locate the zeros of the determinant of E —Hc}~BM(E).

To obtain the initial guesses, we must calculate the
eigenvalues of a non-Hermitian block-tridiagonal matrix.
Though sparse, this matrix is quite large (1V = 3000 for a
100-nm device) when realistic band-structure models are
employed. The standard matrix diagonalization routines
for non-Hermitian matrices do not preserve the block-
tridiagonal sparseness of our matrix; therefore, they are
coinputationally prohibitive. Initially, a left-right (LR)
algorithm, which preserves the block-tridiagonal form,
was employed to solve this problem. However, it was soon
realized that complete diagonalization of this matrix is
too computationally intensive and another approach was
necessary. We are only interested in eigenvalues corre-

Ag; =E;@;,
(A —sI) @,' = E,'@,',

E, =E,'- +8.

(20)
(21)

(22)

The shift and invert nonsymmetric Lanczos recursion is
written as follows:

pj zj+i = (A —sI) zj —tjzj —pj izj i
—T

'Yj yj+i = (&») yj ej yj 9j iyj i . '— —
(23)

(24)

The inverted matrices are not stored explicitly. We lower-

However, the similarity transformation of a nonsymmet-
ric matrix to tridiagonal form using this algorithm is not
stable. Our algorithm makes use of the fact that long
before the Lanczos tridiagonalization is complete, the ex-
tremal eigenvalues of Tz (T after j Lanczos recursions)
are very good approximations to the extremal eigenval-
ues of A. Therefore, we shift A to the portion of the
eigenvalue spectrum that is of interest and perform the
Lanczos recursion on the inverse of the shifted matrix.
The extremal eigenvalues of the shifted and inverted ma-
trix correspond to the eigenvalues of the original matrix
in the vicinity of the shift:
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TABLE I. Eigenvalue comparison between the block-tridiagonal LR and SINL algorithms. The
test matrix HgTnM(ET) was generated using the sp3s' Hamiltonian (block dimension = 10). The
dimension of the test matrix is 110.
Block-tridiagonal LR
1.670 499 849 086 829 7
—i1.924 854 874 620 785 9 x 10
1.674 789 213 627 013 1
—i2.132329 1311941875 x 10
1.822 213 534 091 728 5
—i4.984 816491 529 066 1 x 10

SINL
1.670 499 849 086 775 3
—i1.924 854 871 793 598 0 x 10
1.674 789 213627 048 1
—i2.132 329 131140 281 9 x 10
1.822 213 534 091 807 1
—i4.984816491 5923723 x 10

Relative error
33x10

2.1x10 "
43x10

upper (LU) decompose the shifted matrix and perform
two back substitutions at each iteration. The recursion
is halted when the order T~ is some &action of the or-
der of A. We have found that generating more than
approximately 50 Lanczos vectors does not provide sig-
nificant new information in the subspace. Thus, in the
case of large matrices, the order of the subspace is only
a very small &action of the order of the original matrix.
The eigenvalues of T~ are computed using a partial shift
LR algorithm and transforxned using Eq. (22).io In the
neighborhood. of s, we 6nd very good agreement between
these transformed eigenvalues and the actual eigenvalues
of A. A comparison between eigenvalues calculated us-

ing the SINS Lanczos algorithm and the block-tridiagonal
LR algorithm is shown in Table I. The SINS Lanczos al-
gorithm requires only one LU decomposition of A and
2j back substitutions while the LR algorithm requires
approxiinately 2N (where K = order of A.) similarity
transformations. The execution times of the two algo-
rithms are compared in Table II. We have found that
the eigenvalues of HqTBM(ET) obtained with the SINS
Lanczos algorithm are good. approximations to the eigen-
values of Hcl TBM(E). In order to refine these eigenvalues,
Newton's method is used to locate the zeros of the de-
terminant of E —HclTBM(E). Convergence is generally
achieved in 3 —6 iterations.

The model of multiple states per longitudinal site
is isomorphic to a one-band electron waveguide model

with multiple lateral sites per longitudinal site. Just
as the multiple lateral sites allow multiple current paths
through position space, which can destructively interfere

in an electron waveguide, the multiple states allow multi-

ple current paths through state space, which can destruc-
tively interfere in the multiband model. The energies for
which the channels destructively interfere result in zeros
of G+(E). The zeros of G+(E) are found using Newton's
method to locate the zeros of the outgoing amplitudes
corresponding to propagating states. We start the New-

ton iteration on the real energy axis on either side of each
pole of G+(E). The wave functions at these energies are
calculated by directly solving Eq. (13). In subsequent it-
erations, iterative methods are used to solve this system
of equations. Convergence is generally achieved. in 10—
15 iterations.

Our method for locating the poles and zeros of G (E)
may be summarized as follows.

(i) Divide the energy domain (real part) of interest into
segments of =0.1 eV.

(ii) Calculate eigenvalues of HctTnM(ET) in each of
these segments using the SINS Lanczos algorithm. ET is
chosen to be located in the center of each segment.

(iii) Refine these eigenvalues by using Newton's
method to determine energies for which det~E
HgTBM(E)

~

= 0. These energies correspond to the poles
of GR(E).

(iv) Locate the zeros of G+(E) using Newton's method
to locate the zeros of the outgoing propagating state am-

plitudes.

IV. FANO RESONANCES
IN INDIRECT CAP BAKKIEKS

TABLE II. Execution time comparison between the
block-tridiagonal LR and SINL algorithms. The test ma-
trix HQTsM(ET ) was generated using the sp3s' Haxniltonian
(block dimension = 10). Eigenvalues were located in an en-

ergy range of 0.5 eV using four values of ET separated by 0.1
eV within this range. For a matrix of this size, the eigen-
values calculated with the SINL algorithm are actually more
accurate than those calculated with the LR algorithm. This
is most likely due to accumulated roundoff error in the LR
algorithm. The comparison was executed on a Sun Spare 10
workstation.

Execution time
N Block-tridiagonal LR SINL ratio
1100 5.7 CPU hours 3.6 CPU minutes 95

To demonstrate the use of these techniques on a
mesoscopic structure, we shall investigate tunneling in
single-barrier GaAs/AlAs/GaAs heterostructures. For
several years now it has been recognized that the
single-band e8'ective-mass model is insufBcient to ac-
curately describe tunneling through indirect gap bar-
riers such as AlAs. ' ' The interaction between qua-
sibound X states in the barrier with continuum I'
states results in resonance-antiresonance features known
as Fano resonances. Such features have been ob-
served experimentally as negative differential resistance
in GaAs/AIAs/GaAs single-barrier heterostructures. i2

In order to describe tunneling in these structures, one
must use models that describe material band structures
accurately throughout the Brillouin zone. In this work
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we choose to describe band structure using the ten-band
8@38' tight-binding model. The sp38' model employs
Ave atomiclike orbitals to describe the electronic band
structure of semiconductors. We are modeling zinc-
blende structure crystals that contain two atoms per unit
cell giving a total of ten transverse basis states. The
8@38*tight-binding parameters used for the following cal-
culation are those published in Ref. 5.

The transmission coefBcient as a function of incident
electron energy is shown in Fig. 2 for a GaAs/A1As/GaAs
single barrier. Both ten-band (solid line) and single-
band (dashed line) calculations are displayed. The poles
and zeros of G+(E) (ten-band model) for this structure
are plotted below the transmission curve. The I'- and
X-valley energy band pro6les for this structure are il-
lustrated in Fig. 3. The A1As barrier is 6ve unit cells
(14 A.) thick and the incoming electron is propagating in
the I' valley with transverse momentum equal to zero.
The most striking difFerence between the different band-
structure models are the resonance-antiresonance fea-
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FIG. 3. Conduction band profile for 14-A
GaAs/A1As/GaAs single-barrier heterostructure. Solid line,
conduction band edge at l; dashed line, conduction band edge
at X.
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FIG. 2. (Top) Transmission coefficient vs incident electron
energy for a 14-A. A1As barrier (no applied potential). Solid
line, ten-band model; dashed line, one-band model. (Bottom)
Location of the poles (crosses) and zeros (circles) of G (E) for
this structure. Energy is referenced from the GaAs F-valley
minimum in both 6gures.

tures predicted by the ten-band model. The resonance-
antiresonance line shapes are due to resonances of the
type described by Pano. The Fano line shape is charac-
terized by a pole-zero pair in the complex energy plane.
The real part of the pole is associated with the location
of the transmission resonance and the imaginary part of
the pole determines the spectral width of the resonance.
The zero, which is located on the real energy axis, deter-
mines the energy for which the transmission probability
vanishes. Fano resonances occur whenever a bound state
is coupled to a set of continuum states. Since the profile
of the X point conduction band minimum forms a quan-
tum well (as shown in Fig. 3), bound states with X-like
symmetry exist in the barrier. In addition to the bound
X states, there also exists a set of continuum evanescent
I' states in the barrier. The coupling of the continuum F
and bound X states results in Fano resonances in AlAs
barriers.

The resonance-antiresonance line shape may be under-
stood qualitatively by considering the nature of the par-
allel conduction channels as illustrated in Fig. 4. An
incident electron can tunnel through the barrier by tun-
neling &om the I' state in the emitter through the qua-
sibound X state in the barrier and back to the I' state
in the collector. We label this channel F-X-I' according
to its symmetry in each region of the structure. The
incident electron can also directly tunnel through the
evanescent I' state in the barrier. We label this chan-
nel I'-I'-I'. The resonance is due to resonant tunneling
through the quasibound X state. The antiresonance is
due to destructive interference between the F-X-F chan-
nel and the I'-I'-F channel. As the energy of the incoming
electron passes through a resonance, the F-X-I' channel
undergoes a phase shift of m. Thus, the F-I'-I' channe1
is out of phase with the I'-X-I" channel by a factor of vr

at energies below (or above) the resonance. The zero oc-
curs when the magnitudes of the out of phase channels
are equal.

The transmission coefficient as a function of incident
electron energy for a 34-A A1As barrier is shown in Fig.
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FIG. 4. (a) Band profile for indirect gap barrier. The solid
line is the conduction band edge in the center of the Brillouin
zone (I' point). The dashed line is the conduction band edge
at the edge of the Brillouin zone (X point). Dotted lines in-
dicate energies of bound states confined by the X-point band
profile. (b) Representation of the conduction channel with I'
symmetry throughout the structure. The phase shift of this
channel varies slowly as a function of energy. (c) Represen-
tation of the conduction channel with X symmetry in the
barrier. The excitation of an X bound state is illustrated.
The phase shift of this channel undergoes a phase shift of
m as the incident electron energy passes through a bound x
state.
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5. In this case, it is immediately apparent that there
are resonances that are not accompanied by an antireso-
nance. This phenomenon has been reported by numerous
workers and has been attributed to the hypothesis that
conduction through the continuum 1 channel vanishes in
wide barriers. Under this hypothesis, the Green's func-
tion should not exhibit zeros and Fano resonances would
vanish in wide barriers. However, the pole-zero plot in
Fig. 5 clearly shows that all of the poles of G+(E) for the
34-A. barrier are accompanied by a zero and thus are
indeed Fano resonances. Transmission zeros occur when-
ever the zero is located on the real energy axis. Trans-
mission zeros vanish whenever the zero is not located on
the real energy axis. Vfe have found that when two Fano
resonances overlap, the zeros associated with each reso-
nance move ofI' of the real energy axis in conjugate pairs.
Therefore, in the case of overlapping Fano resonances,
the transmission coefFicient does not vanish.

FIG. 5. (Top) Transmission coeRcient vs incident electron
energy for a 34-A. A1As barrier (no applied potential). Solid
line, ten-band model; dashed line, one-band model. (Bottom)
Location of the poles (crosses) and zeros (circles) of G (E)
for this structure.

and B2 represent energies of the lowest and 6rst excited
bound X states, which are coupled to the continuum I'
states by the matrix elements V» V» V2 and V2
Transmission through the continuum I' channel is repre-
sented by the hopping element t. After the inclusion of
open system boundary conditions, the Hamiltonian for
this model takes the following form:

V. BEHAVIOR OF THE POLES AND ZEROS
IN INDIRECT GAP BARRIERS

In order to explain the behavior of the poles and zeros
for overlapping Fano resonances, we shall employ a sim-
ple tight-binding model, which can be solved analytically.
This model is schematically illustrated in Fig. 6. Each
node in Fig. 6 represents a basis state in the model. B»

E,o

FIG. 6. Pano resonance model for one continuum and two
bound states.
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Here, zL ——e'" and zR ——e' " where kL and kR are
the wave vectors in the left and right contact regions,
and a is the distance between spatial nodes. The zeros
of the Green's function for this model are given by the
following expression:

no1~ I I I t I I I I I ) I I I I ) I

1Q
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0
0 10

E 1P-4

10—5

1E„,= —[Bt + B2 + Ut + U2
2

+g(B2+. U2 —By —U])2+ 4U]U2] . (26)

Q
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0.20
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Here U~ —— ' ' and U2 —— ' ' are related to the zero
energy shift relative to the bound state for each Fano res-
onance. Examination of Eq. (26) reveals that the zeros
of G+(E) move off of the real axis under the following
condition:

10'

10

I I I
t I . I I I

i
I I l I

(
'f I f I

(B2 + U2 —Bl —Ul) + 4U1 U2 ( 0 (27)
A 1P
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2 10
Assuming B2 & B~, the necessary and sufFicient criteria
for Eq. (27) to hold are as follows:

Ug &0, U2&0,
B2 —B~ & IU~I+ IU21+ 2V'IUtllU2I .

(28)

As illustrated in Fig. 7, the relative sign of the matrix
elements coupling the bound state to the left and right
continuum channel is determined by the parity of the
bound state. Therefore, Uq & 0 implies that the state la-
beled Bq is an even parity state while U2 ( 0 implies that
B'2 is an odd parity state. The second criterion indicates
that the zeros move off of the real axis when two states
possessing this parity characteristic lie close together in
energy. We would like to point out here that in the stub
resonator structures simulated in Ref. 15, the matrix el-
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FIG. 8. (Top) Transmission coefficient vs incident electron
energy for the analytic Fano resonance model (case I). The
matrix elements used are provided in Table III. In this case,
the Pano resonances do not overlap and transmission zeros
exist between the resonances. (Bottom) Location of the poles
(crosses) and zeros (circles) of G (E) for this Hamiltonian.
Both zeros occur on the real axis.

Even Parity Bound State Qdd Parity Bound State
Left

Continuum Bound State
State

Right
Bound State Continuum

State
Left

Conhnuum
Right

Continuum

Bound State Bound State

Left
Overlap Integrand

Right
Overlap Integrand Left

Overlap Integrand
Right

Overlap Integrand

L

Veven
R

Veven
L

V.dd
R—

Vodd

PIG. 7. Graphical illustration of the overlap matrix ele-
ments that couple a bound state to the continuum in an in-
direct gap barrier. (Left) The matrix elements that couple
an even parity bound state to the left and right side of the
barrier have the same sign. (Right) The matrix elements that
couple an odd parity bound state to the left and right side of
the barrier have opposite signs.

ements coupling the bound state to the continuum all
have the same sign. This explains the fact that all of the
zeros in stub resonator structures occur on the real axis.

We may illustrate the behavior of the poles and zeros
associated with overlapping Fano resonances by analyz-
ing a simple example. In Figs. 8 and 9, the transmission
probability as a function of incident electron energy is
shown for the analytic Fano resonance model. The poles
and zeros of G+(E) for each case are plotted below the
transmission curves. The values of the matrix elements
used for each of these cases are provided in Table III. The
signs of the matrix elements coupling the bound states
to the continuum are chosen such that the lower energy
state is of even parity and the higher energy state is of
odd parity. In our example lU~l = lU2l = 0.018 eV,
this implies that the zeros will move off the real axis for
B2 —Bq & 0.072 eV. In Fig. 8, the difference between the
bound state energies is 0.100 eV. In this case, the zeros
lie on the real axis and the transmission probability van-
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ishes at those locations. In Fig. 9, the difference between
the bound state energies is only 0.050 eV and there is sig-
nificant overlap between the resonances. In this case, the
zeros have moved ofF of the real axis in conjugate pairs
and the transmission probability does not vanish between
the resonances. As the resonances are moved closer to-

TABLE III. Matrix elements used in the analytic Fano res-
onance model for overlapped resonances and nonoverlapped
resonances.

Matrix element

t
yL
VH
yL
~H.

Bg
B2

Isolated resonances
1.0
0.05
0.03
0.03
-0.03
0.03
0.05
0.15

Overlapped resonances
1.0
0.05
0.03
0.03
-0.03
0.03
0.05
0.10

10

10
V
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FIG. 9. (Top) Transmission coefficient vs incident electron
energy for the analytic Fano resonance model (case 2). The
matrix elements used are provided in Table III. In this case,
the Fano resonances overlap and no transmission. zeros ex-
ist between the resonances. (Bottom) Location of the poles
(crosses) and zeros (circles) of G (E) for this Hamiltonian.
The zeros occur in complex conjugate pairs off of the real axis.

gether, the two zeros approach each other on the real axis
until the difference between the bound state energies is
exactly 0.072 eV. For bound state energy difFerences less
than 0.072 eV, the zeros move off of the real axis in con-
jugate pairs.

This phenomenon may be understood qualitatively in
terms of the amplitude and phase of the resonant and
continuum channels. As mentioned previously, the reso-
nant channel undergoes a phase shift of m as the incident
energy passes through the pole. For an even parity bound
state, the resonant channel is in phase with the contin-
uum channel at energies below the pole and out of phase
at energies above the pole. This implies that the ampli-
tudes of the resonant channel and the continuum channel
destructively interfere for energies greater than the pole
energy. This explains the fact that the zero is located at
a higher energy than the pole for the even parity reso-
nance in Fig. 8. In this energy range, the amplitude of
the resonant channel is decreasing (with increasing en-
ergy) while the amplitude of the continuum channel is
increasing. The transmission zero occurs at the energy
for which the amplitudes of the resonant and continuum
channel are equal. However, if one adds a second res-
onant channel with a pole located at a slightly higher
energy, the amplitude of the combined resonant channel
may not decrease enough to equal the amplitude of the
continuum channel. If this occurs, it is necessary to move
off of the real energy axis in order for the amplitudes of
the continuum and resonant channels to be equal. As the
bound states are brought closer together in. energy, this
condition eventually occurs and the zeros move off of the
real axis in conjugate pairs.

This is precisely what occurs in thicker AlAs barriers.
As one increases the thickness of the AlAs barrier, the
number of bound X states increases resulting in overlap-
ping Fano resonances. Therefore, the zeros move off the
real axis and the transmission probability no longer van-
ishes between resonances. In Fig. 5, there are two pairs
of overlapping Fano resonances. In each case the real en-
ergy corresponding to the conjugate zeros is larger than
either of the pole energies associated with the overlapped
resonances. In our analytic model, this corresponds to
the following condition:

This simply indicates that the zero shift for the even
parity state is larger than that for the odd parity state by
an amount, which is greater than the difference between
bound state energies.

As mentioned above, previous workers have explained
the lack of transmission zeros by asserting that the
conductivity through the continuum channel approaches
zero. We may investigate this scenario by letting t ap-
proach zero in our analytic model. In this limit, the
numerator of the Green's function is no longer a function
of energy (for bound states possessing opposite parity)
and zeros no longer exist. However, as is shown in Fig.
5, this is not consistent with the locations of the poles
and zeros of the Green's function for GaAs/AlAs/GaAs
heterostructures.
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VI. BANI3-STKU CTUR.E EFFECTS
ON FANO LINEVFIDTHS

0.2—

g 0.1—

0.0

/

f

I

Im{k) i Re(k)

Wave vector

(c)

Im(k)

FIG. 10. Complex band structure of AlAs. Energy is ref-
erenced from the I'-valley minimum of GaAs. Each quadrant
of this plot is defined as follows. Left: Re(k)=0, Im(k)+0.
Center: Re(k)+0, Im(k)=0. Right: Re(k)= ~, Im(k)+0.
Dashed lines indicate complex bands with 0(Re(k)( —.(a)
Evanescent I' band. (b) Propagating Ã band. (c) Evanescent
X band. The marked energy for these labels corresponds to
the energy of the fifth resonance in the 34-A AIAs barrier
(0.217 ev). Complex bands emanating from bands lying far
abave the lowest conduction band have been omitted fram
this plot.

Further investigation of Fig. 5 reveals another inter-
esting feature in the transmission curve. The spectral
width of Fano resonances lying at energies above 0.19
eV is much larger than those lying below 0.19 eV. This
phenomenon may be explained by examining the com-
plex band structure of AlAs. In Fig. 10 the complex
band structure of AlAs referenced from the I'-valley min-
imum of GaAs is illustrated. The transition from narrow
to broad Fano resonances corresponds to the X» energy
(0.19 eV) labeled in Fig. 10. Below this energy, electrons
in the AlAs barrier may occupy an evanescent I' state and
one of two propagating X-valley states with two difFerent
values of momentum. In the single-barrier structure, the
propagating states are size quantized resulting in bound
X states. The evanescent I' states provide the contin-
uum necessary for Fano resonances to occur. As illus-
trated in Fig. 7, the spectral width of a Fano resonance
is determined by the overlap integral between the contin-
uum evanescent state and the bound state. In this case,
the continuum state possesses I'-like symmetry while the
bound state possesses X-like symmetry. The symmetry
difFerence between these states implies a small overlap in-
tegral, which results in narrow resonance linewidths. The
existence of two degenerate propagating (bound) states
explains the split resonances lying below the X» energy
in Figs. 2 and 5.

Above the X» energy, electrons may occupy an evanes-
cent I state, a propagating X-valley state, and an evanes-
cent state of X-like symmetry. Thus, at energies above
the Ai point (0.19 eV) there are in efFect two sets of
continuum evanescent states, one of which possesses I'-
like symmetry while the other possesses X-like symme-

5.0 ——

4.0--

3.0-

2.0—

1.0--

(b) prop. X

(c) evan. X

(a) evan. I"

00

Distance

FIG. 11. Pano resonance wave function (euergy = 0.217
ev) in the 34-A AIAs barrier. The wave function is plotted
in the bulk Bloch state representation. Solid line, propagating
X-valley state. Short dashed line, evanescent A-state. Long
dashed line, evanescent I' state. The labels (a), (b), and (c)
correspond to the complex band structure figure. The ampli-
tude of the evanescent X state is above unity and contributes
significantly to the continuum/bound state coupling, which
determines Fano resonance linewidths. The difFerence in the
amplitudes of the left and right traveling X-valley states is
due to the Fano shift induced by this coupling.

VII. ANALYTIC LINE-SHAPE FITTING
USINC POLES AND ZEH, OS

The location of the poles and zeros of G (R) charac-
terize the transmission line shape in the vicinity of the

try. The significance of the evanescent X states on Pano
resonances may be demonstrated by examining the wave
function corresponding to a resonance energy lying above
the X» point. In Fig. 11, the Bloch state amplitudes cor-
responding to the fifth resonance (energy = 0.217 eV) of
the 34-A AlAs barrier is plotted. This figure contains
several interesting features. The amplitude of the evanes-
cent A states (short dashed lines) is greater than unity
and on the same order of magnitude as the amplitude of
the propagating states. We can therefore conclude that
the evanescent I states play an important role in deter-
mining the characteristics of this Fano resonance. Since
the symmetry of these evanescent states is similar to the
symmetry of the bound state, the overlap integral be-
tween these states is relatively large. The evanescent X
states above the X» point act to significantly increase
Fano resonance linewidths. This increase in linewidth
implies that multiple resonances above this energy will
overlap and the zeros of G (E) will move off of the real
axis. This explains the lack of transmission zeros above
the Xi point in the 34-A. barrier transmission curve.
Additionally, we note that the right and left propagating
X-valley states in Fig. 11 have difFerent amplitudes. For
a bound state (standing wave) these amplitudes would be
equal. However, in this case, the interaction between the
continuum and bound state results in an energy shift rel-
ative to the bound state energy. » This shift explains the
difference between the left and right propagating state
amplitudes.
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resonances and zeros. Using the location of these poles
and zeros, it is possible to generate accurate analytic fits
for transmission line shapes. We assume that the trans-
mission coefficient may be approximated as a rational
function:

H, (E —E;)
n, (E —E,")

(E —E;)
B.

~(E Er)j 2

(30)

n&10 ii»lii&i

10

0
cga

o 10

0c 10—4

~ "- 10-'
2
cga 10 r

10

where E" and E represent the location of the poles
and zeros of G (E). The partial fraction expansion co-
efficients (B~) are treated as fitting parameters for the
transmission line shape. The real energy transmission
amplitude is calculated at each pole location using Eq.
(13). These values are then used to calculate a unique
set of partial fraction expansion coefficients correspond-
ing to the resonance line shape. A comparison between
our analytic fit and the exact transmission line shape for
the 34-A. AlAs barrier is shown in Fig. 12. We have
included a transmission zero (E'=0) at zero energy in
the analytic expansion in order to force the condition
t(0) = 0. As illustrated in Fig. 12, it is possible to
obtain a rather accurate analytic fit to the transmission
curve using only the locations of the poles and zeros of
G+(E). Our analytic fit is most accurate in the vicinity
of the resonances where one would expect the transmis-
sion amplitude to be a rational function. Numerically
integrating the curves in Fig. 12, we Gnd a relative error
of only 4 x 10 between our analytic 6t and the actual
transmission curve. Since the majority of tunneling cur-
rent in quantum devices Hows through such resonances,
it is clear that location of the poles and zeros of G (E)
may be employed to efficiently calculate tunneling cur-
rent densities. We shall demonstrate the utility of our
pole-zero locator in performing current density calcula-
tions in a later paper.

VIII. SUMMARY

APPENDIX A:
QTBM FOR SINGULAR
COUPLING MATRICES

In the [100]direction, the sp3s* model results in Hamil-
tonian submatrices (Dz and Sz) of the following form:

V~c
Vcw

(A1)

0 0
Vcz 0 (A2)

The diagonal elements of D contain the on-site energy
parameters for the zinc-blende anion (A) and cation (C)
orbitals. The remaining submatrices (e.g. , V~~) con-
tain the interatomic coupling parameters. Since the o8'-

diagonal matrices S~ are singular, the formulation pro-
vided in Sec. II cannot be used for this model. This sec-
tion details the formulation of the open system boundary
conditions for this Hamiltonian.

The structure of S~ renders Eq. (4) invalid. To rem-
edy this difficulty we employ a similar eigenvalue prob-
lem developed by Chang and Schulman. However, the
solution of this eigenvalue problem reveals that in the
[100] direction, the sp3s' model contains only five (as
opposed to ten) Bloch states traveling in each direction.
Therefore, the matrices that provide the unitary trans-
formation &om the Bloch basis to the localized basis are
singular,

The quantum transmitting boundary method has been
generalized to provide open system boundary conditions
for localized basis Hamiltonians. These boundary con-
ditions allow one to calculate scattering states by sim-
ply solving a block-tridiagonal system of linear equations.
A shift and invert nonsymmetric I anczos algorithm has
been developed to efhciently locate the poles and zeros of
G+(E). These algorithms were applied to a single barrier
A1As heterostructure using the 8p38* tight-binding basis.
We demonstrated that the location of the poles and zeros
provides one with much insight into the phenomenon of
Fano resonances in these structures. It was also shown
that the transmission line shape near resonances can be
6t analytically using the location of the poles and zeros
of GR(E)

0.0 0.1 0.2 0.3 0.4
Energy (eV)

10—8 ii» Iii&iIiiiilii~iIiii(IiliiI(ii&lss R —& L
1 i 1 0

x". x' (A3)

FIG. 12. Analytic 6t of transmission probability curve for
the 34-A A1As barrier. Solid line, actual transmission prob-
ability. Dashed line, analytic 6t. In the vicinity of the reso-
nances the analytic 6tting function matches quite well. The
largest deviations occur near energy = 0.0 eV and at energies
lying between widely spaced resonances.

L —1 RZ y Z =0e R
Xn Xn

(A4)

We therefore rewrite the unitary transformation given
in Eqs. (7) and (8) as follows:
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where A and C label anion and cation, respectively. The subvectors and submatrices in these equations are of order
5. We may now express the incoming Bloch amplitudes in terms of the wave functions by computing the inverses of
the matrices in (AS) and (A6):

RA W&
X1 1

0
RAxl"
0

0 xL"Z'

X1 1
R~ Zg

—1

X1"

0
Lc g'Xl 1

0x"
(A7)

xL~g& —1

0

0

0
xL-z „-'

0x"

xR& gi
0

xR~
0

0
Rc gi

0
Rc

(A8)

Q1 I= a'y4o+ pg@z,
Q1

(A9)

I
= n„'4„+&+p„'4„.

Qn
(A1O)

The QTBM operator is obtained by simply substituting
Eqs. (11) and (12) with Eqs. (A9) and (A10).

~R R X R wR nR
11;ij ~11;kl + P ~11;ik ~L;kl ~11;lj

kl
(B1)

APPENDIX, B: CBEEN'S FUNCTION
DERIVATION

OF OPEN SYSTEM BOUNDABY CONDITIGNS

In this appendix we shall derive open system boundary
conditions for multiband models in the Green's function
formalism. " In this derivation the device Green's func-
tion is coupled to the semi-infinite leads using Dyson s
equation. For the left boundary we obtain the following
expression:

Here, g corresponds to the retarded Green's function of
the uncoupled system (device or lead), G+ corresponds
to the Green's function of the coupled system, and ZL
is a self-energy which arises due to the coupling of the
spatially finite device to the left semi-inIIinite lead. The
first pair of subscripts labels the spatial basis and the
second pair of subscripts labels the tight-binding basis.
The uncoupled device is de6ned over the spatial indices
[1,..., nj. The retarded Green's function for the open sys-
tem is expressed in terms of the boundary self-energies
as follows:

E —D1 —ZLR Sg

S2 E —D2 S3

St 1 E —D„1 S„
St E —D„—ZRR
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We therefore seek an expression for Z&+and Z&. Em-
ploying Dyson's equation, the coupled Green's function
G11 may be expressed as follows:

Note that in order to write these equations it is necessary
to transform the Bloch propagation factors (Zi &om Sec.
II) into the tight-binding basis. Factoring out g io in Eq.
(88) and substituting into Eq. (87) we obtain

R X R ct nR~11;ij g11;ij + P ~ g11;ik ~].;k/ ~01;/j
kl

(83)
R —1 R ~ R~1(Xi Z] Xl )aoo = I

where

~01;ij p g00;ik ~1ik/ ~11;/j
kl

(84)
R R R-'

goo = —(Xi »i ) i (810)

Rearranging terms, we may express the Green's function
at the boundary of the right semi-infinite lead as follows:

Combinirig Eqs. (83) and (84) we obtain the following
form for G11.

~11 ij g11;ij + g g11;ik 1;k/ g00;/m 1i~& 11;nj
k/mn

~1)ij g ~ ~1;ik gOG;kl 1;/y

kl

(86)

Here, g00 corresponds to the Green's function at the
boundary of the uncoupled semi-inII1nite lead.

In order to obtain g00, we must write the equations
of motion for the Green's functions g00 and gR10 in the
uncoupled semi-in6nite lead:

(IZ —D, )g,",+ S,'(X", Z, X", )g,", = I, (87)

(IE —D,)g,o + S, (Xi ZiXi )g—io

+S,(X", Z, 'X", )g"„=0. (Bs)

comparing Eqs. (Bl) and (85) we arrive at the following
desirable form for Z&'.

Substitution of Eq. (810) into Eq. (86) results in an
expression for the boundary self-energy in terms of the
Bloch states in the leads and the coupling Hamiltonian,

yR ) gt ( RZ R
)

k

Note that the Green's function [Eq. (82)] generated from
this boundary self-energy is in the tight-binding represen-
tation. Therefore, each column of G represents the re-
sponse of the system due to a particle which has been in-
jected in a tight-binding basis state. This is in direct con-
trast to the Green's function resulting from the QTBM
formulation. The first and last N (K is the number of
basis states) columns of the QTBM Green's function cor-
respond to the response of the system due to injection
from Bloch states in the leads. Thus, with the QTBM
formalism one may obtain all of the relevant transport
information by generating only the columns of G corre-
sponding to propagating states. In the Green's function
formalism it is necessary to generate N columns of the
Green's function to calculate the observables necessary
for transport.
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