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We show by means of simple exact manipulations that the thermodynamic persistent current
I(g, N) in a mesoscopic metal ring threaded by a magnetic Qux P at constant particle number
N agrees even beyond linear response with the dynamic current Isr(P, N) that is defined via the
response to a time-dependent 8ux in the limit that the frequency of the Qux vanishes. However, it
is impossible to express the disorder average of Iq„(&P, N) in terms of conventional Green s functions
at Qux-independent chemical potential, because the part of the dynamic response function that
involves two retarded and two advanced Green's functions is not negligible. Therefore the dynamics
cannot be used to map a canonical average onto a more tractable grand-canonical one. We also
calculate the zero frequency limit of the dynamic current at constant chemical potential beyond
linear response and show that it is fundamentally different from any thermodynamic derivative.

I. INTRODUCTION

The existence of persistent currents in mesoscopic nor-
mal metal rings threaded by a magnetic flux P has been
postulated a long time ago, although a clear theoreti-
cal understanding has been achieved only recently. The
experimental verification3 of this e8'ect has given rise
to a renaissance of theoretical activity in this field.
Surprisingly, the magnitude of the measured average cur-
rent was larger than the available theories could predict.
The source for this discrepancy between theory and ex-
periment remains controversial. One of us has proposed
that the long-range nature of the Coulomb interaction is
responsible for the large observed current, but the issue
remains controversial and might eventually be settled
numerically.

In the present work we shall put aside the fascinating
problem of trying to understand the Coulomb interac-
tion, and add some insights to the dynamic and thermo-
dynamic aspects of noninteracting disordered electrons
in an Aharonov-Bohm geometry. We consider disordered
spinless electrons of mass m on a three-dimensional thin
ring of circumference L that is pierced by a flux P. The
system can be described via the stochastic Hamiltonian

p2
H = Hp+ U(r), Hp ——

2m

U(r) = 0,

U(r)U(r') = pVb(r —r')
(3)

(4)

where V is the volume of the ring. We follow here com-
mon practice and assume only short-range correlations
between the random potential. It is possible, however,
that an essential part of the physics that is responsible
for the large observed currents has been lost within this
approximation, see Ref. 16. The parameter p can be
related to the elastic lifetime 7. by calculating the damp-
ing of the electrons to lowest-order Born approximation.
This leads to the identification

Ahy=
2m%

)

where the particle number N as a function of the dimen-
sionless Aux p and the chemical potential p is for a given
realization of the disorder potential U(r) given by

where L is the average level spacing at the Fermi energy.
Throughout this work disorder averages will be denoted
by an overbar. The level spacing 4 is defined via the
relation

where the momentum operator is

2xhyP = —V. + e» p=—
'L I 4p

Here Pp
——hc/e is the Hux quantum and e is a unit

vector in the azimuthal direction of the ring. Throughout
this work the charge of the electron will be denoted by
—e, and we call the azimuthal direction the x direction.
U(r) is a Gaussian random potential with zero-average
and zero-range correlations,

Here f (e —p) is the occupation of the exact energy level

, and f'(e) denotes the derivative of the function f(e)
with respect to its argument. In a canonical ensemble,
the function f (e —p) is not the Fermi function, although
for T ~ 0 it reduces to a step function irrespective of the
choice of the ensemble. The energies e satisfy the single-
particle Schrodinger equation
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H@ (r)=e @ (r) (V' P) = —).f (& —V) = ~(&P P)

where the @ (r) are the exact wave functions. Because
II depends parametrically on p = P/Po, the energies and
wave functions are functions of p. Of course, in practice
it is impossible to calculate the e and @ (r) = (rln)
for fixed and arbitrary potential U(r). Nevertheless, the
disorder eigenbasis is useful for deriving exact relations
between the various physical quantities.

It has been proposed by several authors that; the
large measured currents might somehow be related to
the fact that the rings in the experiment of Levy et al.
were not attached to external leads. This implies that
the number of electrons on each ring is fixed, so that for
a proper theoretical description one should use a canon-
ical ensemble. One is then faced with the problem
of calculating differences between grand-canonical and
canonical thermodynamic averages in mesoscopic sys-
tems. Unfortunately, there exist no systematic meth-
ods to calculate thermodynamic averages at constant
particle number, and in practice one has to use some
kind of expansion in the fluctuations of the chemical
potential. A possible way to circumvent the averag-
ing problem at constant particle number has been pro-
posed by Efetov and co-workers. ' Let us briefly
outline the main ideas of this "dynamic approach" to
the canonical averaging problem. Suppose that in ad-
dition to the static flux there is an oscillating com-
ponent, P(t) = Po[&p + I du'e ' ~~"b&p ] Note . t}iat
in the experiment by Levy ef al. ,

3 the time-dependent
flux component is given by a sine modulation with am-
plitude y, 8 and &equency M0 10 —10 Hz,
corresponding to by = ~2,. [b(w + (sto) —h(Lu —wo)].
Within the linear-response theory, the time-dependent
flux gives rise to a time-dependent current bIg~(t, p, p) =
jder'e ' ~"bIg„(~', p, p) around the ring, with Fourier
components given by

bI~~(~ & I ) =, I lK(~, v, I)bv-+O(by' )
Vgo ( e'

(mcV)

(9)

where the so-called linear-response function K(~, p, p)
is given by the Kubo formula. We have rescaled the re-
sponse function such that the prefactor in Eq. (9) is given
by

and the paramagnetic contribution is

with

Pp —— dr *rP pr (14)

Let us emphasize that Eq. (11) is valid in a grand-
canonical as well as in a canonical ensemble. Of course,
in a grand. -canonical ensemble the electron number in Eq.
(12) depends on the disorder and the Hux, while in the
canonical ensemble we should solve Eq. (7) to obtain the
chemical potential as a function of y and ¹ We shall
write p(&p) for the fluctuating canonical chemical poten-
tial, and p, 0 for the constant grand-canonical one. If an
equation is valid for both ensembles provided the correct
value for the chemical potential is substituted, we shall
simply use the symbol p.

The fundamental assumption of the dynamic approach
1S17'18

Kpara(0 + p )
~ Kpara(0 + +(+))

It follows that at constant N we have exactly

1
d(p'KP ' (0, (p', p(p'))

0

Using Eqs. (15) and (17) and dividing both sides of Eq.
(9) by bop, one can write the average dynamic current
in the limit ~ + 0 as follows:

This equation tells us that the disorder average of the
paramagnetic part of the response function is not very
sensitive to the choice of the ensemble. Although this
replacement is claimed to be valid for the paramagnetic
part of the linear-response function, in a canonical en-
semble K(0, y, p(y)) is the derivative of a Rux-periodic
function with respect to the flux, "' so that the average
over one period must vanish,

1
d&p'K(0, p', p, (p')) = 0

0

Vgo ( e ) eh evF 2'
L2 (mcV) mI 2 L A

A = kp-I
bIgr(~, F, p, (F)) evF &~ Kp, ,0

(10)

where kF is the Fermi wave vector and vF ——hkF /m is the
Fermi velocity. For noninteracting electrons, K(u, p, p)
can then be written as

K(cu, y, p) = K ' (y, p)+Kp ' (~, p, p)

where the diamagnetic part is simply given by the nega-
tive particle number,

1
dV'Kp" (0, W', po) .

0

Averaging at constant particle number has now been
mapped onto the corresponding averaging at constant
chemical potential, which can be performed by standard
Green)s function techniques.

There are some hidden but important subtleties that
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have been ignored so far. First of all, Eq. (18) has been
derived within linear-response theory, which neglects the
terms of higher order in by in Eq. (9). The inter-
pretation of the left-hand side of Eq. (18) as an ordinary
derivative is therefore only justified if the nonlinear terms
that have been neglected in Eq. (9) are consistent with
the higher-order Bux derivatives of the right-hand side
of Eq. (18). Moreover, even if this is the case, it is by
no means obvious that the substitution in Eq. (15) is
indeed correct. At least one should be able to estimate
the corrections to this replacement. In fact, in Ref. 18,
Eq. (18) was evaluated nonperturbatively in the diffu-
sive regime, with the result that it does not precisely
agree with the nonperturbative evaluation of an alterna-
tive approximate expression for I(y, p(y)). 2 This dis-
crepancy has never been resolved. In this work we shall
therefore critically reexamine the validity of Eqs. (15)
and (18). Our main results are (a) that the quadratic
response is indeed consistent with the second Bux deriva-
tive of the equilibrium current at constant particle num-
ber, and (b) that the most crucial assumption (15) is
not correct. The result (b) implies that the dynamics
cannot be used to map a canonical averaging problem
onto a grand-canonical one, and in practice one cannot
avoid the expansion in powers of the Buctuations of the
chemical potential 8—x0,2x ~e derive the ~correct relati~~
between dynamics and thermodynamics at constant par-
ticle nuxnber and explain discrepancies between various
approaches that can be found in the literature. Finally,
we shall discuss the grand-canonical linear and quadratic
dynamic response functions, which are not derivatives of
a Bux-periodic function. In the case of linear response, we
rederive the nonperturbative results of Ref. 11 by means
of a simple diagrammatic calculation.

II. DYNAMIC CURRENT AND ITS RELATION
TO THE CANONICAL EQUILIBRIUM

CURRENT

Vy. &e2 )
B )~

=
I,2 mcv)~~"(y'")

where the dimensionless grand-canonical susceptibility is
given by

x,.(y, v) =—

(22)

with

f1(e )
B'~

By )„By
= f'(e- —V) &

(23)

(Bl1 VQ ( e2
(24)

where the dimensionless canonical susceptibility is

L BP
~(y ~) = —

2 Z) B f(e- —S)
a

(25)

Note that in a canonical ensemble the derivative
must vanish. Comparing Eqs. (22) and

(25), we conclude that

(26)

Note that we have rescaled the susceptibility such that it
can be directly compared with the linear-response func-
tion Kd„(0, y, p) defined in Eqs. (11)—(13). On the other
hand, the Bux derivative at constant N yields

The equilibrium persistent current is given by

1(y p) = ).+ f(e &) (19)

Using the Hellmann-Feynman theorem, diagonal matrix
elements of the momentum operator can be obtained
&om the Bux derivative of the exact eigenenergies e

Let us now compare Eq. (26) with the dynamic re-
sponse function defined in Eq. (11). In an infinite sys-
tem, the diamagnetic and paramagnetic contributions
cancel exactly in the limit u ~ 0 for any Gnite disor-
der. In a mesoscopic system, however, the cancellation
is not perfect, so that in the static limit the dynamic
susceptibility

= j«4.'l~) '0-L') = (20)
year(y, p) = lim K(~, y, p) (27)

The following manipulations are valid for a given real-
ization of the disorder potential and for a given particle
number, so that subtleties associated with the averaging
procedure are irrelevant.

is Gnite. In order to see the almost perfect cancella-
tion between the diamagnetic and paramagnetic parts of
gd„(y, p), we express Eqs. (11)—(13) in terms of Green's
functions. De6ning the advanced and retarded Green's
functions as usual,

A. Linear response

Taking the Hux derivative of Eq. (19) at constant p, ,
we obtain

1 &."(e) =

we have exactly

(28)
6 —f~+xo
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K(u, y, p) = —N(p, p) + KP~' (u, &p, p)

+Itsy (~~ &P~ V) ~ (29)

with

P 2 de~.;" (~ V»V) =) 2, f(& —V)
p

—OO

x[G (e+ (u)Gp(e)
—G (e)Gp (e —(u)] (30)

~para(
) ) ~ IPrrpl

cap
—OO

x [f(e —&) —f(e —~ —&)]
x G (e)Gp (e —~) (31)

Using the fact that

2vrh, ) Pp 1
Lr fD E~ —Ep

P
(pw~)

(32)

)- IP-pl'
|9(p 1j m E~ —EpP

(p4~)

(33)

~..(~ ~) = N(~ t ) + —~.;" (o V»~) (34)

Recall that in a finite disordered metal the energy lev-
els repel each other, so that there are no degeneracies.
As far as KdP

'
(ur, p, p) is concerned, we note that thede

interval of integration in Eq. (31) vanishes as ur m 0,
but the terms with e = ep in the sum give rise to a 1/u
singularity. Cancelling this singularity against the factor
of ~ &om the interval of integration, we obtain

2

hm K~
' (~, p, p) = ) b, , f'(~~ —p), (35)

np

where b, ,~ is unity if the discrete energy levels e and
ep agree, and vanishes otherwise. We conclude that

2

~s (~ S) = ~s.(V»V)+):~. .., f'( - —~) (36)
ap

it is easy to show that in the limit ~ + 0 the first and
second terms in Eq. (29) agree exactly with the function
ys, (rp, p) given in Eq. (22), i.e. ,

2) ~, p f(e p)
cap

(38)

The second term in this expression cancels precisely the
zero-frequency limit of K&

'
(u, p, p) in Eq. (35). Of

course, if we work at constant chemical potential, then
the disorder average of Eq. (38) can be combined with
the diamagnetic contribution K~' (y, p) = —N(p, p) to
yield an exponentially small result after averaging, be-
cause these terms can be identified with the Aux deriva-
tive of the grand-canonical average equilibrium current.
In this case, the decomposition of K ' into KI' ' and
K&

' is meaningful. However, in a canonical ensem-
ble K~ ' taken together with the diamagnetic contribu-
tion is not exponentially small, so that the above decom-
position of KP ' is not useful. In other words, when
evaluating the disorder average of ygy(p, p(p)), it is not
allotued to neglect the contribution from N(y, p, (p)) —+
~Z"(o v» ~(~)).

To see how this can explain the discrepancies between
the dynamic approach and Refs. 8—10 and 20, consider
the Fourier expansion of the equilibrium current I(p, p)
in Eq. (19), which is, in general, of the form

I(&p, p) = ) I„(p,) sin(2anp)
n=1

(39)

Here the Fourier coefficients I (IJ) are functions of p, and
functionals of the disorder potential. Similarly, we may
expand the relation between N, p, and y in a Fourier
series. Assuming that we have solved for p as a function
of p and N, we have

librium current that has been calculated in Refs. 8—10 via
perturbation theory, and by Altland et al. via the non-
perturbative supersymmetry method. We now explain
the origin of this discrepancy.

It is well known in the theory of weak localization that
disorder averages of products of Green's functions of the
same type are "harmless" in the sense that they do not
involve the singular contributions that arise in a pertur-
bative approach due to the famous maximally crossed
diagrams. With this in mind, the authors of Refs. 11
and 17—19 (which include one of the present authors)
have not paid much attention to the disorder average
KP~' (0, p, p(rp)), which involves the product of two re-
tarded or two advanced Green's functions. Note that in
the exact disorder basis

IP-pl' f(ep —l ) —f(' —l )K (0) p) p) I E~ —Cp
caP

(~ ~~a)

Comparing Eqs. (26) and (36) and using the fact that
b, ,~

= b p because there are no degeneracies, we con-
clude that

Xdy(V'~ P) = Xc('P~ $4)

y, (p, N) = ) p,„(N) cos(2~np)
n=o

(40)

In spite of the fact that the above manipulations are
very simple and exact, the dynamic current calculated in
Ref. 18 in the di8'usive regime by means of the supersym-
metric o. model does not agree with the canonical equi-

where the p depend again on the disorder. Taking the
derivative of Eq. (39) with respect to y at constant N,
we obtain
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= ) I~(p(p))2am cos(2vrny)
(BI)
kB'p J w

+ ) "
] [

sin(2mncp).
p=p, (~) kB'pJ N.

(41)

17—19. The crucial point is now that both terms in Eq.
(g1) have the same order of magnitude. Setting p(p) =
p0+hp(p), where p0 is the disorder average of the zeroth
Fourier component in Eq. (40), and expanding

Evidently the first term on the right-hand side of this
expression corresponds to the term ys, (p, p(Ip)) in Eqs.
(26) and (36), which has been ignored in Refs. 11 and we have to leading order in bp,

(42)

(
M)

I„(P0)2vrn cos(2vrnp)
B'p) ~

27m cos(2' n(p) p0 —p0 + ) @~I cos(2~n p)

BI„(p)
27r 'np„si (n2m rpn) sin(2n n'p) (43)

Note that the terms with n = n' in the double sums con-
tain Qux-independeDt contributions that would give rise
to an aperiodic current. But these contributions cancel
exactly if the second and third terms are combined, as
can be easily seen by writing

n cos(2nny) cos(2~n'p) —n' sin(2vrnrp) sin(2mn'y)

= —((n —n') cos[2vr(n —n') p]2
+(n+ n') cos[27r(n+ n')y] j . (44)

term containing pp —pg is not negligible. Hence, even af-
ter subtraction of the Qux-independent constant, ' 8 the
current calculated from the last term is in the difFusive
regime not simply a factor of 2 smaller than the correct
result, but its harmonic content is also difFerent. At con-
stant chemical potential the dynamic susceptibility is, in
general, not the derivative of a periodic function of the
flux. This can be seen &om Eq. (36), since gs, (rp, p) is
the derivative of a Qux-periodic function, but the term

P & b. .~ ~ f'(e —p) is, in general, not. We shall
discuss this term in more detail in Sec. III.

Therefore the average over a period of the right-hand
side of Eq. (44) indeed vanishes, in agreement with Eq.
(16). However, if only the last term in Eq. (43) is re-
tained, one obtains an aperiodic current that varies lin-
early with the flux. ~~ The second term in (43) explains
the difFerences between Refs. 18 and 2G. In the qua-
siballistic regime discussed in Ref. 17, the term with
p —pp in the second line of Eq. (43) can be ignored
after averaging, because disorder averages can be fac-
torized. Moreover, the average current is dominated by
the diagonal terms n = n' in the double sums. Then
it is easy to see that the second term is proportional to
cos (2vrn&p) =

~ [cos(4mny)+1], while the last term is pro-
portional to —sin (2vrny) =

2 [cos(4vrn&p) 1]. Obviou—sly
the constant terms cancel and the average current due to
the last term is exactly half as large as the total current.
Unfortunately, the factor of 2 due to the omission of the
second term in Eq. (43) was compensated in Ref. 17 by
another mistake, so that the 6nal result was correct and
this discrepancy has not been noticed. %'e shall come
back to this mistake in Sec. III. In the difFusive regime
the averages of products cannot be factorized, so that the

B. Beyond linear response

So far, we have shown that in a canonical ensemble
the Qux derivative of the thermodynamic persistent cur-
rent agrees with the zero-&equency limit of the linear-
response kernel, i.e.,

hIg~((u, p, p(p)) (BIi
w-+0 $p~ $B(p) ~

(45)

Igy ——b'Igr + b Igy + O(h(Ps),

the second-order contribution to the dynamic current is

This suggests that also the higher-order fIux derivatives
of the equilibrium current at constant N agree with the
static limit of the corresponding higher-order dynamic re-
sponse functions. We now show explicitly this agreement
for the quadratic response. Writing



52 DYNAMIC RESPONSE AND THERMODYNAMICS OF. . . 2733

—i(~&+~&)t
jhow

with the quadratic response kernel given by

x.'"(~ ~) = -6
i ~ &l, ).f( - —s )

x r)-
V(Wc )

)- P-IP-~l'
( - —~)' (53)

) m,

1
x

6& —6~ + Gdy + &2 + 20

f(ep @) f(~ p)
E'p —6~ + (dy + 20

f (e& —V) —f (ep —~)
6& —Cp + (d2 + 20

(48)

This expression is easily seen to agree with the right-
hand side of Eq. (50). Thus, X&~ l(y, p) = X~ (p, p, ),
i.e., the equality of the canonical equilibrium suscepti-
bility and the dynamic susceptibility holds in linear and
quadratic order. We suspect that this agreement holds
for all higher derivatives. We would like to emphasize,
however, that we have not proven this agreement to all
orders in perturbation theory.

x& (v, y) = »m It (~»~2, v, s),(2) (49)

we obtain after rearranging by cyclic permutations

(2), (2xhl ~ I P~pPp~P~~

~pe

f(~- —v)
(e- —ep) (e- —e~)

+ - P-IP-~l' f(e~ —~) —f(e- —~)
m2 (e- —e~)'

CXgP

(5o)

The prime at the first sum indicates that n g P P p P a.
Now this result is compared with the canonical equi-

librium second-order susceptibility de6ned by

t' 82I l ev~ 2x
~xc v»v.

nr

In a canonical ensemble

(5i)

(52)

Using second-order time-independent perturbation the-
ory for the nondegenerate case, we conclude that the
second-order canonical equilibrium susceptibility is given
by

This expression can be derived, for example, by nonequi-
librium Green's function methods. It gives the sta-
tionary state after adiabatically switching on the peri-
odic time-dependent Bux components. Defining the dy-
namic second-order susceptibility as the static limit of
the second-order response kernel, i.e.,

III. DY'NAMICS AT CONSTANT CHEMICAL
POTENTIAL

A. Linear response

We first discuss the linear response within a sim-

ple perturbative approach. Combining Eqs. (34) and

(36), setting p, = E~ =const, and using f'(e —EJ:) +
—b(e —E~) as T -+ 0, we obtain in the zero-temperature
limit for the average grand-canonical dynamic suscepti-
bility defined in Eq. (27)

xay(&p, Ez) = N(P, EJ;) + Kgg—
'

(0, rp, Ez)

—) b...,~ -h(e —E~)
np

(54)

Let us now examine this expression in the difFusive
regime, where the elastic mean &ee path E is small com-
pared with the circumference I of the ring, but the lo-
calization length g MI. is still larger than I. Here

(Icg I ~)M = '
4 is the number of transverse channels, where

I~ is the transverse thickness of the ring. Due to an al-
most perfect cancellation between the diamagnetic and
paramagnetic contributions, the sum of the first two
terms in Eq. (54) is of order e +~~, i.e. , exponentially

In this section we shall study the average dynamics of
mesoscopic rings at constant chemical potential. Experi-
mentally this corresponds to the dynamic response of an
ensemble of rings that are somehow coupled to an exter-
nal reservoir, so that the number of electrons can change
as the Qux is varied. Although it is hard to imagine
how such a situation can be realized experimentally, the
following calculation is instructive &om the theoretical
point of view, because it shows that the difFerences be-
tween canonical and grand-canonical ensembles in meso-
scopic rings manifest themselves in the dynamics perhaps
even more drastically than in equilibrium properties.
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small in the difFusive regime, so that only the last term
survives. In Ref. 11 this term has been studied by means
of the nonperturbative supersymmetry method, with the
result that its average over the fIux does not vanish. In
subsequent work, ' this fIux average was subtracted
again, and not much attention was paid to this term.
Because the machinery of the supersymmetry method is
physically not very transparent, let us give here a simple
diagrammatic derivation of this contribution.

The last term on the right-hand side of Eq. (54) in-
volves a product of two matrix elements, but only a
single energy denominator. Because the usual Green's
functions in the momentum or real space basis combine
always one matrix element with one energy denomina-
tor, such an expression cannot be directly written in
terms of Green's functions. (Note that h(e —E~)
2,. [G (E~) —G (EF)], so that a Dirac b should be
counted as an energy denominator. ) We therefore follow
Ref. 17 and smooth out the Kronecker b by replacing

) S, „]P.~] S(..—E ) ~ S
nP

x) P Pppb (e —Ep )b(ep —E~), (55)
aP

where the Jacobian for replacing the Kronecker b by the
Dirac b is simply given by the average level spacing, see
Eq. (6). Note that for spinless electrons in three dimen-
sions b. = vrE~ j(AM), where A = k~L Th. e Jacobian
used in Eq. (3.11) of Ref. 17 was too large by a factor
of 2, which led to an exact compensation of the mistake
due to the omission of the second term in Eq. (43), and
the Gnal result was correct.

Given Eq. (55), the number of inatrix elements
matches again the nuxnber of the energy denominators,
so that we may use standard Green's function techniques
to average this expression. Going to the momentum basis
]k), we have to calculate

a R&~r(& E~) = —&] 2, l ). *
Gk, ~(E~) —G~,~(E~) G~,~ (E~) —G~,~ (E~)

kk'
(56)

where k = k + ~~, and

(57)

is the Green s function for a given realization of the dis-
order in the momentum basis. The wave functions are
@~(k) = (k]n). Because we are now working at fixed
chemical potential, only the combination involving the
product of an advanced and a retarded Green's function
has to be retained in the difFusive regime. The dominant
diagrams that determine the disorder average in Eq. (56)
are shown in Fig. 1. These diagrams correspond to the
following expression:

h

c(q, ~) = p 517(q+ ~~e )2 —i(u

h

D(q, ~) = p ~Vq —1' (61)

Here 17 = vt;E/3 is the difFusion coefficient, and the pa-

2A .52k k'
x~&(v» E~) = —2, ). * * G~ (E~)

kk'

- 2

x G„,(Ey) C(k+ k', 0)

+D(k —k', 0), (58)

(a) (b)

where the averaged Green's functions are

—A 1
G ()—

2m '2T

—R
G~(e) = +1-2m 2T

and the Cooperon and diffuson propagators are

(59)

FIG. 1. Dominant diagrams that determine the average dy-
namic susceptibility ys„(p, E~) [see Eq. (58)]. A solid arrow
with label B or A denotes an averaged retarded or advanced
Green's functio'n tvith energy fixed at Es. The vertex in (a)
represents the Cooperon, and the vertex in (b) represents the
diKuson. The small black circles denote current vertices. It
is understood that there is no energy integration associated
with the loops.
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u -+ u +iI', I' =—
7r

(62)

It is important to stress that terms with more than one
Cooperon and diH'uson are only important as far as the

rameter p is given in Eq. (5). The diffuson contribu-
tion in Eq. (58) has already been written down in Ref.
17, although it was not evaluated there. We would like
to emphasize that the diffuson appears in Eq. (58) on
equal footing with the Cooperon. In contrast, the lead-
ing weak-localization correction to the Drude formula in-
volves only the Cooperon. 24 The reason for this diBer-
ence is that the diagrams in Fig. 1 are not conventional
conductivity loops, but resemble more Hartree diagrams,
which have the unusual feature that there is no energy
integration associated with the Hartree loops. This is
due to the fact that Eq. (58) involves only propaga-
tors at the Fermi energy. Prom Eqs. (60) and (61) it is
clear that D(0, 0) and for ip = 0 also t (0, 0) are formally
infinite. Within the &amework of perturbation theory
this singularity can be cured if contributions &om higher-
order diagrams involving more diKusons and Cooperons
are resummed. Alternatively, we may simply use the
results of the nonperturbative supersymmetric 0 model
calculation, which imply that the correct way to regu-
larize the singularity is to shift the kequency according
to25

zero mode is concerned. For all other modes the pertur-
bative expansion in powers of Cooperons and diKusons
is controlled by the small parameter &, where E

C

is the Thouless energy. Note that —= — oc — soE 2 ME
that this expansion is good. as long as the size of the sys-
tem is small compared with the localization length (. In
this regime it is sufBcient to retain only the leading term
involving one Cooperon and di6uson.

Using the regularization (62) and assuming that
I~ + E, the evaluation of Eq. (58) is straightforward.
The final result is

A

(2)M
1

x + p

1

(n + 26p) ' + p
(63)

where we have defined

r
(2')'E, 4~3E. (64)

The series in Eq. (63) can be summed exactly. Using
Eqs. (9) and (10), we finally obtain for the dynamic
current in the static limit

hIgy((u, tp, Ey ) ev~ 1 xr (1+e

~~o htp I (2~)2M ~p (1 —e 2 ~~)lim

(1 e
—22P~P) 2

x 1—
1 —2 cos(4xrp)e ~~~ + e

(65)

Expanding this expression for small p and using p
s(2')2M&, we have to leading order

6Ier(tv, tp, En)i (eve) 26
lcm~~0 by I 3I

x 1—4 + 2m E,[1 —cos(4m&p)]

(66)

bIdr ((u, p, Ep ) 2e17
2vrtp modvr~ ))~~o btp

(67)

Note that the first term in the square bracket is due
to the difFuson pole, while the second term is due to
the Cooperon. At zero Qux both terms cancel, so that
at y = 0 the linear-response function vanishes. For

~2vtp modn~ &&
V n the Cooperon contribntion ie com-

pletely negligible. Writing Eq. (66) in terms of the dif-
fusion coefficient 17 = v~1/3, we obtain in this regixne

This expression agrees exactly with Eq. (18) of Ref.
ll (taking into account that we are working here with
spinless electrons). Note that Efetovii has obtained this
result by means of the nonperturbative supersymmetry
method, which is in principle exact. Therefore the ap-
proximations in Eqs. (55) and (62) are justified a Jios-
teriori. In Ref. 18 the right-hand side of Eq. (66) is in-
tegrated over y after the average over the Aux has been
subtracted, and the result is interpreted as the canonical
equilibrium current. Prom the analysis of Sec. II, it is
clear that such an interpretation is not correct. Prom our
derivation it is also obvious that the value of the response

function in the regixne ~2vry modvr~ )) ~ is coxnpletely

determined by the pole of the diKuson. Because the ex-
istence of this pole is a consequence of particle number
conservation, Eq. (66) should be not very sensitive to
inelastic processes. Note, however, that the zero mode,
which is responsible for the large value of the linear term,
exists only in an isolated ring. If the current is measured
via leads that are attached to the ring such that the az-
imuthal symmetry is broken, the zero mode should be
omitted.
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B. Beyond linear response

We now calculate the leading nonlinear correction to Eq. (65). Writing Eq. (48) in terms of Green s functions, we
obtain

K (Lu], (d2, &p, Ey ) =—2 62vrhl ). de

aP

x ([f(e —Ep) —f(e+(u2 —E~)]G (e+ ~g+(u2)Gp(e+(u2)G (e)

+[f(e + td2 EF) f (e + idl + ~2 EF)]G~ (e + Cdl + ~2)Gp (& + ~2)G (e)

+f(e —E~)[G (e)Gp(e —(ug)G (e —(ug —ur2)

—G~ (e + ldy + cd2)Gp (e + cd2)G (e)]) (68)

In a grand-canonical ensemble we know that disor-
der averages involving the combinations G G+G+ and
GRGRGR are exponentially small in the diffusive regime,
so that only the first two terms in Eq. (68) survive af-
ter averaging. We emphasize again that in the canoni-
cal ensemble this is not the case. The response function
K(2) (—cu, ~, y, E~) in the frequency regime 4 + u + E,
has been studied in Ref. 26. Here we are interested in
the limit ~q, ~2 ~ 0. By tedious calculations using a
smoothing procedure similar to Eq. (55), we conclude
that in the diffusive regime

3 0
x& (~, E~) = — x~r(v»E~)

2 t9y
(69)

Note that the factor of 2 does not appear in the corre-
sponding equation for the canonical ensemble. According
to Eq. (69) the large coefficient of the linear-response
term in Eq. (67) does not appear in the quadratic re-
sponse, so that outside the narrow regions where 2y is
close to an integer the leading correction to the linear
response is small, even if by is of the order of unity.

averages of the form G+G+ and GRGR, its contribution
to the average canonical persistent current is of the same
order of magnitude as the contribution from the G G
term that is usually retained. Thus, one of the most ba-
sic properties of disorder averages of products of Green's
functions in the diffusive regime does not apply to meso-
scopic systems at constant particle number. Hence, also
in the calculation of dynamic properties one cannot avoid
the problem of expanding in powers of the fluctuations of
the chemical potential, assuming that such an expansion
is allowed. In light of this result, previous calculations
should be critically reexamined.

We have also calculated the leading corrections to the
linear-response functions and have shown that in a canon-
ical ensemble the zero-frequency limit of the quadratic
response can be obtained &om the flux derivative of
the corresponding linear-response function. In a grand-
canonical ensemble, however, this is not the case. Finally,
we have shown that nonperturbative results obtained via
the supersymmetric 0 model can be exactly reproduced
by combining diagrammatic perturbation theory with a
simple regularization prescription of the Cooperon and
diffuson propagators.

IV. CONCLUSIONS

In this work we have clarified the relation between the
dynamic current and the thermodynamic current at con-
stant particle number, and have settled a controversy
that has remained unresolved for the past three years.
We have shown that the fundamental assumption of the
dynamic approach, Eq. (15), is not justified, because the
flux dependence of the chemical potential in the disorder
average K~&' (0, p, p(p)) cannot be neglected. Although
this part of the response function involves only disorder
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