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Theory of mesoscopic transport in disordered wires
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We present a nonperturbative microscopic approach to mesoscopic transport in disordered phase-
coherent systems, based on the exact scaling ("evolution" ) equations for the transfer and scattering
matrices and Landauer s formula. In this work, we apply the method to the quasi-one-dimensional
limit and provide a systematic treatment of all the transport regimes present. In the ballistic regime,
we consider the transition between the Sharvin and Drude conductances and recover many exact
results of the classic transport theory. In the weak localization (diffusive) regime, the bulk of the
probability distribution of the conductance of a wire is shown to be normal Gaussian, in agreement
with the predictions based on the nonlinear o model. The formalism developed provides a convenient
way of calculating the quantum-interference effects not only in the conductance but in arbitrary lin-
ear statistics on the transmission eigenvalues as well. In the classic diffusive limit, the eigenvalue
density is independent on the geometry of the conductor. In the strong Localization regime, the
distribution of the conductance is found to coincide with Abrikosov's solution (approximately log
normal), describing a purely one-dimensional chain. The calculated value of the localization length
is proportional to the cross section of the wire, in precise agreement with Efetov's result obtained
with the use of supersymmetric techniques. We recover the theory of the coherent backscattering
peak and calculate the enhancement factor. The angular structure of the transmission and reHection
coefBcients is calculated exactly and found to be nonisotropic, which is contrary to the standard
isotropy assumption of the existing macroscopic models. The approach is shown to provide micro-
scopical proof of the Dorokhov-Mello-Pereyra-Kumar equation for the distribution of transmission
eigenvalues within the realistic model of a wire with the isotropic dispersion law.

I. INTRODUCTION

The question about electron conductivity of low-
dimensional systems has a long history. It started with
the work of Mott and Twose, who predicted that the
localization of all the electron states by a random po-
tential at T = 0 (Anderson localization ) takes place in
a purely one-dimensional (ID) metal even at an arbi-
trarily weak disorder. Another important step was done
by Thouless, who mentioned that electron localization
should take place even in the case of a wire of a finite
thickness. An analogous prediction and further general-
ization to films of finite thickness was made by Abrahams
et a/. 4

The assertion of Ref. 3 was based on the scaling hy-
pothesis. It did not matter whether a chain or a thick
wire was considered. At the same time, generally speak-
ing, these models are quite diferent in physics as well as
in the microscopical methods used to deal with them.

The general assertion about the electron localization
implies that the length of the wire L is much larger than
the radius of a typical one-electron wave function, i.e. ,
the localization length L . In the case of a purely 1D
chain, L is of the order of the &ee mean path l, and for
the only present regime —that of strong localization—
there exist powerful yet ideologically simple microscopi-
cal approaches, which enable one to calculate practi-
cally any kinetic characteristic of interest. In particular,
it has been found that the average conductance G de-
cays exponentially with the length of the chain, and that

the distribution function of the conductance is approx-
imately log normal, ' i.e. , a Gaussian distribution for
ln G rather than for G itself. The physical reason behind
those findings turned out to be that backward scattered
waves and propagating ones remain coherent even after
multiple acts of scattering, thus leading to the formation
of standing waves, which can carry only an exponentially
small current in the long length limit.

In the opposite case of a sufBciently thick wire, there
are two well distinguishable regimes. Since the electron
motion in the transverse direction is quantized, the num-
ber of channels available for scattering N k&2S (with
5k~ the Fermi momentum and S the cross section of the
wire) is finite, yet may be very big. Only one of these
channels —that corresponding to backward (thus coher-
ent) scattering actually counts towards localization,
while scattering into the others is diffusive and rather
maintains the population balance between the channels.
As a result, the characteristic length needed for complete
localization increases by a factor of N, as compared to
a purely 1D chain, i.e. , the localization length L Nl.
Since L Lk+8 considerably exceeds the mean Bee path
l at a weak disorder with lA:~ )) 1 (hk~ is the Fermi mo-
mentum, S is the cross section of the wire), it is the diffu-
sive (metallic) regime and not the localization one, which
occurs in a relatively short wire with l (( L && L, or,
in terms of measurable quantities, with the residual con-
ductance G )) e /h [e /h = (25.8 kO) ij. In this regime
(referred to in the given context as weak localization),
the mean conductance (G) (angular brackets denote en-
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semble averaging) obeys Ohm's law (known also as the
Drude formula)

e2 2 lA;~2S S
h 3' L L

with small corrections, which can be calculated by means
of the perturbation theory in the form of the impurity-
averaged Green's-function technique (see, e.g. , Ref. 11
and also Appendix D in Ref. 12). These weak localiza-
tion (WL) corrections can be qualitatively understood
as quantum effects arising due to the already mentioned
coherent backscattering (in the momentum space) or,
equally, due to the interference of time-reversed pairs of
trajectories forming closed loops: this phenomenon gives
rise to an enhanced probability of return of a diffusing
electron to its starting point (compared to the value given
by the usual kinetic equation) and thus decreases the
electrical conductivity at low temperatures. (For a qual-
itative description of weak localization, see Refs. 13—15.)

A noteworthy efFect predicted by this technique and
widely observed experimentally is that for any small
metal sample the WL correction appears both as a
temperature-dependent decrease in the conductance and
as a low-field negative magnetoresistance. ' In the case
of a wire, the correction at zero temperature is of order
e2/h; that is, it does not depend on the sample's length.

In the strong localization regime, in which the sam-
ple length L is much longer than the localization lengthI, the perturbation theory ceases to work. Much of
our present understanding of this regime has come from
the so-called macroscopical approach, ' which has
proven to be very successful in describing 1D and quasi-
1D systems. At the same time, the method suffers from
the rather unphysical "isotropy assumption" (known also
as the maximum-entropy criterion), a generalization of
the random-phase hypothesis in 1D. To find the sta-
tistical distribution of the transfer matrix (see below),
this model requires that each of the scattering channels
be randomly mixed with all the others. Since the dimen-
sionality can enter this scheme only through the number
of channels N, the macroscopic approach appears not to
allow the study of the two- or three-dimensional limits.
Even in the 1D and quasi-1D limits, this method requires
independent calculations within the &amework of a mi-
croscopica/ method as a posteriori proof of the validity
of the assumptions made.

There are also solvable models of N weakly coupled
chains. However, the microscopical description ln
terms of separate chains corresponds to sufficiently thin
(in comparison with the free mean path l) wires, and the
number of the chains or channels cannot be large; ef-
fectively, the isotropic assumption is again made use of
here.

It seems that so far the only developed microscopical
approach suitable for dealing with both the strong and
weak localization regimes is the supermatrix o model ap-
proach pioneered by Wegner, Shafer and Wegner, and
Efetov and co-workers. ' ' By mapping the original
problem of electron conductivity in a random potential
to the thermodynamics of a supermatrix Beld, Efetov and
Larkin managed to calculate the density-density corre-

lator at large distances and whereby the exact value of
the localization length. More recently, Zirnbauer ob-
tained in the same vein the exact result for the mean
conductance of a wire of an arbitrary length.

However, despite these remarkable achievements and
other results obtained within the &amework of the non-
linear cr model, how to find microscopically more gen-
eral quantities, such as the distribution function of the
conductance Pl, (G), remains in large part an open ques-
tion. It is worth reminding that the general shift in the
study of disordered systems &om the mean values to Buc-
tuations and, ultimately, toward the entire distribution
functions has occurred when the so-called mesoscopic
Buctuation phenomena were discovered in the conduc-
tance of small samples at low temperatures. In particu-
lar, time-independent reproducible aperiodic oscillations
in the resistance as a function of magnetic Geld or Fermi
energy ' have been observed. From the theory of these
effects (the Green's-function technique), s 4 there fol-
lows the striking prediction that the variance of the con-
ductance Buctuations is anomalously large and always of
order (e~/h)2 when the sample is in the metallic regime
(that is, when L « L„L;„,with L;„ the phase-coherence
length set by inelastic processes). The presence of these
"universal conductance fluctuations" (UCF) means that
the conductance is not a self-averaged quantity, and that
besides the mere calculation of the mean or typical value,
it is necessary to study the entire distribution function of
the conductance in an ensemble of samples having iden-
tical macroscopic characteristics. (This approach was
named mesoscopic. )

This fundamental in the given context problem of cal-
culating the conductance distribution function has been
solved —but only in the metallic regime —by Al'tshuler,
Kravtsov, and Lerner4 (see also Ref. 45 where some cor-
rections have been made) who used the 0 model. They
have shown that the body of the distribution is normal
Gaussian; at the same time, the probability of large Quc-
tuations is much higher than Gaussian: The tails of the
G distribution function turn out to be logarithmically
normal.

Much less is known about the distribution functions
in the strong localization regime. As a rule, one
has to rely on the insight gained by the 1D theo-
ries, semiphenomenological models, and on extrapola-
tions &om the metallic region. The already mentioned
approximate log normality of the distribution function
in the purely 1D case gives rise to gigantic Buctuations
in the conductance, ' so that the relative Buctuations
are large compared to unity and do not decrease with
L ~ oo but increase. The same results have been ob-
tained within the &amework of the model of N weakly
coupled chains as well as by means of the macroscopical
approach.

The patently not fortuitous similarity between these
results for PI, (G) at G « e /6 and the dimensional-
ity d = 1 on one hand, and the shape of the tails of
the distribution obtained in Ref. 44 at G )) e2/6 and
any dimensionality on the other hand, strongly suggests
that the log-normal distribution (or, to be more pre-
cise, Abrikosov's solution ) is a universal distribution in
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the localized regime. This would be quite natural since
the conductance is expected to decay exponentially for
any realization of the random potential, i.e., to be of
multiplicative nature, and, therefore, lnG as an additive
variable should eventually have a Gaussian distribution.
Nonetheless, despite strong qualitative hints, there has
so far been no microscopical derivation of the conduction
distribution function Pl, (G) at G « e /h even in the
simplest case of a quasi-1D wire. As it comes to the 2D
case, the situation becomes even more uncertain. The
universally accepted notion of strong electron localiza-
tion in quasi-2D films at arbitrarily weak disorder, which
is one of the main conclusions of the scaling theory of
localization, is of fundamental importance and has be-
come one of the cornerstones of the quantum Hall effect
theory. Yet the only microscopical confirmation of this
notion stems in fact &om extrapolation of the expression
for the conductance at G )) e~/h (WL regime) to the
region of small G « e2/h (strong localization regime)
by means of the one-parameter scaling. At the same
time, it has been shown in Ref. 44 that in the crossover
region G & e /h, the distribution Pg(G) at d = 2 can
not be specified by just one parameter. Thus, the one-
parameter scaling, even if it is understood in its advanced
form as the assumption of a one-parameter distribution
function, breaks down just in the region it ought to
work if any conclusions concerning the "behind-the-wall"
insulating regime are to be made.

As we see, the microscopic theory of strong localiza-
tion in low-dimensional systems (except the purely 1D
case) is far &om being complete. On the other hand, the
recent interest in mesoscopic eg'ects in transport prop-
erties other than the conductance 2 (so-called linear
statistics, such as the shot-noise power), as well as signif-
icant difhculties with the current-conserving treatment
of WL in disordered 3 and ballistic conductors, have
clearly revealed the insufBciency of the conventional di-
agrammatic technique even in the domain of weak local-
ization. This state of adair is in striking contrast to a
practically complete physical picture of 1D transport. It
is the straightforward and analytically tractable charac-
ter of most of the 1D models that motivated us to seek a
possible resolution to some of the outlined problems on
the way of generalization. of those 1D methods to realistic
3D systems. The physical reason that provides this pos-
sibility is the above mentioned one-dimensional charac-
ter of the underlying phenomenon —coherent backward
scattering in the momentum space. We present such a
generalized approach below and apply it to the simplest
case of a quasi-1D wire in which only potential scatter-
ing is present. The further development of the method,
which is to include quasi-2D systems, is left for separate
publications. 55

II. OUTLINE AND PRINCIPAL RESULTS

Technically speaking, there are two different forms of
the starting formula for the conductance often used in the
literature. The first expresses conductance as an average
over the sample volumess 5~ (the Kubo approach), and

the second expresses conductance in terms of scattering
coefFicientsss'5s (the Landauer approach); as a matter of
fact, the two are equivalent. ' The former approach has
been used in most studies of WL and UCF, for it leads
to a simpler set of diagrams than does the Landauer ap-
proach. The latter is commonly used in studies of strong
localization and will be used in the present paper.

Our starting point is standard for any theory based on
the generalized two-probe Landauer formula, ' which
relates the conductance of the system to the transmission
matrix of the disordered conductor t,

n, n'
(2 1)

where g is the dimensionless conductance measured in
units of e2/Ii (the factor of 2 accounts for spin degener-
acy) and t ~~ is the transmission amplitude between the
propagating states n, n' in the leads (assumed ideal).
In Sec. III, we review how a disordered mesoscopic con-
ductor of fixed transverse sizes and variable length L is
described by a transfer matrix, which is the product of
many transfer matrices determining the wave propaga-
tion through each cross section of the sample. The simple
multiplicative nature of the transfer matrix suggests the
existence of the simple linear scaling equations it must
obey; they are found in Sec. IV. In Sec. IV, we also
find the scaling equations for the components of the total
scattering matrix (tliat is for the transmission and reflec-
tion matrices). All these equations may be thought of as
"dynamical equations" of random motion (the length I
acts as the time variable). Taken together with the ini-
tial conditions, they provide a "causal" description of the
system, thus immediately allowing statistical averaging,
which will be carried out in Sec. V. We shall see that
the statistical description in terms of the moments of the
conductance (g") requires the solution of an infinite set
of coupled equations, which govern the "evolution" with
length of the averages of various products of the trans-
mission and re8ection amplitudes. The key feature of
this set is that the structure of the averages as a func-
tion of channel indices can be obtained without solving
the whole system. Section VI is devoted to studying this
structure, which is closely related to the problem of find-
ing the exact ladder sum for a sample with boundaries
in the theory of WL ' and in the theory of backscat-
tering e8'ects in optics. 6 Although the exact ladder
Sum is customarily treated in the diffuson approxima-
tion (the terms are often used interchangeably in the lit-
erature), which makes the specification of boundary con-
ditions uncertain and causes a breakdown of local and
global current conservation (see Ref. 53 for a discussion),
it turns out that an exact analytical solution does exist;
moreover, it has been known (in a slightly different con-
text) to the astrophysicists' community since the 1930s.
The dependence of the averages on channel indices (the
channels are labeled by the corresponding transverse mo-
menta) is shown to be nonisotropic, which is contrary
to the standard isotropy assumption of the macroscopic
approach. » 22' As an immediate application of the de-
rived formulas, we consider the transition &om the bal-
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listic regime (the Sharvin conductance) to the diffusive
regime (Ohm's law) and calculate the so-called "injection
depth. " In that section we also recover the theory of the
coherent backscattering peak and calculate the enhance-
ment factor.

In Sec. VII, we proceed to 6nding the closed set of
equations for the averages already summed up with re-
spect to the channel indices. In the case of a quasi-
1D geometry, the averages are readily reduced to vari-
ous crossed moments of the traces t = Tr[(ttt) ]. The
resulting infinite set of equations is equivalent to a sin-
gle one-parameter Fokker-Planck (FP) equation, which
governs the evolution with length of the joint distri-
bution function PL, (ti, t2, . . . , ) for all the t . Interest-
ingly, we shall see that this equation closely resembles
the renormalization-group equation for the additional
charges, which describe additional contributions to the
cumulants (g ), in the nonlinear o model.

The introduced equations can be evaluated in the
metallic regime L (( N/ and in the insulating regime
L && Nl. These two opposite regimes are discussed sep-
arately in Sec. VIII and Sec. IX. We reproduce the
known results in the weakly localized (metallic) limit;
in particular, the WL correction to the conductance and
to an arbitrary linear statistic, and UCF. The bulk of
the conductance distribution function Pr, (G) is found to
be Gaussian, in agreement with the results of Refs. 44
and 45. Proceeding to the limit of strong localization,
we find that Pg(G) is given in this case by Abrikosov s
distribution (approximately log normal) indeed, pro-
vided the 1D localization length l is replaced in the dis-
tribution by L = (6') ilk&2L„L, . That enables us to
identify this parameter as the exact value of the quasi-
1D localization length, in precise agreement with Efetov's
result.

We stress that the FP equation derived in Sec. VII
is of an infinite order, yet all its variables t can be
easily expressed in terms of just N eigenvalues 7, of
the matrix 7 = ttt: t = P,. i 7;.". Thus, the set of
variables t is excessive, which means that any solution
must contain a product of b functions of some combina-
tions of the t„. The FP equation for the joint proba-
bility distribution of the eigenvalues 7 [or, to be more
precise, of variables A = (1 —7)/7], known also as
the Dorokhov-Mello-Pereyra-Kumar (DMPK) equation,
has been derived within the &amework of the model
of weakly coupled chains and, independently, with
the help of the macroscopical approach. Lately, the
DMPK equation has become a subject of a very exten-
sive research. ' ' ' ' In Sec. X, we show that the
Fokker-Planck equation for the variables t = Tr[7 ] is
equivalent to the DMPK equation, thus providing micro-
8copica/ proof of the latter within the realistic model of a
quasi-1D wire with the isotropic dispersion law (that is,
a real 3D object with 1D geometry) Thus, despite . the
fact that the isotropy assumption, which is crucial for
the derivation of the DMPK equation in Refs. 26 and 18,
is shown to be invalid in general, the resulting equation
still holds. In that section we also discuss some other
connections with the existing theories.

III. SCATTERING AND TRANSFER MATRICES

Let us consider the propagation of an electron through
a disordered conductor of transverse sizes Ly x Lz at
T = 0; it is assumed that the disordered region of length
L is placed between two perfect leads. Such a process is
described by the Schrodinger equation

[—V'+ 2mU(r)]4 = k~@, (3.1)

where the impurity potential U(r) is nonzero only when
xi & T & x2 (x2 —xi ——L), which is the region occupied
by the disordered layer.

We shall adopt the standard white-noise model for the
statistics of the disordered potential (this corresponds to
the Born approximation for scattering), assuming that
U(r) is a Gaussian random potential with a zero average
and the correlator

(U(r)U(r')) = b(r —r') = b(r —r'), (3.2)

2
(p) =, sin k„y sin k, z,I„L

y k
~~zy— 7 Z

Ly L,

(3.4)

the longitudinal moment;um k and the quantized trans-
verse momentum k~ satisfying the relation

k + k~ —kF. (3.5)

The various k~ = (7m„/L„, 7m, /L, ), which satisfy Eq.
(3.5) constrained by the condition that k be real, i.e. ,

k& & kF, de6ne the N =
4 kF L „Lz channels available

for scattering. [Note that by definition the channels cor-
respond to the standing waves (3.4), that is n„,n, are
positive. ] Since each channel can carry two waves prop-
agating in opposit;e directions, the most general solution
in the ordered regions is a linear combination of 2N unit-
Bux waves traveling to the right and to the left,

ik (x—x )
@(r) = ) a,„, k,

x &, (3.6a)

X11

&A;„,(~-»)
k1!2

XL1

—iA: (~—~ )
+ b2, ,(, 4', (p)k1 2

x & x, . (3.6b)

where v is the density of states, w = I/v~, and l is the
mean &ee path.

In the absence of disorder, the transverse surfaces make
the transverse momentum quantized; since the theory is
not sensitive to the details of the boundary conditions,
we choose them to be in6nite hard walls for definiteness.
Then, the eigenfunctions of an ordered sample are given
by

e+'"" P„(y, z), n:—(ny, n, ), n„) n, = 1, 2, . . . , (3.3)

where the transverse part of the wave function is
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One of the particularly important solutions describes an
electron with the momentum (k, k~ ) propagating &oxn
the left to the right; in the ordered leads it has the asymp-
totes

r —r
ttt+rtr = ttt+r'r't = i, tr * + r't' = 0.

(3.12a)

(s.i2b)

relations for the transmission and reflection matrices

Cx„(r) =) t„,„
Xli

—ik (~—~ )

I 1/2
XI1

4, (s)

(3.7a)
k„, (&-&,)

@1/2
Ili

p„,(p), z & 2:2, (3.7b)

Although the S matrix determines the conductance
through Eq. (2.1), it is not immediately obvious how to
derive a composition rule S satisfies, which would be suit-
able for introducing a scaling approach. We are led now
to consider the transfer matrix which contains the same
physical information as S does, but in a difFerent form.

By definition the 2N x 2N transfer matrix M relates
the flux amplitudes on the left-hand side of the disordered
region to those on the right,

where r ~ and t denote the reflected and transmit-
ted amplitudes in channel n' when there is a unit-lux
incident &om the left in channel n; one can also define
amplitudes r', and t', with a similar meaning, ex-

1

cept that the incident flux comes &om the right. These
elements form the N x N reflection and transinission ma-
trices r", t (x', t'), respectively

Now we are ready to introduce the scattering and
transfer matrices. By definition, the 2N x 2N scatter-
ing matrix S relates the incoming flux to the outgoing
flux,

'b, )
') (3.8)

where a1, b1, a2, and b2 are the ¹ omponent vectors
formed by the coefficients of Eq. (3.6). [Note that due
to the presence of the phase factors exp(+xxl2l) in Eq.
(3.6), our definition of the S matrix (and the M below)
is slightly diff'erent &oxn a standard one. ] Comparing the
definitions (3.6)—(3.8), one can easily find that S has the
block structure

(s.is)

Similarly to S, we can write the transfer matrix M in
terms of four N x N blocks,

m2x xxx2g j (s.i4)

and from the definitions (3.8) and (3.13), one finds the
relations

mxx = (tt) ', rnx2 = x'(t')
m2x = —(t') xx", rn22 = (t') (s.i5)

—ik (x—xi)
ei„(r) =— 4 (S), ~ &*x, (3.16a)

Note that as with the matrices r", t, the elements of the
matrices m, z can be found as coeKcients in the asymp-
tote of a particular solution of the Schrodinger equation
(3.1), namely, the solution with a unit flux transmitted
into a single channel. For instance,

l( x t'
ll

t (3.9)
ik (x—ai)

I 1/2
Xli

Current conservation implies that in Eq. (3.8)

lail'+ lb2I' = lbil'+ la21' (3.10)
+(m»)„, „

—ik (~—xg)

I 1/2
Xl]

4-, (s), » ~2

which is equivalent to the unitarity of the S matrix,
SSt —StS

Time-reversal invariance imposes an additional con-
straint on the scattering matrix S. This being the case,
if 4(r) is a solution, then 4' (r) = 4'(r) is also, with
the coefBcients given by a'1(2) ——b1(2) and b'1(2) ——a1(2).
These coefBcients must be related by the same S matrix
as that in Eq. (3.8), so that

(3.16b)

MtZ, M = Z„ MZ Mt=2, (3.17)

and the time-reversal invariance constraint

M*=K MZ, (3.18)

Just as with S, one can easily obtain the current con-
servation constraint on M,

where E, and Z denote the 2N x 2N Pauli block ma-
trices

Comparing with Eq. (3.8) and using the unitarity of the
S matrix, one can easily find the time-reversal invariance
requirement S = S+, that is, the S matrix must be sym-
metric. From the definition (3.9) and the condition that
S be unitary and symmetric, we immediately obtain the

t'i 0 l &o i)
il Oj

(s.i9)

Note that Eqs. (3.17) are simply an alternative way of
expressing the condition (3.10) rewritten in the form
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(3.20)

The latter implies that unlike the unitary S matrix, the
transfer matrix M is a U(N, N) (pseudounitary) matrix.

The essential feature of the transfer matrix M, which
follows directly Rom the definition (3.13), is the multi-
plicative nature of M: If two units with matrices M1 and
M2 are connected in series, the transfer matrix M of the
combined system is simply the product M = M1M2. If
one of the units is infinitesimally thin, this composition
rule should be eventually transformed into a linear dif-
ferential relation. We introduce such a scaling equation
in the next section. On this basis, we derive the scaling
equations for the S matrix.

IV. SCALING EQUATIONS

Most of the equations in the previous section closely
resemble the familiar equations describing a purely 1D
system, with the understandable difference that N x N
matrices substitute for 1D variables. To advance the
analogy even further, we need a matrix analog of the
1D wave function. With this in mind we take the set
of solutions of Eq. (3.1) with the asyxnptotes (3.7) and
introduce the operator 4x(x) associated with this set in
such a way that in the transverse momentum represen-
tation the corresponding matrix has the form

(*) = f~'P4 (P)Pi (*,P) (4.1)

It is to be noted that (I)'x(x) depends on the coordinate
x as a parameter. This definition can be rewritten in an
equivalent form

+x(x)4- = +x-(x ~), (4 2)

k)j exp[—ik)) (x —xi)]
--1/2@1(x):' +klj exp[ —ikl) (x —xi)] r

k)j
~ exp[ik))(x —x2)]t, x & x2,

(4.3)

while the Schrodinger equation (3.1) takes the form

U2

,41+ 2mUC1 ——k2114dx2 (4 4)

Here U(x) is the random potential operator given by

(~) = J& P4' (P)U(* P)4 (P)'(4.5)

which clearly reveals the physical meaning of the opera-
tor xl)'x(x). When acting on the transverse wave function
of an ordered sample, it creates the corresponding (with
the same transverse momentum in the leads) wave func-
tion of the disordered sample. In this sense, it resembles
the creation operators in the representation of secondary
quantization.

Now it is easy to see that Eqs. (3.7) are equivalent to
the operator relation

and kll is given by the diagonal matrix kll„n = knb~ ~ .
The operator 4'1 describes scattering when there is a

unit Qux incident &om the left. In the same manner we
can introduce the operator 41 when there is a unit Aux
transmitted to the left. Then we find that the asymptotes
of the corresponding set (3.16) are reduced to

k)j exp[ —ikll (x —xi)], x ( xi,
C x (x): ' k)j exp[ik)) (x x2)] mx2

—1/2

+kl) exp[ —ik)) (x —x2)] m22, x & x2,

(4.6)

whereas in the disordered region i)'1 satisfies the same
Eq. (4.4).

It is important to note that being a difFerential equa-
tion with boundary conditions, Eq. (4.4) is not suitable
for direct averaging over realizations of the random po-
tential. Bearing in mind the statistical description of
scattering, let us turn to finding the "dynamical" equa-
tions, i.e., difFerential equations with only initial condi-
tions, that the M and S must satisfy. To this end we
introduce the new variables u+ and u

1~1/2
u~ ———I). 41 + ik —41

ll ll dx (4 7)

As Eq. (4.4) implies, these variables satisfy the following
system of linear equations:

u+ ik)lu+ + ikll
~

mUkll
~ [u+ + u

dx

= 'k)) —'k Uk [ + ],dx

(4.8a)

(4.8b)

while the boundary conditions (4.6) are reduced to

u+(xi) = 1, u (xi) = 0,

u+(x2) = m22, u (x2) = mi2.
(4.9a)
(4.9b)

As we see, the operators u+, u, as functions of x, sat-
isfy the system (4.8) and the boundary conditions (4.9).
On the other hand, the condition (4.9b) implies that the
operators m12, m22, when considered as functions of the
position of the right boundary x2, satisfy the very same
system (4.8) with the initial conditions (4.9a). Thus, we
have arrived at the required "dynamical" equations for
the components m12, m22 of the transfer matrix M. It is
to be noted that this system constitutes a generalization
of the equation of state exnployed (in a different notation)
by Abrikosov and Ryzhkin in their approach to the ki-
netics of one-dimensional disordered systems. One can
derive the equation for the two remaining components
along the same lines as above, or simply by making use of
the time-reversal invariance constraint (3.18). The four
equations obtained can be written in the block matrix
form as

d
M(xi, x2)

dx2

ik))Z, —
ikll mU(x2)klj (Z + i& )

(4.10a)
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(4.10b)

We now go over to finding the dynamic equations for
the components of the scattering matrix S. To this end,
we employ the relations (3.15) rewritten in the form

~1

—1t=(m„), r =m„m„. (4.ii)

DifFerentiating equations (4.11) with respect to xi and x2
and allowing for Eq. (4.10a), we find after some simple
algebra that the resulting eight equations can be written
in the block-matrix form as

dx1
S(xi, x2) = —ikllr+S —iSr+kll +i (1+S) k

Il

xmU(z )kll ~r+ (1+S

S(xi, x2) = ikllr S + iSr kll
—i (1 + S) klldx2

xmU(z2)kll r (1+S),

(4.12a)

(4.12b)

(notation aB means that all four components of B are
multiplied by a), with the initial condition M(xi, xi) =

The similar dynamical equation with respect to x1
reads

d
M(zi, z2)1

= —M 'kllZ, —'k U(* )k (&, + & )

which is sufBcient for finding the quantities of interest.
Nonetheless, having the other equations at hand is use-
ful for various applications and sometimes leads to sig-
nificantly simpler calculations (see below). Aside &om
Eqs. (5.1) and (5.2), we will use their counterparts from
(4.i2a),

d „I
P X1) X2

dxl
d

t(xi, x2)
dx1

—1/2 —1/2 "I= it kll mU(xi)kll t',

= zt —
kll + kll mU(xi)kll (1+r)

(5.4)

It is worth noting that as I —+ oo and t ~ 0, the op-
erators r" and r"' become unitary. It is obvious already
&om Eq. (3.12b), and follows as a matter of course from
Eq. (5.1) since the latter conserves unitarity. This is
why we have to deal with Eqs. (5.2) and (5.4), whereas
Eq. (5.1) alone (otherwise entirely self-suKcient) is in-
convenient for finding any quantities related to the con-
ductance. One would need to extract a small quantity
Tr[ttt] « K as a difference between Tr[r"'r"'t] 1V and
Tr[1] = N.

We now turn to the procedure of statistical averaging
of Eqs. (5.2) and (5.3). As it follows from Eqs. (3.2),
(3.4), and (4.5), the elements of the N x N matrix U(x)
are Gaussian random quantities with zero averages and
b-functional correlators

with the condition that S(xo, xo) = K for any xo. Here
the following matrices have been used:

x h(x —x'),
fo oi
iO 1) (4.13) where

Each of the scaling equations (4.10) and (4.12) that we
have derived determines a "dynamical" system (the co-
ordinate acts as the time variable) influenced by random
forces due to the potential U(x). The "evolution" of the
statistical distribution associated with such a system is
governed by a Fokker-Planck equation, or alternatively
can be described in terms of the moments of dynamical
variables. We will discuss the properties of this statistical
description in the next section.

V. STATISTICAL DESCRIPTION

A(ni, n2, ns, n4) =
iq, 2,3,4 ——+1

x )
~1 Z4 00, iinix+ "+i4n4x

21 ' ' g4 +0, giniy+" +j4n4 ~

21,2,3,4 —+1

(5.6)

The "casual" character of the above scaling equations,
when, say, t(xi, z2) and r"'(zi, x2) are determined solely
by the values of the random potential at points x1 & x &
x2, allows an immediate averaging over such U„, , (x).
This can be easily explained by a simplified example of
a dynamical system of the type

Since the 8 matrix is symmetric, not all the equations
for its components are independent ones. In fact, the
equations for t and r"' in (4.12b) already constitute a
closed system

r (xi, x2) = zkllr + zr kll
dX2

i (1+r ) kll mU(x2)kll —(1+r"'),

(5.1)

t(xi, x2) = i kll
—(1 + r"')

kll
' mU(x2) kll t,

dX2 [.

(5.2)

dX/dx = a(X) + v(x)b(X), (5.7)

where v(x) is white noise. We recall that averaging a
product of Gaussian variables is equivalent to taking
all possible pairings; thus, upon integrating Eq. (5.7)
over x and taking advantage of the b-functional cor-
relator (v(x)v(x')) = 2Ch(x —x'), we easily find that
(v(x)X(x)) = |{b(X)).Obviously this procedure can be
applied to any average of the type (v(x)K[X(x)]) with
E[X] a function or even a functional of X(z). It is clear
now that already at this point we could easily write down
a system of exact scaling equations for various crossed
moments of matrix elements t~ ~1, r', , or obtain a FP
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equation for the probability density P~(S). Nonetheless,
such a "Cartesian representation" fails to provide any
readily tractable description, nor is it very instructive as
it ignores the specific statistical features of Eqs. (5.2) and
(5.3), which we are about to discuss here and in the next
two sections.

First of all, under the common assumption /k~ && 1
(weak disorder) we suppose to hold from now on, those
terms on the right-hand side of Eqs. (5.2) and (5.3),
which contain the operator U, are small in comparison
with the rest. As a result, the refIection and transmission
amplitudes r"', t turn out to be fast oscillating variables,

ik[(xg I ikt(~g
o

zk(] xg t —v.k([~1Oe (5 8)

withro, to varying slowlyon the scale of k& . As a matter
of fact, the measurable kinetic quantities are expressed
in terms of intensities, so that we will be interested in
quantities such as

t bt'a oc exp[i(k —k )2:2 —i(kb —ka)xi],
r'br"a oc exp[i(k + kb —k, —ka)~2]&

(5.9a)
(5.9b)

and the like products, which have an equal number of
matrix elements and their complex conjugates. (We need
to allow a mismatch in the indices in order to get a closed

system. ) Unlike the exponents in the amplitudes (5.8),
the oscillating coefficients in (5.9) may get cancelled out
if the index mismatches are small; in the case of (5.9a),
we have

G) b ~ d (5.10)

Whereas in the case of (5.9b), there are two possibilities

B ~ c) b ~ cij R~ci) b~c. (5.11)

We are thus led to apply the procedure of separating the
variables into the "fast" variables with a range of the
order of the electron wave length, and "slow" ones that
describe the diffusive motion; all moments with an un-
equal number of matrix elements and their complex con-
jugates belong to the former type and are averaged out
at the level of a statistical description. This procedure
is well-known in the theory of 1D systems. We start by
finding the evolution equation for (t bt,'a). In fact, since
all averaged quantities depend solely on x2 —xi ——L (the
translational invariance, broken in each realization of dis-
ordered potential, is restored by statistical averaging), we

may use either of Eqs. (5.2) and (5.4), so that there are
two difFerent forms of the required evolution equation.
From Eq. (5.2), upon omitting the fast variables we have

(& b4a) =
d

(t b4a)dx2

= i(K —K.)(t bt.a) +
Xll ~ I12 Xl3 I14

A(ni, n2, ns, n4)
(I I I k ) i/2 (( an1 cn3 an& cn3 ) n3b nca) &1 3 2 4

y Z n1 nq Xl3 n4
(5.12)

where

1 = i d2k~ . k~

Rewriting the last expression once more as K = 2m( ~s+i/2r) —kz makes it clear that the renormalized momentum
K corresponds to the familiar value of the self-energy e + i/2r in the averaged retarded Green's function. ss

Similarly to Eq. (5.12), we have for the crossed moment (r'br'a),

(r br, a) —i(K + Kb —K —Ka)(r br a) g
161Ly L, (k, k„,k„,k, ) i&2

Il] )Xlg )X13 )Xl4

x((b „,+r'„)(b„,b+r', b)(b „,+r"„)(b„,a+r'*a) —8 „,b„,br„' „r'a —b „,b„,ar'br„" ).
(5.14)

The calculations we have performed so far are applicable
to systems of any dimensionality in the regime k~l && 1.
Prom now on we will restrict our analysis to a quasi-1D
geometry L )) L„L (unless stated otherwise). From
Eqs. (5.12) and (5.14), it follows that in this case any
index mismatch in Eqs. (5.10) and (5.11) leads to an ad-
ditional smallness in the corresponding moments with
respect to L„&,1/L and, therefore, is not allowed. (This
corresponds to the dominance of the "zero" mode in the
Green's-function technique. ) The general rule here is

that in all equations there survive only those terms that
upon substitution (5.8) contain no oscillating coefficients.
Now Eq. (5.12) assumes the form

dL(~"~') =
k l(~'b~')+ lL I. ~: k k& Xl1,Xlg

x((b- ~ + Ir'-, I') lt-, bl'

(5.15)
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dLP'& = dL).&7: ) (5.16)

The multiplier (1 —b', , ) has been used here to avoid
double counting. When dealing with electronic systems,
one is usually interested in the conductance, i.e. , in
the total transmission coefEcient rather than the angle-
resolved transmission coefficient T b = lt bl2. We in-

troduce the matrix 7 = ttt (not to be confused with the
matrix T b, which is a direct product of t and t') and the
total transmission coefficient (for one direction of spin)
T = Tr[P = g/2. The sum of (5.15) over a, b yields

the third one is I iN sTr[7 ] and can be omitted in
the leading approximation in N i. (In the ballistic limit
L ( I, we have Tr[7 ] = N and thus Tr['7] Tr[7 ]; we
shall see that the latter relation actually holds for any L.)
Noticing that the conductance g oc L (Ohm's law) in
the difFusive limit I (& L « L„whereas g oc exp[ —L/L, ]
in the dielectric limit L )) L„we estimate the derivative
on the left-hand side as miii fL, L,)N 2Tr[P, so that
it can be neglected as well if L )) l. Finally, the second
term on the right-hand side is decoupled in the main
approximation in N to yield an algebraic relation

). 1

LLyL k„,k„,Il1 Ilg

x &7nq nq 7ng, ng + 7nq, nq 7n2, nq )

k
&&I'"I'&+ IL La y z

x ). k „&~- ~ + Ir.'., I'&&It-, bl'&.
n n n1 nq
X11 Xlg

(6.1)

Although the reHection amplitudes have dropped out of
Eq. (5.16), it is still not closed. We see that on the right-
hand side of Eq. (5.16) there appear higher moments of
individual elements of the matrix 7, so that their evolu-
tion equations are needed as well. One can see that those
equations contain, in turn, even higher moments, the re-
flection amplitudes appearing explicitly at this time even
in equations summed over the indices. Proceeding in this
manner we would have arrived at a chain of evolution
equations of ever growing complexity. A drastic simplifi-
cation of this situation would be, however, possible if we
knew the dependence of the moments under considera-
tion on the channel indices. Then, upon employing the
relation between the transmission and reflection matrices
(3.12b), all the evolution equations could be expressed
exclusively in terms of the traces Tr[7 "] (n = 1, 2, . . . ,),
thus providing a reasonably simple description.

We are led now to consider the index dependence, i.e. ,
an angular structure of the individual transmission and
reflection coefficients T b = lt bl2, B'b ——Ir'bl2. Al-
though being "nonobservable" quantities in the physics
of disordered conductors, they are directly measured in
light-scattering experiments. 60

VI. ANGLE-RESOLVED SCATTERING

In order to find the angular structure of T b we go
back to Eq. (5.15). In the cases of physical interest the
number N of channels is very large, so that we can take
advantage of an additional small parameter N . One
easily finds that the Grst two terms on the right-hand
side of Eq. (5.15) are of the order of l N 2Tr['7], while

I

Introducing functions

«(a) = k ) „(lt„, I'),
I11

X11

«(a) = 1+k. ) „&Ir.'„,I'),
I11n1

(6.2a)

(6.2b)

we rewrite Eq. (6.1) in the form

&7' b) =
L L PL, (a)

«(b)
F y z b

(6.3)

It is obvious that «(a):—7L, (p ), PL, (a) = PL, (p ), where
p, = k /k~ = cos 0 with 0 being the incidence angle.
The current conservation condition (3.12b) implies the
identity

1

4 [«(p)+ m(p)l = 2.
0

(6.4)

&+ b) = - - &+& = P(P )P(Pb) (6.5)
X .(-.)'

where we have denoted D = [
—j pp(p)dp]2.

Next we calculate the function p(p). To this end we
note that in the limit of a quasi-1D geometry, Eq. (5.14)
is reduced to

In the limit I )) l, the function pL, is approaching its lim-
iting value p(a) 1, while «(a) (& 1. Since the averaged
T b must be symmetric in a, b, from Eq. (6.3), we find
that in the main approximation the angular dependence
of &T b) is given by the function p as follows:

dL &lr.'bl'& =— &1 1), 2 vr 2, 2 vr 1

I (k kb) ILAIL, k kb ILAIL, k, k,I

—+ —
I &lr.'bl'& — &lr.'bl') + )

Xly )11'

x &(~-, + lr.'., I')(~b-, + lrb. , I') +»-b~, lr.'., I'+ (1 —~-,-,)r.'.,r.'*,e.',r.",~&. (6.6)

[The obviously negligible second term on the right-hand
side has been retained so as to make Eq. (6.6) fully com-
patible with the unitarity of the matrix r"' at L ~ oo.]
On making use of the same approximation as above (the

I

leading order in I/L and N i), Eq. (6.6) yields in the
general case a g b

&/I ) &/ )
P(Pn)p(pb)

(6 7)4N P~+ Pb
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Combining Eq. (6.7) with the definition (6.2b), we obtain

p(p) = 1+ »Jp-(p), dp'. (6.8)
' »(»')

p P+8
The nonlinear integral equation, Eq. (6.8), is in fact

one of the basic equations of the classical radiative trans-
fer theory and as such is well-known in the astrophysical
literature. Its solution, the Chandrasekhar H function
describes the angular distribution of the emergent radi-
ations in semi-infinite atmospheres; it is long known to
have an explicit analytical expression as follows:

dt
EI(p) = exp (

—— ln 1—1+p2t2
arctan t

t

1 1 2 y

p p p p dpdp

1 1 2 I /2

p p p jl dp dp

1 1 - 2

»»(»)d»
2 p

that is D = 1/3.

(6.12)

(6.9)
It is to be noted that Eq. (6.8) is equivalent to the
Schwarzschild-Milne equation, which in turn is equiva-
lent to the ladder approximation for the Bethe-Salpeter
equation for electron and light propagation through a
disordered medium. In mesoscopic physics, the ex-
act ladder/crossed ladder sums are customarily treated
in the difFuson/cooperon approximation, which is ade-
quate for evaluating the conductivity in the Kubo ap-
proach. However, as a result of a breakdown of local
current conservation, which ultimately leads to a global
violation of unitarity of the scattering matrix, the diffu-
son/cooperon approximation is not adequate to calculate
the average transmission and reQection coefBcients in the
Landauer approach (as has lately been discussed in Ref.
53). The exact ladder/crossed ladder sums can be found
through solving the Milne equation by means of a rather
complicated method of Wiener and Hopf. The solution
(6.9), in particular, has been originally derived by this
very method. In the Appendix we provide an elementary
derivation of the formula (6.9); we have not found such
a compact exposition in the literature.

We shall see that as long as one is only interested in
the total transmission coefBcient at L )) l, there is no
need to know the explicit solution of Eq. (6.8). What
is needed is the mean value of the function p(p), which
immediately follows from Eq. (6.4),

1

p(»)d» =2, (6.10)
p

and its first moment, or more precisely, the diffusion con-
stant D, which can be found as follows. Using identity
(6.10), we rewrite Eq. (6.8) in the form

'
p(»)»(» ')

(6.11)
p P+P

Multiplying Eq. (6.11) by p, and integrating over the
range of p, we obtain

A. Crossover between the Sharvin
and Drude conductance

Expressions (6.5) and (6.7) give the angular structure
of T b and R b in the main approximation at any L )) l.
In the metallic limit L && Nl, these formulas can be easily
improved. Now we may keep the derivative on the left-
hand side of Eq. (6.1), which gives a difFerential equation
instead of Eq. (6.3):

d 1 1 ', r (p'),(p) = ——r, (p) + -p, (&) d
ds p 2 p p

(6.14)

Employing Eq. (5.3) we obtain, in addition to Eq. (6.6),
the following relation:

1 1 r, (p, )r.(»),4N @~gab
(6.15)

which yields for p,

p, (p) =—r, (p) d—p'd 1 ', r(p')
ds 2 p P

(6.16)

Equations (6.13)—(6.16) describe the transport regime in
which only incoherent scattering is present, so that WL
corrections are neglected and all measurable quantities
are self-averaged. Although the equations have been for-
mally derived for a quasi-1D geometry, one can easily see
that in fact they are valid for a general 3D geometry:
Those terms in Eqs. (5.12) and (5.14), which have a mis-
match in indices (as described in Sec. V), are obviously
absent at s = 0 and contibute only to WL corrections
when0& s(&¹

In the regime s « 1 (L « l) of ballistic transport, the
transmission coefficient T b T b(s = 0) = b b, so that
the total transmission T = N and hence the conductance
is given by the familiar Sharvin's formula

2e2 e2 k2L I
h h 2' (6.17)

In the opposite regime s )) 1 (L &) l) of difFusive trans-
port, when r, (p) -+ 0 and p, (p) ~ p(p), the system
(6.13)—(6.16) can be easily solved. At the leading order
in s ~, we obtain

» p(»)r(») = s+ 2sp

r
p (») =»(»)

I

1—
l

/l

s + 2spp

(6.18a)

(6.18b)

p(» )p(»)
4N s+ 2sp

1 r 1
(&-b) = 4~P(»-)P(») I Pa+ Pb

(6.19a)

(6.19b)s+ 2so)

d 1 1 1
d (T-b) = ——(T-b)+ ~ p (» )r (») (6»)ds P~ 4N P~Pb

where we have denoted s = L/l. Recalling once more the
definition (6.2a), we obtain the equation for r, as follows:



2714 ALEX V. TARTAKOVSKI 52

where 80 1 is a yet unde6ned constant. Calculating
the total transmission, we obtain

4N l k~~L„L,T =D s+ 2sp 3m(I + 2lp)
(6.2o)

(here lp —— spl), which gives the Drude conductance
(Ohm's law) (1.1). It is to be mentioned that results sim-
ilar to Eqs. (6.19) and (6.20) have been recently obtained
&om Milne's equation by Nieuwenhuizen and Luck.

Surprisingly enough, the approximation (6.18) and
(6.19) satisfies Eqs. (6.13)—(6.16) exactly at any sp, al-
though it does not satisfy, of course, the initial conditions
~,—p(p) = 1, p, —p(p) = 1. This means that once the cor-
rect value of sp is found, the corrections to (6.13)—(6.16)
[and hence to Eq. (6.20)] would be exponentially sznall
[oc exp( —s)]. To find sp we employ the identity, which
follows from Eqs. (6.14) and (6.16):

1 1

4 ~(S (S ) —~ (~)1 = s d» (~).
0 0

(6.21)

(It can be checked by difFerentiating with respect to s.)
Substituting Eqs. (6.18) into Eq. (6.21), we get

s = f' """'(") —O71O4
f, 4 vv(v)

(6.22)

G—1 G—1+2G—1 (6.23)

where
3vrh

I (6.24)

We recover a well-known numerical value of the "injec-
tion d.epth. " This physical interpretation becomes evi-
d.ent when expressing the resistance of the sample as the
sum of the Drude resistance G~ [GD is given by Eq.
(1.1)] and two extra interface resistances,

B. Backscattering peak

In Sec. VI A, we considered incoherent scattering. The
formulas derived above allow us to consider already here
the simplest coherent eKect —the backscattering en-
hancement. This phenomenon is clearly observed in op-
tics as a peak in reHected intensity approaching a factor
close to 2 in height in the backward direction. " To
calculate the enhancement exactly, we recast Eq. (6.6) in
the same approximation which led to Eq. (6.7), but this
time the case a = b is included into consideration:

(R ) (R )
1 (1+~ ~)C(&-)~(~~) —~-b

(625)4N Pa+ P&

Equation (6.25) means that backward scattering to the
same channel is enhanced by a factor of

v=2 —~ '(u), (6.26)

as compared with the scattering to the nearby chan-
nels. This is consistent with the well-known interpre-
tation mentioned in the Introduction that every path is
in phase with its time-reversed counterpart, which gives
rise to a factor of 2 in the backward direction. In fact, the
reQected intensity is enhanced by a factor that is slightly
below 2, because the single-scattering events are physi-
cally identical to their own time-reversed transforms and
therefore have to be discarded. The maximal value of
the enhancement factor is achieved for normal incidence
(p = 1) and given by rl „=1 88.

Finally, it is worth mentioning that the peak in re-
Hected intensity at a = b is accompanied by a slight
suppression of the background [due to the second and
the last terms at a g b on the right of Eq. (6.6)], so that
the unitarity is conserved: Pb R b = 1, g b R b = N
at L —+ oo.

has the appearance of the Drude resistance of a surface
layer of thickness l0.

Recently the transition between the Sharvin and Drude
conductances has been considered. by de Jong through
a semiclassical approach and investigated. experimentally
by Tarucha et al. The proposed in Ref. 72 interpola-
tion formula G = GD + G&, which approximates
the resistance of the sample by the sum of the Drude
and Sharvin resistances, its very well the experimental
data. We note that this formula differs insignificantly
Rom Eq. (6.23), although the latter has a somewhat dif-
ferent status. As we discussed above, Eq. (6.23) provides
the best approximation possible (provided WL correc-
tions are neglected, of course) for I )) l. One should
keep in mind that experimental studies of the ballistic
transport are conducted on the two-dimensional electron
gas. In this case the function p in the preceding formulas
should be replaced by the solution of a two-dimensional
Chandrasekhar's equation. It is easy to show that the
required equation is obtained from Eq. (6.8) if the difFer-
ential dp, is replaced by 2dp/vr(1 —p ) r (see also the
Appendix) .

VII. FOKKER-PLANCK EQUATION

We are now ready to come back to ending the evo-
lution equations initiated in Sec. V. As we have seen in
the previous section, the evolution equation (5.15) for the
averaged transmission coefficient has a "two-level" con-
struction: on the level of individual coeQcients T r, it
reduces in the main approximation to an algebraic equa-
tion (6.1), which allows us to find the dependence on the
indices (angular structure) without solving the original
differential equation; upon summing over the indices a,
b, i.e., on the level of matrix traces, those very terms,
which dominated on the previous level and determined
the angular structure of the individual coefficients, can-
cel each other. This feature proves to be quite general
for the averaged equations generated by the system (5.1)
and (5.2) and is the key to obtaining a complete statisti-
cal description. Reasoning in the same manner as in Sec.
VI, it is easy to show that the dependences on the indices
ni, n2 on the right-hand side of Eq. (5.16) are given by
the same Chandrasekhar function as the dependence on
a [see Eq. (6.5)] on the left-hand side is. Recalling the
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identities Eqs. (6.10) and (6.12), we imxnediately obtain

(Tr+ = —
2 (Tr2++ (Tr72) . (7.1)

t = Tr7 (7.2)

Equation (7.1) is not closed and we need to find the evolu-
tion equations for the new quantities that have appeared
on the right-hand side. Denoting

spond to the first and second indices of 7 .) We set an
assembly of such rings in correspondence with the cross
moment (7.5). The right side of the required equation is
constructed then by a sum of all possible operations of
four types: (1) separation of one ring into two; (2) joixiing
together two rings into one; (1+), (2+) operations (1),
(2) with simultaneous insertion of a pair of balls. The
resulting system of equations can be represented in an
operator form as follows:

L = —Ik L L = —/N,
6 " 3 (7 3)

where

ls) =~Is) (7 6)

and proceeding in the manner outlined above, we Gnd
consecutively ~ = ).["(" 1)ax ax

k=1

C

d(t', )
dL 2L

2(t ) + 2(t t2) + 4(t ) —4(t )

d(t2) 1 2

dL 2L 4(tit2) + 4(ts) —2(ti) —2(t~) (7.4)

) (at&a~ [(k+ m)a&+ —(k+ m —1)a&+ i]
k,m=1

+ 2km[aq+ —aq+ +x]ax,a ), (7.7)

and the "creation" and "annihilation" operators are

and so on. To get a closed set of equations, we need to
construct the evolution equation for the general average:

ti
ax, lsx, . . . &s~ . . . &) = lsx&. ~ ~ sx + 1 ~ ~ )&

a~l» ".» ")—»Isi "»—1" ) (7.8)

(7 5)

where s = (si, . . . , s ) is a set of natural numbers. The
manner in which this equation is constructed admits
the following illustrative representation (compare with
a similar illustration in Ref. 45). We depict the trace
Tr7" = P 7, ,7', , 7„„,in the form of a ring of
2k alternating black and white balls. (The balls corre-

OFI,2I = 'VFI„ (7.9)

where

The system of Eq. (7.6) is equivalent to a single (albeit of
infinite order) FP equation for the characteristic function
Eg(vi, v2, . . . , ) = (exp(iviti + iv2t2 + . )):

17(vx, v2, . . . , ) =Zt(a~t -+ ivx„ax, m 0/iBvx, )

8) 2kmi'vx, v
XBVk+m

0+ ) ivy k(k —1) .
X|9vkk=1

&V k+m+1

i9

XOVk+1

82
+ [(k ~ m)i v, x+ —(k+m —l)ivt, + i] .

vk v

(7.10)

The cross moments ls) are defined by the identity

f81+' ' +Sr@(ti'".t.') =
~ ., ~ . . +~(v)l-=' (7.»)

Taking Fourier transforms with respect to the v variables,
we go over from Eq. (7.9) to the FP equation for the joint
distribution function PL, (ti, t2, . . . , ):

0—(k+ m —1)
Otk+m

02
D = ) 2km [tx,+ —tx,+ +i)BtkBt

k,m=1

0(k+ m)
Otk+

|9—) [k(k —1)tx, —k't&+x].
Otk

(7.13)

OPL,
2L~ = DPI. )

D(ti, t2). . . , ) = Q (ax, ~ 0/Otg, aA,, m—tx, ).

(7.12)

In a more explicit form, the expression for D reads

Note that some of the equations of the hierarchy (7.4)
have been obtained earlier by Mello and Stone within
the &amework of the macroscopical approach. They were
proceeding in the direction opposite to ours: Rom the
DMPK equation (a FP equation for the probability den-

sity of the eigenvalues of 7 ) to individual equations for
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Substituting I"I, = exp OL, into Eq. (7.9), we obtain

2I = 1701, + ) [(A:+ m)ivy+
k,m=1

(t981, 801,—(k+ m —1)ivA,,+ i] .
~ &A;~ &m

(7.15)

It is interesting to note that Eqs. (7.6) closely resem-
ble the renormalization-group equation for the additional
charges, which describe additional contributions to the
cumulants (g ),~~ in the expanded nonlinear cr model. 44

Indeed, if we omit the second term in each square bracket
in Eq. (7.7), the remaining operator will practically coin-
cide with the operator given by Eq. (70) of Ref. 44. The
implications of the indicated correspondence are beyond
the scope of the present work. We only note that the
"extra" terms in our Eq. (7.7) appear due to the global
current conservation (3.12b) (they would be missing if
the refiection matrix were unitary) and might conceiv-
ably be beyond the accuracy of the model considered in
Ref. 44.

VIII. METAI LIC KECIME

the traces t . Now we have the complete set of equations.
We shall yet return to the question about the equivalence
of Eq. (7.12) and the DMPK equation.

In the difFusive regime the t variables must be self-
averaged, i.e., deterministic in the first-order approxi-
mation, so that all the cumulants of the distribution
function (higher than the first-order xnoments) become
nonzero only in higher-order approximations. Thus, it
should be of advantage, at least for the study of the dif-
fusive regime, if we rewrite Eq. (7.12) in terms of the
cumulants. For this purpose we introduce the generating
function OL, (v) = ln FL, (v). The cumulants of the t's can
be expressed as

ge1+" +e~
(t", t„'-)".= . . HL, (v) ~,. (7.14)

conditions at L = 0 but instead we require that the to-
tal transmission coefBcient T = t1 be given in the main
approximation by the Drude formula (6.20), which we
rewrite here in the form

2L,
L+ 2lp

(8.2)

As we have discussed in Sec. VIA, Eq. (8.2) describes
incoherent scattering with exponential accuracy.

A. Transmission eigenvalue density

We begin with the evaluation of the transmission eigen-
value density, i.e., the density of the eigenvalues 7 of the
matrix 7,

p(t) —= () b(T —T„) = —Im Tr
~(71 —7 —i0)

(8 3)

It is seen from Eq. (8.3) that the conductance can be
expressed in terms of p(7) as

1V 1

( ) =2(T) =2 ) 7 =2/ d7T (7).
n=1 0

(8.4)

In fact, knowledge of p(7) enables one to compute any
linear statistic on the transmission eigenvalues

A = ) a(7„). (8.5)

Aside the conductance (with a = 27 ), examples of linear
statistics include the shot-noise power [with a = 7 (1—
7)] and the conductance of a normal-superconductor
interfaceso [with a = 27 (2 —7 ) 2].

In order to find p(7), we compute the averages (t ).
From Eq. (7.15), we have

Equations (7.6), (7.12), and (7.15) hold for any L » I.
I et us evaluate them first in the metallic regime l «
L « N/. Mello and Stone have devised a procedure
of solving the system (7.6), in which the inverse number
of channels N plays the role of an expansion parame-
ter. This procedure makes substantial use of the ballistic
initial conditions

2L, " = n(n —1)(t„)—n (t„+x)
d(t„)

+ n ) (tx„.t„x,) —n ) (tl, t„x„.+x)
k=1 k=1
n —1 n

+ n ) (tx, t„ I, ) —n ) (tl, t„x,+x) . (8.6)

t„(0) = N, n = 1, 2, . . . . (8 1)

Indeed, one can see that the derivation of the WI cor-
rection in Ref. I2 is dependent on the assumption that
Eqs. (7.6) are to match these ixiitial conditions exactly
[being a constant the correction otherwise drops out of
the difFerential equations (7.6)]. On the other hand, as
we have seen in Sec. VIA, Eqs. (7.6) cannot be expected
to work in the ballistic regime and therefore they are
not bound to satisfy the exact ballistic initial conditions.
Due to this circumstance we shall not impose any initial

In the main approximation, all fIuctuations of t 's can be
neglected, so that one deals with practically certain char-
acteristics of propagation. This is the limit of a classical
difFusive transport. As a result, all the correlators in Eq.
(8.6) vaxiish. In view of Eq. (8.1), it is natural to assume
that (t ) ~ (tx) && 1 for all n, so that the first two terms
on the right-hand side of Eq. (8.6) can be neglected at
the leading order in L,/L. The resulting equations can
be consecutively solved. In view of Eq. (8.2), the solution
assumes the folHl
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2L
(s.7)

(so that the assumption t ti is confirmed) with the
constants ri satisfying the recursive equation

etry. Nazarov recently gave a quite difFerent &om ours
microscopic derivation of Eqs. (8.12) and (8.14), which

made use of a beautiful analogy with the nonequilibrium
superconducting state problem.

~~ = r1 ) rII ri~ —I+I —II ) ~IvcI~ —x, ~~a = 1 {8.8)
%=1 Ic=1

Equation (8.8) can be rewritten in terms of the generat-

iilg fllIlctloI1 f (X) = Q I C1~X as

f(x) = [(*-x')f'(x)]'. (8 9)

(2n —2)!!
(2n —1)!! (s.lo)

Differential equation (8.9) is in fact linear in f (x), which

immediately allows us to obtain a linear recursive relation

(2n —l)o.„=(2n —2)n 1, and hence

B. Weak localisation and UCF

The experience with Eq. (8.6) suggests that L, /L can
be employed as an expansion parameter. We will thus
seek the solution to the foregoing equations as a series in

descending powers of the dimensionless Drude conduc-
tance gI2/2 = 2I,/(I + 2lo). The key simplification of
the procedure is to evaluate the cumulants of t 's given

by Eq. (7.15) as opposite to the moments. The following

two simple rules are instrumental in reducing the original
difFerential evolution equations to purely algebraic ones.

{i) The expansions of (t ) = (t ) start with the first

power of gD )

On the other hand, solving Eq. (8.9) we obtain 2L,
(t„)=n„' +p„++ 2 0

(s.16)

1/2

(
al'CS1I1 X

{X X2) I/2 (8.11)

Setting x = sin(P/2) and recalling Eqs. (7.2) and (8.7),
we get

qg) = (T . , = (r) . ~s.u~
( 7.

(1—sin (p/2)7 j»n4&
When continued to the coinplex P plane, this relation jets
us find the transmission eigenvalues density (8.3). Prom

Eq. (8.12), one finds

2L.„",(t.) = -(t.)' - (t.) —(t',). (8.17)

Equating the total coefficient of gD in Eq. (8.17) to zero,
we obtain

whereas the expansions of all other cumulants (which

equal to zero at L = 0) start with zero or negative powers.

(ii) Since the expansions contain no logarithmic terms
[otherwise the solution would not be compatible with the
Drude formula (8.2)], the first power of gD is to vanish

on the right-hand side of the evolution equations.
As an example, we evaluate the equation for (ti):

4

p(cosh z) = . {Q[2i(z+ iO) + vr]
2vri-Q [2i(z —iO) —vr] ), (8.13)

2oipi + F12 = 0. (8.18)

which yields, for the eigenvalue density in the classical
difFusive limit

»(7) = 2(T) ~(& —&o)
1 1 (8.14)

1 OO

AII = prI(7 )a('7) d7 = a(cosh z) dz, {8.15)
0 0

is geometry independent.
The result (8.14) was first obtained by Mello and

Pichard, 2 by integration of the DMPK equation —the
method which is formally valid only for a quasi-1D geom-

where 70 = 4exp( —3L/2l) is a cutoff at sinall 7 such

that fz p(7) d7 =
¹ We stress that just as in the case

of the Drude formula (8.2), the results (8.7)—(8.12) and
consequently the distribution (8.14) are independent in

the classical difFusive limit on the geometry of the con-
ductor (see Sec. VIA). This proves that the classical
value of any linear statistic calculated with the distribu-
tion (8.14),

= —2(t,).—2(t,t,).—4(t, ) + 4(t, )
"(ti) 2

—4(t ).(t ). (s.19)

Equating again the total coefficient of gLi [it originates
from the last three terms on the right of Eq. (8.19)] to
zero, we obtain

0!2 —0!3 2
15' (8.20)

a well-known value of UCF for a quasi-1D conductor.

Recalling Eq. (8.10), we find PI = —1/3, a well-known

dimensionless value of the WL correction to the conduc-
tance of a conductor at zero temperature in the limit of a
quasi-1D geometry. The negative sign of the correction
is consistent with the known interpretation mentioned
in the Introduction that interference efFects enhance the
probability of return for a difFusing electron, thus de-

creasing the conductivity.
Next we proceed to the equation for the variance (ti2), .

From Eq. (7.15), we have
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0 = n(n —1)n„—n n„+i

+ 2'A ) AkP k + 271 ) clkP'k+—1 (s.21)

These results can be readily generalized to include an
arbitrary linear statistic (8.5). Thus, to calculate a WL
correction to the classical value (8.15), we return to Eq.
(8.6) and, just as with Eq. (8.17), we obtain the following
recursive relation for the constants P:

dt = —6(t ).(t ) —(t ).—3(t ) —3(«2).
—12(tits), + 12(tit2), . (8.28)

We require (as we have done before) that the first power
of gD vanish from the expansion on the right of Eq. (8.28) .
The only source of such a contribution could be the first
term on the right, which necessarily means that (tsi)

gD, in accordance with (8.27). The conclusion that

(t", ) g (8.29)
which reduces to

+1 + 2 o'kp —k+1 —0.
k=1

(8.22)

(8.23)

with f(z) defined after Eq. (8.8). From Eq. (8.11), we
now have

1 —2x
g(*) =

4(* —*')
1

4(x —x ) ~ arcsin2: ~
(8.24)

so that the correction to the function Q in Eq. (8.12) is
given by

Reasoning along the same lines as in deriving Eqs. (8.9),
(8.11), and (8.12), we introduce the generating function
g(2:) = g„ iP„x by which means Eq. (8.22) is re-
duced to

is drawn simply by evaluation of the leading contribu-
tion in Eq. (7.15), which comes from the second term
on the right. As we already mentioned, the Grst term
(operator 'D) yields contributions corresponding to the
additional charges in the expanded o model, which have
been shown to make expression (8.29) invalid for very
high moments n & k+l &) 1 and lead to the appearance
of log-normal tails in the conductance distribution. This
property requires further investigation.

IX. INSULATING REGIME

We turn now to the strong localization regime defined
by the condition L && L NL or, equivalently, G «
e /h. In this regime, the transmission eigenvalues are
exponentially small, so that, ordering the 7 's from large
to small, we have 1 )) 7j )) 7q )) . . )& 7~. The traces
t are then dominated by 7j, i.e., by the biggest of the

s:
(s.25) t =Trj =7q. (9.1)

Recalling Eq. (8.13) we find, for the WL correction bA to
the average (A) = AD+hA of an arbitrary linear statistic
(s.5)

t~ =T (9.2)

In particular, we have T = ti ——7q. Due to this reason,
it is natural to propose the following "ansatz" for t

0
(8.26)

This result obtained here by evaluating the cumulant
equations is in precise agreement with the formula de-
rived by Beenakker &om the DMPK equation. We
stress that unlike the classical value AD, the WL cor-
rection is geoinetry dependent, so that formula (8.26) is
valid only in the quasi-1D limit.

The line of reasoning developed here allows one to cal-
culate higher-order cumulants as well. In the general
case, we obtain the following expression

I.d~
(T") = —[~'(T"+') —~(~ —1)(T")].

d
(9.3)

Going over to the equation for the distribution function,
we obtain

DPI, (T)
OL

(1 —T) T Pl,
O O

(9 4)

Substituting (9.2) into the system (7.6), we find that all
equations of the same order 8l + 82 + - = n are reduced
to a single equation for (T ):

4.S~ K 2 —(81+ "+8 )~ ~ ~

~ ~ ~

(s.27)

In order to identify Eq. (9.4) we note that it is equiva-
lent to the following equation for the distribution of the
dimensional resistance r = T

It can be seen f'rom (8.27) that in the metallic regime
gD » 1, the higher curnulants (ti) (n & 2) are small.
This means the distribution of the conductance is close
to normal Gaussian, in agreement with the result of
Al'tshuler, Kravtsov, and Lerner. As an illustrative ex-
ample, we consider the equation for the third-order cu-
mulant (tsi)

BPI,(r) 8 2 8—
L (r' —r) P I. —

OL Or Or
(9.5)

[The two distributions are related through PL, (T)
P(r)r2. ] This is Abrikosov's scaling equation for a 1D
chain. We are led to conclude that in the insulating
regime the conductance distribution for a wire coincides
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with that for a 1D chain, provided the 1D localization
length / is replaced by L . Thus, we can identify the
parameter L =

6 lk+L„L as the exact value of the
quasi-1D localization length. This is precisely the value
found in Ref. 33 by calculating the density-density cor-
relator with the use of supersymmetric techniques.

The above derivation can be modified so as to get Eq.
(9.4) directly from Eq. (7.12). For this purpose, the
ansatz (9.2) is to be rewritten in terms of the joint dis-
tribution function P(ti, t2, . . . , ):

Substituting (9.6) into Eq. (7.12), one can see that the
latter is satisfied identically if the distribution PL, (T)
obeys "one-dimensional" Eq. (9.4).

Equation (9.5) was extensively studied in Ref. 9. The
solution is given by

exp( —L/4I, )
L v'2~(~l&. )' * f ~(* ».—

x exp( —x L,/4L)x dx
/cosh x —2r + 1

' (9.7)

and the mean value of the conductance decays exponen-
tially with the sample length

dr - m'~' fL. lt'~' t' I
(g) = 2 —P(r) =

I

—
I

exp
Ir 2 qL) q 4L) '

(9.8)

The distributions Pr, (r) and Pr, (g) are asymptotically
log-normal, which can be best seen directly &om Eqs.
(9.4) and (9.5). Thus, using the condition T « 1, one
find. s that lng has a normal distribution, with mean
(lng) = L/L, and va—riance Varlng = 2L/L, . Note
that one has to use Eq. (9.7) rather than the log-normal
distribution in order to find the preexponential factor in
Eq. (9.8).

A final comment is in order. In the strong local-
ization regime, the average value of the conductance
(g) oc exp( —L/4L, ) is exponentially larger than the typ
ical value exp(lng) oc exp( —L/L, ), which by definition
corresponds to the maximum of the distribution function;
as a result, the conductance strongly Huctuates over the
ensemble of macroscopically identical samples (the rel-
ative fluctuation hg/(g) )) 1). The reason for this is
that due to the stretched. form of the distribution, the
mean value is dominated by exponentially rare yet al-
most transparent configurations of the random potential.
In the metallic regime, the relatively small ensemble Huc-
tuations of the conductance are known to manifest them-
selves in the form of "grass" on the Ohmic pedestal of a
particular sample, 2 and it is natural to expect even more
pronounced effects in the localized regime. Indeed, the
above-noted difference between the mean and typical val-
ues of the conductance has been recently predicted to

PL, (ti, t2, . . . , ) = dT b(ti —T)b(t2 —T ) . Pr, (T).
0

(9 6)

lead. to gigantic mesoscopic Huctuations around the su-
perlinear on average I-V characteristic.

X. DISCUSSION

In this work we have introduced exact scaling equa-
tions that govern the evolution of the transfer and scat-
tering matrices as the sample length increases. After
ensemble averaging, these equations result in a rather
complete statistical description of mesoscopic transport
in quasi-1D conductors. It is appropriate to discuss here
some results of the method presented, which can be of
particular concern when comparing to the other existing
techniques. Thus, we calculate exactly the angular struc-
ture of individual T ~, R ~, which, as can be shown,
is tantamount (through Fourier transform) to finding the
exact ladder sum L(r, r'). In so doing we manage to
avoid the diKculties associated with the breakdown of
current conservation in the diffuson/cooperon approxi-
mation. Because reflection is dominated by short tra-
jectories of a few mean &ee paths in length, whereas
the standard diffuson approximation is adequate only
in the limit of long wavelengths, one needs an accurate
expression for L(r, r') whenever both the transmission
and reflection coefBcients are being evaluated in a sin-
gle current-conserving approximation. This problem has
been recently discussed in detail by Hastings, Stone, and
Baranger in connection with the question about in-
equivalence of coherent backscattering and WL, which
is believed to be of some importance for the semiclassical
theory of ballistic chaotic conductors. It is worth not-
ing that although the physical reasons behind the WL
correction and the backscattering peak are quite similar,
these two effects are not complimentary in a disordered
medium. As indicated in the last remark of Sec. VIB,
the backscattering peak does not lead to any correction
in the total reHection coefticient R. It is easy to under-
stand if one remembers that the backscattering peak is
present even for a semi-infinite disordered medium, when
R =

¹ In the metallic regime, the first-order correc-
tion (negative) to B appears due to the finite Drude
conductance and only the second-order correction (posi-
tive) appears due to WL. This feature is not explicit in
the results of Ref. 53.

Let us discuss in more detail the connection between
our formalism and that of the macroscopic approach. In
many cases we arrive microscopically at the same results
as those derived &om the DMPK scaling equation,

(10.1)

which describes the evolution of the probability density
'PL, (Ai, . . . , Aiv) for the variables A„= (1 —7„)/7„. In
Eq. (10.1), J(A) = Q, ~A; —A.

~; the ballistic initial con-
dition is V 0(A) = h(A). Although in our view the method
of cumulants of Sec. VIII is much simpler to work with
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when computing observable quantities, it would be of
significant interest to show that the FP equation (7.12)
is equivalent to the DMPK equation. The ansatz (9.6)
used in Sec. VIII to find the distribution of the maxi-
mum transmission eigenvalue, suggests a simple way to
do that. In the general case, instead of (9.2) one has
t = g,. i 7, , and it is natural to use the following
ansatz:

p~ (t„t, , . . . , j = J d~A

A direct check shows that our ansatz (10.2) identi-
cally satisfies Eq. (7.12) for any N, provided 'PI, obeys
Eq. (10.1) with the numerical coefficient s instead of z
on the left. Thus, we have provided the first microscop-
ical proof of the DMPK equation for the realistic model
of a wire with the isotropic dispersion law.

It is to be noted that the known derivations of the
DMPK equation within the framework of the macro-
scopic approach rely on the isotropy assumption that the
flux incident on any scattering channel becomes equally
distributed among all outgoing channels. This concept
of equivalent channels ignores the 6nite time scale for
transverse diffusion and obviously must be dropped in
order to describe correctly the 2D and 3D behavior. In
fact, we have shown that as long as the channel veloci-
ties k /m in difFerent channels difFer from each other, the
individual transmission coefficients have a nontrivial an-
gular structure, given by Eq. (6.5). This makes it impos-
sible to treat the channels in a completely symmetrical
fashion even in the case of a wire geometry. Nonethe-
less, our derivation of the FP equation (7.12) shows that,
in a macroscopic sense, the isotropy assumption could
be eventually replaced by a weaker requirement that the
angular structure of individual elements of the S matrix
be length independent. Indeed, if we were to ignore the
results of Sec. VI and merely assumed that

imum set of assumptions needed to generate the known
quantum-interference effects without referring to the mi-
croscopic Hamiltonian. Let us also note that the an-
gular structure of (T b) undergoes a drastic change in
the ballistic regime: &om the b-functional dependence
(T b) oc b' b at L = 0 to a smooth one, given at L ) I
by the Chandrasekhar function. Whether the DMPK
equation can yield accurate results in the ballistic regime
remains, therefore, an open question.

It was remarked in the text that the master equation
(7.6) bears a close resemblance to the renormalization-
group equations of the 0. model in Ref. 44. This is espe-
cially striking if one remembers that the equations of Ref.
44 were derived in the taboo-dimensional metallic limit.
The common underlying physics of the two models pro-
vides a basis for the conjecture that Eq. (7.6) can be
directly generalized to the quasi-2D limit. This problem
is left for future examination.

In conclusion, we have presented a new microscopic ap-
proach to the problem of mesoscopic transport in phase-
coherent disordered systems that enables one to treat in
a systematic way a wide range of physical phenomena
in quasi-1D conductors including ballistic regime, weak
localization effects, and strong localization.
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APPENDIX: CHANDRASEKHAR FUNCTION

We provide here an elementary solution of Eq. (6.8).
To avoid dealing with certain peculiarities of Eq. (6.8),
we will in fact consider the general equation of Chan-
drasekhar's type:

(10.3) z(s) = 1+ sz(I ) dv'~-(s') z(~')
2 0 P+8 (A1)

with unspecified p(a) being independent on L, we would
have arrived at the same equations (7.4). The only thing
that would become missing on the way is the correct
value of the dimensionless diffusion constant D, which,
in macroscopical models, is absorbed by the mean &ee
path in any case. Notice, however, that any generaliza-
tion to 2D and 3D geometries still requires knowledge
of the angular structure in question. We believe that
this concept should be of value when discussing the min-

where the function K(p) is assumed to be real, non-
negative in the interval 0 & p & 1, and satisfy the con-
dition Jo K(p) dp ( 1. The II function will be obtained
by setting K = 1 in the final result. Note that provided
the proper choice of K(p), Eq. (Al) gives the angular
distribution of T b for the case of 2D wire (L k& )
as well as the angular structure of (t~bt'&) in general 3D
case.

Multiplying Eq. (Al) by K(p)/(p —p") and integrating
over the range of p, we 6nd

'z(&)z(l)„'z(c) „1 'z(l)z(I) „'„z(&')z(&') d,
' ~(~')z(~') ' ~(~)z(I )+2

0 P P 0 IJ P
CLP P GP
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or, repeatedly applying Eq. (Al),

v2 Kp
o P P

K p1 + p' „,dp' Z( —p) Z(p) = l.
o P P

(A4)

We assume that the coeKcient on the left-hand side of
Eq. (A4) has no zeroes in the p plane. (In physically
relevant cases it does not; otherwise there would be two

bounded in the interval 0 ( p ( 1 solutions. ) Then, from
Eqs. (Al) and (A4), the function Z(p) is analytic and has
no zeroes for Rep ) —1. From Eq. (Al), it also follows
that there exists lim~~ Z(p) = Z, and we assume
for simplicity that Z is finite; the 6nal result will not
depend on this assumption. (In fact, as follows from

Eq. (A4), Z = [1 —J' K(p, ) dp, ] ~, so that Z = oo
only when K(p) = 1.) Next comes the crucial step. We
rewrite Eqs. (A4) as follows:

= 1+ —p" dp K(p) „. (A3)If Z p
2 0 P P

We have obtained a linear integral equation, electively
Milne's equation. We are obviously interested only in
solutions that are bounded in the interval 0 & p & 1.
Under this condition, Eq. (Al) defines Z(p) in the com-
plex p plane. Combining Eqs. (Al) and (A3), we obtain
an algebraic equation

ln(Z(pp)/Z
COO

27lx —i~ p po

K(p')
o P P

(A6)

Since 1n(Z( —p)/Z ) has no poles for Rep ( 0, the cor-
responding integral has vanished. From Eq. (A6), we
arrive at the anal result

p d(
Z(p, ) = exp

7T o P +$

xl 1 — dp'
o P + (A7)

Upon setting K = 1, Eq. (A7) is reduced to Eq. (6.9).

1n(Z(p)/Z j + 1n(Z( —p)/Z )

= —ln 1+ p.
' „,dp' Z* ). (A5)

o P P

We see that the right-hand side of Eq. (A5) is analytic
in the strip Re@ & 1 and goes to zero as p -+ oo. At the
same time, the Grst term on the left-hand side is analytic
for Rep, ) —1 and the other for Re@ & 1; both go to zero
at inanity. These analytical properties already enable us
to obtain a representation of Z(p, ) as a complex integral.
For this purpose we multiply Eq. (A5) by I/(p —po)
and integrate with respect to p along the imaginary axis.
Provided 0 & Redo & 1, by taking the residue we have
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