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Excitons in type-II quantum dots: Finite ofFsets
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Quantum size efFects for an exciton attached to a spherical quantum dot are calculated by a
variational approach. The band lineups are assumed to be type II with 6nite offsets V and Vh, .
The dependence of the exciton binding energy upon the dot radius B and the offsets is studied for
different sets of electron and hole effective masses.

I. INTKODUC TION

With the development of experimental techniques for
fabrication of semiconductor heterostructures, quantum-
size efFects in these low-dimensional structures (quan-
tum wells, i r wires and dots ' ) have been studied
extensively. The quantum state of an Wannier exciton
is one main subject in this respect, since, by the spatial
confinement in these microstructures, it is qualitatively
different &om the exciton state in bulk materials.

Several theoretical studies, with various degrees of
sophistication, exist for excitons in type-I heterostruc-
tures for quantum wells, quantum wires, and quantum
dots. Excitons in type-II heterostructures have also
been studied, ' ' ' but to a much lesser extent. A
fundamental feature of type-II heterojunctions is the
spatial separation of electron and hole, which leads
to longer radiative lifetimes, lower exciton binding en-
ergy, and unusual dynamic and recombination proper-
ties of charge carriers as compared with type I. For
an overview, including potential applications, we refer
to a recent article, &om which we quote: "Though
some III-V, IV-VI, and II-VI semiconductor materials
can form type II junctions (A1InAs/Inp, InAsSb/InSb,
InAs/GaSb, GaInAsSb/GaSb, InGaAs/GaAsSb, Si/Ge,
ZnTe/ZnSe, etc.) the intriguing properties of these re-
markable structures are still poorly understood. "

The case of excitons in type-II quantum dots has
only recently been considered in two model calculations.
Rorison has used a simple separable wave function in a
variational calculation, with parameters appropriate for
GaAs/A1As and InAs/GaSb dots. Weis have, on the
other hand, used a more sophisticated variational wave
function, and also presented analytical considerations of
limiting cases, with the aim of obtaining insight into how
the exciton binding energy and the electron-hole corre-
lations depend upon the effective masses and the dot
radius. In Ref. 16, the offsets were assumed to be in-
finite, corresponding to a complete spatial separation of
the electron and hole. It was shown that two different
regimes exist: For dot radii R much smaller than the
effective bulk Bohr radius the electron and hole are es-
sentially uncorrelated, while for R much larger than the
Bohr radius the electron and hole are strongly spatially
correlated, residing near the dot boundary just opposite
each other.

This infinite barrier model is artificial for small dot
radii R, since in realistic situations the confined particle
then tends to leak out in the barrier material. Moreover,
the importance of the incomplete confinement in optical
experiments is very clear, since the oscillator strength
for excitonic transitions is proportional to the square of
the electron-hole wave-function overlap. Thus, it will be
worthwhile to make clear the dependence of the exciton
binding energy, and of the wave function overlap, on the
magnitudes of the offsets. For estimates of band offsets
and effective masses for several III-V heterostructures see
Refs. 14, 17, and 18.

In this work, we report the result of a variational calcu-
lation of the binding energy for the electron-hole system
with finite offsets. Since it is always useful to have re-
sults for limiting cases to compare with, we compute first
binding energies for the case in which one particle is con-
fined, and the other completely free, i.e., Vp, ——0. Since
zero offset for one of the particles is a situation inter-
mediate between a type-I and a type-II heterostructure,
we denote this special case as being of type I2. A lim-

iting type-I2 situation occurs when the confined particle
is completely confined within the dot (V, = oo). In Sec.
III, the dependence of the exciton binding energy upon
the dot radius, the offsets, and the effective-mass values
is studied, while Sec. IV contains results for the electron-
hole overlap in the wave function, an important factor
for the magnitude of oscillator strengths. We summarize
our findings in Sec. V.

II. MODEL AND METHOD

In the effective-mass treatment the Hamiltonian for the
electron-hole pair, which forms the exciton, is given by

2 2
~e + ~h

2m, 2mh,

where

0 for r(R
V for r&R
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Vj, for r (B
0 for r ) A.

Type-II situations correspond to V, and Vh having the
same sign. For de6niteness, we assume both positive so
that the electron is the con6ned particle. The alternative
confxguration presents, of course the same computational
problem.

For simplicity, we have assumed the same electron (and
hole) effective mass in the dot and the barrier material,
and that the dielectric constants of the two media can
be accounted for by a single average value e. With de-
generate valence band. , we let mp, be either the heavy-
hole or the light-hole efFective mass, thus neglecting the
complications due to the ofF-diagonal terms in the Kohn-
I uttinger Hamiltonian.

The main task is now to determine the ground-state en-
ergy Ee of the Hamiltonian (1). The binding energy Es
of the exciton is then the energy required to remove the
hole, given by the difFerence between Ep and the confine-
ment energy E, the ground-state energy of the electron
in the spherical dot:

Eg = E —Ep.

As units of energy and length, we use an efFective
Rydberg energy,

2 2
mp, e
25~ 4m')

and an efFective Bohr rad. ius,

4+~5,~
ah =

')

mh e~

both in terms of the hole mass. In terms of these quan-
tities, we denote

TABLE I. Exciton energy ED for di8'erent basis set sizes.
Here) R = 2) m, ~ = m, p, ) and V~ = Vh. = 5.

N, (1Vp„

1
2
3

5

1
1.505
1.467
1.460
1.457
1.456

2
1.406
1.368
1.361
1.359
1.357

3
1.381
1.343
1.336
1.333
1.331

4
1.377
1.339
1.332
1.329

5
1.376
1.338
1.331

attention arise because the analytic expressions contain
terms that individually diverge when pg+ p~ —2p is close
to zero, or because exponential terms may become inad-
missably large for small gs. Finally, the minimalization
with respect to g, p, and P is demanding, due to the
existence of many local minima.

Good accuracy is usually achieved with a moderate
size of the basis set. This is illustrated by Table I, which
shows, by xneans of a special example, how the result for
the ground-state energy of the exciton depends upon the
size of the basis set. Apparently a basis set of nine func-
tions (N, = N~ = 3) suffices to give the energy within
1/0 accuracy. The exceptional cases occur for very large
ofFsets, because one cannot achieve an almost vanishing
wave function in the nearly inaccessible region with a
small number of basis functions, and for large dot radius
B when the exciton is located near the boundary. In
these special cases, we make use of alternative functional
forms, as discussed below.

One may of course also check the quality of the Gaus-
sian basis set for the con6ned particle by comparing
the one-electron energies coxnputed variationally with the
known exact ground state. With N = 5, the accuracy
is, in general, on the 1%%uo level, or better. Although the
confinement energy E, in Eq. (4) may be obtained ex-
actly, we compute it variationally for better procedural
consistency.

as our dimensionless energy, and

as the dimensionless radius.
The ground-state energy of the Hamiltonian (1) is de-

termined variationally, using the following nonorthogonal
basis set of functions:

1V Np,

g(r r ) —) ) g e &9"e e 4'» e ~l~~ »I (Q)
k=1 /=1

III. EXCITON BINDINC ENEMY

We 6rst discuss the case of one particle confxned to
the d.ot material, with the other &ee to move. We de-
note this situation, intermediate between a type-I and
a type-II heterostructure, as type I&. Two examples of
heterostructures with very small valence-band. ofFsets are
InAs/A1Sb (Ref. 20) and ZnSe/Zno ysMne ~qSe (Ref. 21).

A negligible hole ofFset, and a comp/etely con6ned elec-
tron constitutes the extreme case.

A. V' = aa, Vj, = 0

The variational parameters are g, p, P, and the expansion
coefEcients Cg, ~, altogether 3+ N Ng parameters. Qpti-
malization, with respect to the expansion coefBcients CA,.~,
is a generalized eigenvalue problem, consisting in diago-
nalization of a matrix of size N, Nh, x W Np, . All xnatrix
elements can be evaluated analytically in terms of error
functions. The only numerical problems that need special

For this extreme case we use, for the reason mentioned
above, an alternative variational function,

sin(mr /A)
(10)

for r, & B, zero otherwise. The numerical results for the
exciton binding energy Ep are shown in Fig. 1. Figure 2
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FIG. 1. The dimensionless exciton binding energy R& for
the offsets V = oo, Vj, ——0, as a function of the dimensionless
dot radius R = R/ab. The values of the mass ratio m /mb
are shown on the right-hand side.

exhibits the size efFect of the three difFerent contributions
to the total energy, viz. , the kinetic energies of the elec-
tron and hole and the Coulomb interaction energy. We
see that for R smaller than about 3 the electron kinetic
energy is essentially equal to the ground-state energy in
the dot, and dominates the other energy contributions.
For large R, the three energy contributions approach the
ratio 1:1:-4,characteristic of the two-particle problem in
bulk.

It is possible to understand the large-B and small-R
behavior of the binding energy in Fig. 1. For large radii,
the binding energy must approach the bulk binding en-

ergy with a reduced mass:

Eb(R -+ oo) = me

me+
For small enough dot radius, or small electron to hole

mass ratio (R m, /mb « 1), the electron will reside in
its ground state @o(r,) = sin(7rr, /R)/(r +2vrR). Then
the hole will see a charge distribution p(r) = —e@o2(r),
corresponding to a potential

FIG. 2. The electron kinetic energy (e), the hole kinetic
energy (h), and the absolute value of the Coulomb energy
(c), as functions of the dimensionless quantum dot radius R.
These three contributions to the total energy are measured
in the effective Rydberg (5). Here, m = mb, V = oo, and
Vh,

——0. The dashed line corresponds to the ground state of
the single electron.

e fore)R
4m' r

e B . 2~r . 2 dx
1 — sin + 2 sin (vrx)—4' eB 2' r R „(~ x

forr &B.
(12)

The radial Schrodinger equation with this potential gives
a ground state that is in good numerical agreement with
the m, /mb = 0 curve of Fig. 1. For a finite efFective-
mass ratio this treatment can legitimately be used for

small R only, in which case the potential (12) is merely
a small perturbation of the Coulomb potential. Using
the Coulomb potential as the unperturbed potential and
the difference V (r) +e /4n er as the perturbing potential,
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6rst-order perturbation theory yields

For equal efFective masses, it can be checked numerically
that this is a reasonable approximation for B & 0.5. This
range of dot radii is so small that the parabolic top is not
visible in Fig. 1.

The spatial correlation function

lt

OO

l
1
1

re —re re — re re rh
O.e

gives a quantitative measure of correlations. Figure 3
shows the results. For small m, as well as for a small
dot radius, the particles are weakly correlated, since the
electron is essentially in its ground state. And, as could
be expected, the correlations are larger in the present
case than for an infinite hole o8'set.

For larger electron mass the correlations increase. The
limiting case of a very large mass ratio (m, )) mg) can
easily be treated in the Born-Oppenheimer approxima-
tion, which yields the limiting behavior, 2

0.7 .

The correlation function for the largest mass ratio in Fig.
3 follows (15) extremely weil.

H. V 6nite, Vj, = 0

For 6nite electron onset, still in a type-Iz situation, we
obtain more accurate results by means of the variational
function (9). The results for equal effective masses are
given in Fig. 4. For a given onset, the dimension of
the quantum dot must have a minimum size in order
to be able to bind the electron after the breakup of the
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FIG. 3. The spatial correlation function (30) as a function
of the dimensionless radius R = R/ah, of the quantum dot,
for the case V, = oa. The fully drarvn curves correspond to
Vj, = 0, the dashed curves to Vh, = oo (Ref. 16). The two
upper graphs correspond to m = 100mh, , the two lovrer ones
to m =my.

FIG. 4. The dimensionless exciton binding energy E& for
Vh ——0 and several values of V„as a function of the dimen-

~h

sionless quantum dot radius R. The values of V, are given on
the graphs. Here, m = mh, . In the variational calculation
N = 5 and Ng ——2 have been used. The dashed line corre-
sponds to V, = ao, calculated less accurately saith the simpler
function (10).

exciton. The presence of the hole, however, which in
type-I2 situations merely is a satellite to the electron,
makes it possible to have the exciton attached to smaller
dots, dots for which the o8'set potential is insufhcient to
bind the single electron.

The 6gure shows that the binding is weaker when the
dot is large, and when the oBset is low. All graphs show
that for a given offset, there exists a radius R for which
the binding energy is maximal, and B increases with
decreasing V . This trend can be understood by envis-
aging the con6ned particle to create a charge distribu-
tion, with which the freely moving particle then inter-
acts. The ground state in a smeared charge distribution
deviates &om the Coulomb value increasingly more, the
more extended the charge distribution is since the over-
lap decreases. Our interpretation is that the maximum
binding energy of the two-particle system corresponds to
the minimum extension of the wave function of the con-
6ned particle. Since the one-particle ground state in a
spherical dot is a well-known textbook example, one can
calculate its width (v 2) ~ exactly. The width is very large
both when the dot is very large, and when the dot is so
small that the potential barely binds the electron. Thus,
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a minimum width of the one-particle ground state must
exist for a definite dot radius r, and a straightforward
calculation22 yields the exact behavior,

me

1

V,

with a numerical constant c = 2.67. For the ofFsets
V = 1,5, and 25 in Fig. 4, the binding energy is maxi-
mal at dot sizes R = 2.35, 1.11, and 0.53, respectively.
This corresponds to the values 2.35, 2.48, and 2.65, re-

spectively, for R V„showing that the interpretation
of the maxima makes sense, for large ofFsets even quan-
titatively.

The binding energy also depends upon the effective
masses. As shown in Fig. 5, where V, = 25, the bind-
ing energy decreases when the electron efFective mass
becomes smaller. The position of the xnaximum of Eg
is seen to increase with decreasing efFective mass ratio
m, /mh, in close accordance with the square-root depen-
dence of Eq. (16). Numerically, the maxima in Fig. 5
occur at dimensionless radii 1.63, 1.11, 0.71, and 0.53 for
the mass ratios m, /mg = O.l, 0.2, 0.5, and 1, respec-
tively, while Eq. (16) yields the values r" = 1.69, 1.19,
0.76, and 0.53 for these xnass ratios.

Let us consider a speci6c case. As mentioned above,

0.6

0.5

0.2

0.2

0

FIG. 5. The dimensionless exciton binding energy E'b for
Vj, ——0 and V = 25, as a function of the dimensionless quan-

P

turn dot radius B, for several values of the effective-mass ratio
m /mp, (shown on the right-hand side). In the vsristionsl cal-
culation N = 5 and Nh, ——2 have been used.

InAs/A18b is close to a type-I2 heterostructure. We
quote &om Ref. 20: "Since the valence band ofFset of O.ll
eV between InAs and AlSb is so small, we may approx-
imate it as zero, ... ." The electron, on the other hand,
is well confined in the InAs material, since V = 1.37
eV. Using24 an average dielectric constant e 13.6eo,
an average light-hole efFective mass mh, ~ 0.07mo, we

6nd values of the dimensionless electron ofFset V, to be
more than 250, i.e., efFectively infinite. Taking the aver-
age heavy-hole efFective mass to be rnh g 0.5mo, we

find V = 35, also very large. The relevant figure is
thus Fig. 1. With the electron eIIFective mass in InAs,
m, = 0.022mo, the mass ratios m, /mg are about 0.3 and
0.04, respectively. One thus has to interpolate between
the mass ratios 0 and 0.5 graphs in Fig. l. [For the heavy-
hole exciton, this can only be used for dimensionless dot
radii larger than about 2.3, according to the expression
(16). The lower curve in Fig. 5, although corresponding
to an ofFset 25 rather than 35, and a larger mass ratio
m~/mg, gives also a rough idea of how the binding energy
for the heavy-hole exciton depends on the dot radius. j

C. V Smite, Vj, Rnite

We finally investigate the efFect of a 6nite hole ofFset.
The binding energy as function of the quantum dot radius
R is shown in Fig. 6 for several values of the ofFsets, taken
to be equal. Comparison with Fig. 4 shows that the
binding energy is smaller when the hole onset is nonzero,
as could be expected. We see, moreover, that offsets
larger than about 15 yield essentially the same binding
energy as infinite ofFsets.

The figure corresponds to m = mh. The binding
energy for equal electron and hole ofFsets is, however,
very insensitive to the mass ratio m, /mg. Decreasing
the mass ratio from 1 to 0.5 lowers Ep at most by a few
percent. This insensitivity was also found for infinite
ofFsets. However, for a large disparity between the elec-
tron and hole offsets, the binding energy is more sensitive
to the mass parameters, as witnessed by Fig. 5.

The figure also shows the interesting feature that with
increasing values of V„Eg now decreases, while it in-
creased in the absense of the hole offset (Fig. 4). How can
this be explained? An increase of any of the two ofFsets is
a positive definite perturbation on the Hamiltonian (1),
and leads, therefore, to an increase in its ground. -state
energy Eo, i.e., gives a negative contribution to the bind-
ing energy Eg. Hence, Eg w'ould be lowered if the hole
ofFset were increased for fixed V, . An increase in the
electron ofFset, however, has the additional efFect of in-
creasing the electron confinement energy E, in Eq. (4),
and the competition between the two efFects determines
the change in the binding energy E~ ——E, —Eo. The
variation of the confinement energy E is the dominating
contribution when Vh, = 0 (Fig. 4), but cannot outweigh
the combined inQuence on Eo &om increasing both the
hole and electron offsets by equal amounts (Fig. 6).

For type-II heterostructures, the oIIFsets are equal if
the band gaps in the two materials are equal. For GaAs
and InP the band gaps are (at 300 K) 1.42 eV and 1.34
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FIG. 7. The overlap factor (17), as a function of the ofFset.
Here, m = mh, , V, = Vj, ——V, and B = 3. In the variational
calculation N = 3 and Ng ——5 have been used.

0.2- tudes of the offsets must clearly be extremely important
in type-II situations.

The oscillator strength of an optical transition is pro-
portional to the factor

2

f = f d(r, r) d'r (17)

FIG. 6. The dimensionless exciton binding energy E& for
equal effective masses and equal ofFsets, as a function of
the dimensionless quantum dot radius R. The ofFset val-
ues are shown on the graphs. In the variational calculation,
N, = 3 and Nh, ——5 have been used. Results corresponding
to V, = Vp,

——oo have been taken from Ref. 16 and are shown
as a dashed graph.

eV, respectively. The dielectric constant in both mate-
rials is close to e = 12.7ep. The band offsets are small,
estimated to be of order 0.2 eV and 0.3 eV. Let us
assume that this may be approximated by a common ofF-

set value of 0.25 eV, and let us assume further that the
complications due to strain can be neglected. With an
average electron effective mass m, 0.07mp, and av-
erage light-hole efFective mass mh ~ 0.10mp, and the
average heavy-hole efFective mass mg h, 0.54mp we ob-
tain the very rough estimates 30 (light hole) and 5 (heavy
hole) for the dimensionless ofFset values. Thus, the exci-
ton binding energy versus radius graph for ofFset value 5
in Fig. 6 is relevant for the heavy-hole exciton, and the
graph corresponding to the light-hole exciton is squeezed
between the two proximate graphs for ofFset values 15
and infinity. As noted above, the results are insensitive
to the value of the mass ratio.

IV. OSCILLATOR STRENGTHS

The hole-electron overlap is a decisive factor in deter-
mining the properties of the exciton in optical experi-
ments. Since infinite offsets give zero overlap, the magni-

Figure 7 shows how the overlap factor fo increases dra-
matically with decreasing offsets. This is expected, of
course, since the particles are able to penetrate the dot
boundary when the offsets are lowered. In Fig. 8, we
illustrate a typical situation, for dimensionless offsets
equal to unity, and dimensionless dot radius B = 8. The
marginal electron and hole distributions, obtained from
the two-particle wave function, are clearly centered on
each side of, and away &om, the dot boundary. The tails
of these marginal distributions are small at the bound-

0.25-

0.2

0.15

0.1

0.05

'15 20 30

FIG. 8. The radial probability densities 4n r, vP (r, )
i = e, h for the electron position (e) and the hole position
(h), as functions of the dimensionless distance from the dot
center. Here, R = 8 (indicated by an arrow), m, = mh, , and
V = Vg = 1. The dashed line shows 10 4vrr Q(r, r) (The.
sxnall wiggle near r" = 3 is presumably due to numerical inac-
curacies. ) In the variational calculation N = 3 and Np, = 5
have been used.



52 EXCITONS IN TYPE-II QUANTUM DOTS: FINITE OFFSETS 2703

1.5 '.

0.75-

0.5-

0.25 .

0
8 '10

FIG. 9. The overlap factor (17) as a function of the dimen-
sionless dot radius B. Here, m = mq and V = Vh, ——1. In
the variational calculation, N, = 3 and Nh, ——5 have been
used. The overlap factor will eventually increase, for very
large R, according to (18).

efFective-mass ratio. The rationale behind (18) is that
for very large radii the exciton will, on the scale of the
dot radius, sit very close to the boundary, so that the
determination of the wave function is essentially deter-
mined through the solution of a plane-wall problem. The
plane-wall problem determines the constant c, and the
additional factor of 4m'R2 in (18) comes from normaliza-
tion and integration over the dot surface. For the exciton
near a plane wall at z = 0, we use the simple varia-
tional function @(r„rh) = (C, —z, )(Ch + zh, )e
for z ( C, zh, ) —Cg, and zero otherwise. For the
parazneters of Fig. 9, we find for the variational param-
eters C = Ch = 0.85 and P = 0.15, which implies
c = 1.62 x 10 7. The rise of fp according to (18) is
outside the range of radii shown in the figure.

V. SUMMARY

ary, while the overlap, which corresponds to r, = rh, is
maximal at, or very close to, the dot boundary.

How the overlap factor depends upon the size of the
quantum dot is Inore interesting. The electron wave func-
tion is squeezed out of the dot volume when the radius
becomes small enough, just as it is for small offsets. Then
the electron and hole are able to correlate, yielding a
large overlap function. The decrease of the overlap func-
tion with increasing R, shown in Fig. 9, is in accordance
with this. However, fp must finally increase with R as

The present work is a model calculation in which we
have, in the effective-mass treatment, performed a varia-
tional calculation of excitons in spherical quantum dots.
We have, in particular, studied how the exciton bind-
ing energy Ep depends on the dot radius B, the effective
masses m and mp„and the offsets. The nature of the
binding energy maximum, as function of the dot radius,
is clarified.
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